Comptes Rendus
The physics of Aeolian sand transport
[La physique du transport éolien du sable]
Comptes Rendus. Physique, Volume 16 (2015) no. 1, pp. 105-117.

Nous donnons un aperçu synthétique de l'état de l'art sur la physique du transport éolien du sable. Nous présentons d'abord les principales idées développées par Bagnold au milieu du siècle dernier. Puis nous exposons les avancées récentes dans le domaine, du point de vue tant expérimental que théorique. Nous insistons en particulier sur le fait que le flux particulaire ne suit pas une loi cubique avec la vitesse de frottement de l'air, comme prédit par Bagnold, mais une loi quadratique. Nous listons enfin les questions importantes qui restent à traiter.

We give a synthetic overview of the state of art of the physics of sand Aeolian transport. We first present the main ideas developed by Bagnold in the middle of the last century. We then review the recent experimental and theoretical advances made in the field and emphasize that the particle flow rate does not exhibit a cubic dependence with the air friction speed, as predicted by Bagnold, but a quadratic one. Finally, we list important open issues that remain.

Publié le :
DOI : 10.1016/j.crhy.2015.01.006
Keywords: Aeolian sand transport, Saltation, Particle-laden fluid flows
Mot clés : Transport éolien du sable, Saltation, Écoulements fluides chargés de particules
Alexandre Valance 1 ; Keld Rømer Rasmussen 2 ; Ahmed Ould El Moctar 3 ; Pascal Dupont 4

1 Institut de physique de Rennes, UMR UR1–CNRS 6251, Université de Rennes-1, 35042 Rennes cedex, France
2 Geoscience, Aarhus University, Denmark
3 Laboratoire de thermocinétique, Polytech Nantes, CNRS UMR 6607, 44306 Nantes, France
4 LGCGM, INSA de Rennes, campus de Beaulieu, 35043 Rennes, France
@article{CRPHYS_2015__16_1_105_0,
     author = {Alexandre Valance and Keld R{\o}mer Rasmussen and Ahmed Ould El Moctar and Pascal Dupont},
     title = {The physics of {Aeolian} sand transport},
     journal = {Comptes Rendus. Physique},
     pages = {105--117},
     publisher = {Elsevier},
     volume = {16},
     number = {1},
     year = {2015},
     doi = {10.1016/j.crhy.2015.01.006},
     language = {en},
}
TY  - JOUR
AU  - Alexandre Valance
AU  - Keld Rømer Rasmussen
AU  - Ahmed Ould El Moctar
AU  - Pascal Dupont
TI  - The physics of Aeolian sand transport
JO  - Comptes Rendus. Physique
PY  - 2015
SP  - 105
EP  - 117
VL  - 16
IS  - 1
PB  - Elsevier
DO  - 10.1016/j.crhy.2015.01.006
LA  - en
ID  - CRPHYS_2015__16_1_105_0
ER  - 
%0 Journal Article
%A Alexandre Valance
%A Keld Rømer Rasmussen
%A Ahmed Ould El Moctar
%A Pascal Dupont
%T The physics of Aeolian sand transport
%J Comptes Rendus. Physique
%D 2015
%P 105-117
%V 16
%N 1
%I Elsevier
%R 10.1016/j.crhy.2015.01.006
%G en
%F CRPHYS_2015__16_1_105_0
Alexandre Valance; Keld Rømer Rasmussen; Ahmed Ould El Moctar; Pascal Dupont. The physics of Aeolian sand transport. Comptes Rendus. Physique, Volume 16 (2015) no. 1, pp. 105-117. doi : 10.1016/j.crhy.2015.01.006. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2015.01.006/

[1] R.A. Bagnold The Physics of Blown Sand and Desert Dunes, Methuen, New York, 1941

[2] O. Duran; P. Claudin; A. Andreotti On Aeolian transport: grain-scale interactions, dynamical mechanism and scaling laws, Aeolian Res., Volume 3 (2011), pp. 243-270

[3] J. Kok; E. Partel; T. Michael; D. Bou Karam The physics of wind-blown sand and dust, Rep. Prog. Phys., Volume 75 (2012), p. 106901

[4] P. Claudin; B. Andreotti A scaling law for Aeolian dunes on Mars, Venus, Earth, and for subaqueous ripples, Earth Planet. Sci. Lett., Volume 252 (2006), pp. 30-44

[5] R. Anderson; M. Sørensen; B. Willetts A review of recent progress in our understanding of Aeolian sediment transport, Acta Mech., Suppl., Volume 1 (1991), pp. 1-19

[6] G. Sauermann; K. Kroy; H.J. Herrmann Continuum saltation model for sand dunes, Phys. Rev. E, Volume 64 (2001), p. 031305

[7] B. Andreotti; P. Claudin; O. Pouliquen Measurements of the Aeolian sand transport saturation length, Geomorphology, Volume 123 (2010), pp. 343-348

[8] T. Pähtz; J.F. Kok; H.J. Herrmann Flux saturation length of sediment transport, Phys. Rev. Lett., Volume 111 (2013), p. 218002

[9] M. Sørensen On the rate of Aeolian sand transport, Geomorphology, Volume 59 (2004), pp. 53-62

[10] T. Ho Experimental study of saltating particles in a turbulent boundary layer, University of Rennes 1, 2012 (Ph.D. thesis)

[11] J. Iversen; K. Rasmussen The effect of wind speed and bed slope on sand transport, Sedimentology, Volume 46 (1999), pp. 723-731

[12] P.R. Owen Saltation of uniform grains in air, J. Fluid Mech., Volume 20 (1964), pp. 225-242

[13] D. Sherman An equilibrium relationship for shear velocity and apparent roughness length in Aeolian saltation, Geomorphology, Volume 5 (1992) no. 3–5, pp. 419-431

[14] K. Rasmussen; J. Iversen; P. Rautahemio Saltation and wind-flow interaction in a variable slope wind tunnel, Geomorphology, Volume 17 (1996) no. 1–3, pp. 19-28

[15] R.S. Anderson; P.K. Haff Simulation of Aeolian saltation, Science, Volume 241 (1988), pp. 820-823

[16] R.S. Anderson; P.K. Haff Wind modification and bed response during saltation of sand in air, Acta Mech., Suppl., Volume 1 (1991), pp. 21-51

[17] B.B. Willetts; M.A. Rice Collisions in Aeolian saltation, Acta Mech., Volume 63 (1986), pp. 255-265

[18] B.B. Willetts; M.A. Rice Collision of quartz grains with a sand bed: the influence of incident angle, Earth Surf. Process. Landf., Volume 14 (1989), pp. 719-730

[19] P. Nalpanis; J. Hunt; C. Barrett Saltating particles over flat beds, J. Fluid Mech., Volume 251 (1993), pp. 661-685

[20] R. Greeley; D. Blumberg; S.H. Williams Field measurement of the flux and speed of wind blown sand, Sedimentology, Volume 43 (1996), pp. 41-52

[21] S.L. Namikas; B.O. Bauer; D.J. Sherman Influence of averaging interval on shear velocity estimates for Aeolian transport modeling, Geomorphology, Volume 53 (2003), pp. 235-246

[22] Z. Dong; X. Liu; X. Wang; F. Li; A. Zhao Experimental investigation of the velocity of a sand cloud blowing over a sandy surface, Earth Surf. Process. Landf., Volume 29 (2004), pp. 343-458

[23] Z. Dong; H. Wang Height profile of particle concentration in an Aeolian saltating cloud: a wind tunnel investigation by PIV MSD, Geophys. Res. Lett., Volume 30 (2004), p. 19 | DOI

[24] K.R. Rasmussen; M. Sørensen The vertical variation of particle speed and flux density in Aeolian saltation: measurement and modeling, J. Geophys. Res., Volume 113 (2008), p. F02S12

[25] M. Creyssels; P. Dupont; A. Ould el Moctar; A. Valance; I. Cantat; J. Jenkins; J. Pasini; K. Rasmussen Saltating particles in a turbulent boundary layer: experiment and theory, J. Fluid Mech., Volume 625 (2009), pp. 47-74

[26] T.D. Ho; A. Valance; P. Dupont; A. Ould El Moctar Scaling laws in Aeolian sand transport, Phys. Rev. Lett., Volume 106 (2011), p. 094501

[27] T.D. Ho; A. Valance; P. Dupont; A. Ould El Moctar Particle velocity distribution in saltation transport, Phys. Rev. E, Volume 85 (2012), p. 052301

[28] J. Ungar; P.K. Haff Steady-state saltation in air, Sedimentology, Volume 34 (1987), pp. 289-299

[29] B. Andreotti A two-species model of Aeolian sand transport, J. Fluid Mech., Volume 510 (2004), pp. 47-70

[30] O. Duran; B. Andreotti; P. Claudin Numerical simulation of turbulent sediment transport from bed load to saltation, Phys. Fluids, Volume 24 (2012), p. 103306

[31] J. Jenkins; A. Valance Periodic trajectories in Aeolian sand transport, Phys. Fluids, Volume 26 (2014), p. 073301

[32] T.D. Ho; A. Valance; P. Dupont; A. Ould El Moctar Aeolian sand transport: height and length distribution of saltation trajectories, Aeolian Res. (2014), pp. 65-74

[33] B.R. White; J.C. Schulz Magnus effect in saltation, J. Fluid Mech., Volume 81 (1977) no. 3, pp. 497-512

[34] B.B. Willetts; M.A. Rice Particle dislodgment from a flat bed by wind, Earth Surf. Process. Landf., Volume 13 (1988), pp. 717-728

[35] M.A. Rice; B.B. Willetts; I.K. McEwan An experimental study of multiple grain-size ejecta produced by collisions of saltating grains with a flat bed, Sedimentology, Volume 42 (1995) no. 4, pp. 695-706

[36] M.A. Rice; B.B. Willetts; I.K. McEwan Observations of collisions of saltating grains with a granular bed from high-speed cine-film, Sedimentology, Volume 43 (1996) no. 1, pp. 21-31

[37] W. Zhang; J. Kang; S. Lee Tracking of saltating sand trajectories over a flat surface embedded in an atmospheric boundary layer, Geomorphology, Volume 86 (2007), pp. 320-331

[38] D. Beladjine; M. Ammi; A. Valance; L. Oger Collision process between an incident bead and a three-dimensional granular packing, Phys. Rev. E, Volume 75 (2007)

[39] B.T. Werner; P.K. Haff The impact process in Aeolian saltation: two-dimensional simulations, Sedimentology, Volume 35 (1988), pp. 189-196

[40] L. Oger; M. Ammi; A. Valance; D. Beladjine Discrete element method to study the collision of one rapid sphere on 2D and 3D packings, Eur. Phys. J. E, Soft Matter, Volume 17 (2005), pp. 467-476

[41] S. Mitha; M.Q. Tran; B.T. Werner; P.K. Haff The grain-bed impact process in Aeolian saltation, Acta Mech., Volume 63 (1986), pp. 267-278

[42] F. Rioual; A. Valance; D. Bideau Experimental study of the collision process of a grain on a two-dimensional granular bed, Phys. Rev. E, Volume 62 (2000), p. 2

[43] B.T. Werner A steady-state model of wind-blown sand transport, J. Geol., Volume 98 (1990), pp. 1-17

[44] J. Crassous; D. Beladjine; A. Valance Impact of a projectile on a granular medium described by a collision model, Phys. Rev. Lett., Volume 99 (2007)

[45] O. Duran; B. Andreotti; P. Claudin Direct numerical simulations of Aeolian sand ripples, Proc. Natl. Acad. Sci. USA, Volume 111 (2014), pp. 15665-15668

[46] J. Kok; N. Rennó A comprehensive numerical model of steady-state saltation, J. Geophys. Res., Atmos., Volume 114 (2009), p. D17204

[47] M.V. Carneiro; T. Pähtz; H.J. Herrmann Jump at the onset of saltation, Phys. Rev. Lett., Volume 107 (2011), p. 098001

[48] M.V. Carneiro; N. Araujo; T. Pähtz; H.J. Herrmann Midair collisions enhance saltation, Phys. Rev. Lett., Volume 111 (2013), p. 058001

[49] J. Jenkins; I. Cantat; A. Valance Continuum model for steady, fully developed saltation above a horizontal particle bed, Phys. Rev. E, Volume 82 (2010), p. 020301R

[50] M. Lämmel; D. Rings; K. Kroy A two-species continuum model for Aeolian sand transport, New J. Phys., Volume 14 (2012), p. 093037

[51] T. Pähtz; J.F. Kok; H.J. Herrmann The apparent roughness of a sand surface blown by wind from an analytical model of saltation, New J. Phys., Volume 14 (2012), p. 043035

[52] P. Hersen; S. Douady; B. Andreotti Relevant length scale for barchan dunes, Phys. Rev. Lett., Volume 89 (2002), p. 264301

[53] J. Pasini; J. Jenkins Aeolian transport with collisional suspension, Philos. Trans. R. Soc. A, Volume 363 (2005), pp. 1625-1646

[54] A. Baas; D. Sherman Formation and behavior of Aeolian streamers, J. Geophys. Res., Volume 110 (2005), p. F03011

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Evolution and shapes of dunes

Hans J. Herrmann

C. R. Phys (2002)


Dispersion de particules solides en mouvement de saltation dans un écoulement turbulent

César Aguirre; Yu Guo; Michel Ayrault

C. R. Méca (2004)


Dune morphodynamics

Sylvain Courrech du Pont

C. R. Phys (2015)