We give a synthetic overview of the state of art of the physics of sand Aeolian transport. We first present the main ideas developed by Bagnold in the middle of the last century. We then review the recent experimental and theoretical advances made in the field and emphasize that the particle flow rate does not exhibit a cubic dependence with the air friction speed, as predicted by Bagnold, but a quadratic one. Finally, we list important open issues that remain.
Nous donnons un aperçu synthétique de l'état de l'art sur la physique du transport éolien du sable. Nous présentons d'abord les principales idées développées par Bagnold au milieu du siècle dernier. Puis nous exposons les avancées récentes dans le domaine, du point de vue tant expérimental que théorique. Nous insistons en particulier sur le fait que le flux particulaire ne suit pas une loi cubique avec la vitesse de frottement de l'air, comme prédit par Bagnold, mais une loi quadratique. Nous listons enfin les questions importantes qui restent à traiter.
Mots-clés : Transport éolien du sable, Saltation, Écoulements fluides chargés de particules
Alexandre Valance 1; Keld Rømer Rasmussen 2; Ahmed Ould El Moctar 3; Pascal Dupont 4
@article{CRPHYS_2015__16_1_105_0, author = {Alexandre Valance and Keld R{\o}mer Rasmussen and Ahmed Ould El Moctar and Pascal Dupont}, title = {The physics of {Aeolian} sand transport}, journal = {Comptes Rendus. Physique}, pages = {105--117}, publisher = {Elsevier}, volume = {16}, number = {1}, year = {2015}, doi = {10.1016/j.crhy.2015.01.006}, language = {en}, }
TY - JOUR AU - Alexandre Valance AU - Keld Rømer Rasmussen AU - Ahmed Ould El Moctar AU - Pascal Dupont TI - The physics of Aeolian sand transport JO - Comptes Rendus. Physique PY - 2015 SP - 105 EP - 117 VL - 16 IS - 1 PB - Elsevier DO - 10.1016/j.crhy.2015.01.006 LA - en ID - CRPHYS_2015__16_1_105_0 ER -
Alexandre Valance; Keld Rømer Rasmussen; Ahmed Ould El Moctar; Pascal Dupont. The physics of Aeolian sand transport. Comptes Rendus. Physique, Granular physics / Physique des milieux granulaires, Volume 16 (2015) no. 1, pp. 105-117. doi : 10.1016/j.crhy.2015.01.006. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2015.01.006/
[1] The Physics of Blown Sand and Desert Dunes, Methuen, New York, 1941
[2] On Aeolian transport: grain-scale interactions, dynamical mechanism and scaling laws, Aeolian Res., Volume 3 (2011), pp. 243-270
[3] The physics of wind-blown sand and dust, Rep. Prog. Phys., Volume 75 (2012), p. 106901
[4] A scaling law for Aeolian dunes on Mars, Venus, Earth, and for subaqueous ripples, Earth Planet. Sci. Lett., Volume 252 (2006), pp. 30-44
[5] A review of recent progress in our understanding of Aeolian sediment transport, Acta Mech., Suppl., Volume 1 (1991), pp. 1-19
[6] Continuum saltation model for sand dunes, Phys. Rev. E, Volume 64 (2001), p. 031305
[7] Measurements of the Aeolian sand transport saturation length, Geomorphology, Volume 123 (2010), pp. 343-348
[8] Flux saturation length of sediment transport, Phys. Rev. Lett., Volume 111 (2013), p. 218002
[9] On the rate of Aeolian sand transport, Geomorphology, Volume 59 (2004), pp. 53-62
[10] Experimental study of saltating particles in a turbulent boundary layer, University of Rennes 1, 2012 (Ph.D. thesis)
[11] The effect of wind speed and bed slope on sand transport, Sedimentology, Volume 46 (1999), pp. 723-731
[12] Saltation of uniform grains in air, J. Fluid Mech., Volume 20 (1964), pp. 225-242
[13] An equilibrium relationship for shear velocity and apparent roughness length in Aeolian saltation, Geomorphology, Volume 5 (1992) no. 3–5, pp. 419-431
[14] Saltation and wind-flow interaction in a variable slope wind tunnel, Geomorphology, Volume 17 (1996) no. 1–3, pp. 19-28
[15] Simulation of Aeolian saltation, Science, Volume 241 (1988), pp. 820-823
[16] Wind modification and bed response during saltation of sand in air, Acta Mech., Suppl., Volume 1 (1991), pp. 21-51
[17] Collisions in Aeolian saltation, Acta Mech., Volume 63 (1986), pp. 255-265
[18] Collision of quartz grains with a sand bed: the influence of incident angle, Earth Surf. Process. Landf., Volume 14 (1989), pp. 719-730
[19] Saltating particles over flat beds, J. Fluid Mech., Volume 251 (1993), pp. 661-685
[20] Field measurement of the flux and speed of wind blown sand, Sedimentology, Volume 43 (1996), pp. 41-52
[21] Influence of averaging interval on shear velocity estimates for Aeolian transport modeling, Geomorphology, Volume 53 (2003), pp. 235-246
[22] Experimental investigation of the velocity of a sand cloud blowing over a sandy surface, Earth Surf. Process. Landf., Volume 29 (2004), pp. 343-458
[23] Height profile of particle concentration in an Aeolian saltating cloud: a wind tunnel investigation by PIV MSD, Geophys. Res. Lett., Volume 30 (2004), p. 19 | DOI
[24] The vertical variation of particle speed and flux density in Aeolian saltation: measurement and modeling, J. Geophys. Res., Volume 113 (2008), p. F02S12
[25] Saltating particles in a turbulent boundary layer: experiment and theory, J. Fluid Mech., Volume 625 (2009), pp. 47-74
[26] Scaling laws in Aeolian sand transport, Phys. Rev. Lett., Volume 106 (2011), p. 094501
[27] Particle velocity distribution in saltation transport, Phys. Rev. E, Volume 85 (2012), p. 052301
[28] Steady-state saltation in air, Sedimentology, Volume 34 (1987), pp. 289-299
[29] A two-species model of Aeolian sand transport, J. Fluid Mech., Volume 510 (2004), pp. 47-70
[30] Numerical simulation of turbulent sediment transport from bed load to saltation, Phys. Fluids, Volume 24 (2012), p. 103306
[31] Periodic trajectories in Aeolian sand transport, Phys. Fluids, Volume 26 (2014), p. 073301
[32] Aeolian sand transport: height and length distribution of saltation trajectories, Aeolian Res. (2014), pp. 65-74
[33] Magnus effect in saltation, J. Fluid Mech., Volume 81 (1977) no. 3, pp. 497-512
[34] Particle dislodgment from a flat bed by wind, Earth Surf. Process. Landf., Volume 13 (1988), pp. 717-728
[35] An experimental study of multiple grain-size ejecta produced by collisions of saltating grains with a flat bed, Sedimentology, Volume 42 (1995) no. 4, pp. 695-706
[36] Observations of collisions of saltating grains with a granular bed from high-speed cine-film, Sedimentology, Volume 43 (1996) no. 1, pp. 21-31
[37] Tracking of saltating sand trajectories over a flat surface embedded in an atmospheric boundary layer, Geomorphology, Volume 86 (2007), pp. 320-331
[38] Collision process between an incident bead and a three-dimensional granular packing, Phys. Rev. E, Volume 75 (2007)
[39] The impact process in Aeolian saltation: two-dimensional simulations, Sedimentology, Volume 35 (1988), pp. 189-196
[40] Discrete element method to study the collision of one rapid sphere on 2D and 3D packings, Eur. Phys. J. E, Soft Matter, Volume 17 (2005), pp. 467-476
[41] The grain-bed impact process in Aeolian saltation, Acta Mech., Volume 63 (1986), pp. 267-278
[42] Experimental study of the collision process of a grain on a two-dimensional granular bed, Phys. Rev. E, Volume 62 (2000), p. 2
[43] A steady-state model of wind-blown sand transport, J. Geol., Volume 98 (1990), pp. 1-17
[44] Impact of a projectile on a granular medium described by a collision model, Phys. Rev. Lett., Volume 99 (2007)
[45] Direct numerical simulations of Aeolian sand ripples, Proc. Natl. Acad. Sci. USA, Volume 111 (2014), pp. 15665-15668
[46] A comprehensive numerical model of steady-state saltation, J. Geophys. Res., Atmos., Volume 114 (2009), p. D17204
[47] Jump at the onset of saltation, Phys. Rev. Lett., Volume 107 (2011), p. 098001
[48] Midair collisions enhance saltation, Phys. Rev. Lett., Volume 111 (2013), p. 058001
[49] Continuum model for steady, fully developed saltation above a horizontal particle bed, Phys. Rev. E, Volume 82 (2010), p. 020301R
[50] A two-species continuum model for Aeolian sand transport, New J. Phys., Volume 14 (2012), p. 093037
[51] The apparent roughness of a sand surface blown by wind from an analytical model of saltation, New J. Phys., Volume 14 (2012), p. 043035
[52] Relevant length scale for barchan dunes, Phys. Rev. Lett., Volume 89 (2002), p. 264301
[53] Aeolian transport with collisional suspension, Philos. Trans. R. Soc. A, Volume 363 (2005), pp. 1625-1646
[54] Formation and behavior of Aeolian streamers, J. Geophys. Res., Volume 110 (2005), p. F03011
Cited by Sources:
Comments - Policy