Comptes Rendus
Debris flows: Experiments and modelling
[Les écoulements de débris : Les expériences et la modélisation]
Comptes Rendus. Physique, Volume 16 (2015) no. 1, pp. 86-96.

Les écoulements et avalanches de débris sont des courants gravitaires complexes de roche, d'eau et de sédiments, qui peuvent être hautement mobiles. Leur composition produit une morphologie riche et une dynamique inhabituelle, possédant des attributs de matériaux granulaires et de courants gravitaires visqueux. Bien que des incidents extrêmes tels que ceux survenus à Kolka Karmadon, en Ossétie du Nord, en 2002 [1], et à Huascarán, en 1970 [2], nous motivent fortement pour comprendre comment une telle mobilité peut être atteinte, des écoulements plus petits et ordinaires, qui sont également à même de menacer les infrastructures et les personnes, doivent être eux aussi confrontés. De récents progrès dans la modélisation de ces écoulements ont produit des modèles multiphases qui peuvent fournir des indices sur les origines de leur phénoménologie unique. Cependant, leurs variations spatiales et temporelles compliquent cette tâche. De ce fait, les expériences en laboratoire, où les conditions initiales et aux limites peuvent être contrôlées de façon reproductible, sont cruciales à la fois pour valider les modèles et pour inspirer de nouvelles approches théoriques. Cet article décrit des expériences récentes sur des écoulements de débris en laboratoire et résume l'état de l'art en matière de modèles numériques.

Debris flows and debris avalanches are complex, gravity-driven currents of rock, water and sediments that can be highly mobile. This combination of component materials leads to a rich morphology and unusual dynamics, exhibiting features of both granular materials and viscous gravity currents. Although extreme events such as those at Kolka Karmadon in North Ossetia (2002) [1] and Huascarán (1970) [2] strongly motivate us to understand how such high levels of mobility can occur, smaller events are ubiquitous and capable of endangering infrastructure and life, requiring mitigation. Recent progress in modelling debris flows has seen the development of multiphase models that can start to provide clues of the origins of the unique phenomenology of debris flows. However, the spatial and temporal variations that debris flows exhibit make this task challenging and laboratory experiments, where boundary and initial conditions can be controlled and reproduced, are crucial both to validate models and to inspire new modelling approaches. This paper discusses recent laboratory experiments on debris flows and the state of the art in numerical models.

Publié le :
DOI : 10.1016/j.crhy.2014.11.006
Keywords: Debris flows, Debris avalanches, Centrifuge experiments
Mot clés : Écoulements de débris, Avalanches de débris, Expériences en centrifuge
Barbara Turnbull 1 ; Elisabeth T. Bowman 2 ; Jim N. McElwaine 3

1 Fluid & Particle Processes Group, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
2 Dept. Civil & Structural Engineering, University of Sheffield, Sheffield, S1 3JD, UK
3 Department of Earth Sciences, Durham University, Durham, DH1 3LE, UK
@article{CRPHYS_2015__16_1_86_0,
     author = {Barbara Turnbull and Elisabeth T. Bowman and Jim N. McElwaine},
     title = {Debris flows: {Experiments} and modelling},
     journal = {Comptes Rendus. Physique},
     pages = {86--96},
     publisher = {Elsevier},
     volume = {16},
     number = {1},
     year = {2015},
     doi = {10.1016/j.crhy.2014.11.006},
     language = {en},
}
TY  - JOUR
AU  - Barbara Turnbull
AU  - Elisabeth T. Bowman
AU  - Jim N. McElwaine
TI  - Debris flows: Experiments and modelling
JO  - Comptes Rendus. Physique
PY  - 2015
SP  - 86
EP  - 96
VL  - 16
IS  - 1
PB  - Elsevier
DO  - 10.1016/j.crhy.2014.11.006
LA  - en
ID  - CRPHYS_2015__16_1_86_0
ER  - 
%0 Journal Article
%A Barbara Turnbull
%A Elisabeth T. Bowman
%A Jim N. McElwaine
%T Debris flows: Experiments and modelling
%J Comptes Rendus. Physique
%D 2015
%P 86-96
%V 16
%N 1
%I Elsevier
%R 10.1016/j.crhy.2014.11.006
%G en
%F CRPHYS_2015__16_1_86_0
Barbara Turnbull; Elisabeth T. Bowman; Jim N. McElwaine. Debris flows: Experiments and modelling. Comptes Rendus. Physique, Volume 16 (2015) no. 1, pp. 86-96. doi : 10.1016/j.crhy.2014.11.006. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2014.11.006/

[1] C. Huggel; S. Zgraggen-Oswald; W. Haeberli; A. Kääb; A. Polkvoj; I. Galushkin; S. Evans et al. The 2002 rock/ice avalanche at Kolka/Karmadon, Russian Caucasus: assessment of extraordinary avalanche formation and mobility, and application of QuickBird satellite imagery, Nat. Hazards Earth Syst. Sci., Volume 5 (2005) no. 2, pp. 173-187

[2] S.G. Evans; N.F. Bishop; L. Fidel Smoll; P. Valderrama Murillo; K.B. Delaney; A. Oliver-Smith A re-examination of the mechanism and human impact of catastrophic mass flows originating on Nevado Huascarán, Cordillera Blanca, Peru in 1962 and 1970, Eng. Geol., Volume 108 (2009) no. 1, pp. 96-118

[3] J.W. Vallance Volcanic debris flows, Debris-flow Hazards and Related Phenomena, Springer, 2005, pp. 247-274

[4] T. Takahashi Debris flow, Annu. Rev. Fluid Mech., Volume 13 (1981) no. 1, pp. 57-77

[5] R.M. Iverson The debris-flow rheology myth, Debris-Flow Hazards Mitigation: Mechanics, Prediction, and Assessment, vol. 1, 2003, pp. 303-314

[6] J. Kowalski; J.N. McElwaine Shallow two-component gravity-driven flows with vertical variation, J. Fluid Mech., Volume 714 (2013), pp. 434-462

[7] S.P. Pudasaini Some exact solutions for debris and avalanche flows, Phys. Fluids, Volume 23 (2011), p. 043301

[8] M. Christen; J. Kowalski; P. Bartelt RAMMS: numerical simulation of dense snow avalanches in three-dimensional terrain, Cold Reg. Sci. Technol., Volume 63 (2010) no. 1, pp. 1-14

[9] D. Berzi; J. Jenkins A theoretical analysis of free-surface flows of saturated granular–liquid mixtures, J. Fluid Mech., Volume 608 (2008), pp. 393-410

[10] R.M. Iverson; R.P. Denlinger Flow of variably fluidized granular masses across three-dimensional terrain: 1. Coulomb mixture theory, J. Geophys. Res., Solid Earth, Volume 106 (2001) no. B1, pp. 537-552

[11] B.W. McArdell; P. Bartelt; J. Kowalski Field observations of basal forces and fluid pore pressure in a debris flow, Geophys. Res. Lett., Volume 34 (2007) no. 7 (L07406)

[12] D. Berzi; J.T. Jenkins; M. Larcher Debris flows: recent advances in experiments and modeling, Adv. Geophys., Volume 52 (2010), pp. 103-138

[13] J. Non-Newton. Fluid Mech., 158 (2009), pp. 1-3

[14] R. Kaitna; D. Rickenmann; M. Schatzmann Experimental study on rheologic behaviour of debris flow material, Acta Geotech., Volume 2 (2007) no. 2, pp. 71-85

[15] C. Johnson; B. Kokelaar; R. Iverson; M. Logan; R. LaHusen; J. Gray Grain-size segregation and levee formation in geophysical mass flows, J. Geophys. Res., Earth Surf., Volume 117 ( 2003–2012 ) no. F1

[16] R.M. Iverson The physics of debris flows, Rev. Geophys., Volume 35 (1997) no. 3, pp. 245-296

[17] P. Kailey Debris flows in New Zealand Alpine catchments, University of Canterbury, Canterbury, UK, 2013 (PhD thesis)

[18] R. Fannin; M. Wise An empirical-statistical model for debris flow travel distance, Can. Geotech. J., Volume 38 (2001) no. 5, pp. 982-994

[19] P. Paleo Cageao Fluid particle interaction in geophysical flows: debris flows, University of Nottingham, Nottingham, UK, 2014 (PhD thesis)

[20] M. Larcher; L. Fraccarollo; A. Armanini; H. Capart Set of measurement data from flume experiments on steady uniform debris flows, J. Hydraul. Res., Volume 45 (2007) no. Suppl. 1, pp. 59-71

[21] R.M. Iverson Debris flows: behaviour and hazard assessment, Geol. Today, Volume 30 (2014) no. 1, pp. 15-20

[22] E. Bryant Natural Hazards, Cambridge University Press, Cambridge, UK, 2005

[23] J.E. Simpson Gravity Currents: In the Environment and the Laboratory, Cambridge University Press, Cambridge, UK, 1999

[24] C.S. Campbell Self-lubrication for long runout landslides, J. Geol., Volume 97 (1989), pp. 653-665

[25] M. Bolton The strength and dilatancy of sands, Géotechnique, Volume 36 (1986) no. 1, pp. 65-78

[26] J. Garnier; C. Gaudin; S. Springman; P. Culligan; D. Goodings; D. Konig; B. Kutter; R. Phillips; M. Randolph; L. Thorel Catalogue of scaling laws and similitude questions in geotechnical centrifuge modelling, Int. J. Phys. Model. Geotech., Volume 7 (2007) no. 3, pp. 1-23

[27] H. Chen; G. Crosta; C. Lee Erosional effects on runout of fast landslides, debris flows, Géotechnique, Volume 56 (2006) no. 5, pp. 305-322

[28] J. Hutchinson; R. Bhandari Undrained loading, a fundamental mechanism of mudflows and other mass movements, Géotechnique, Volume 21 (1971) no. 4, pp. 353-358

[29] E. Bowman; W. Take; K. Rait; C. Hann Physical models of rock avalanche spreading behaviour with dynamic fragmentation, Can. Geotech. J., Volume 49 (2012) no. 4, pp. 460-476

[30] E.T. Bowman; J. Laue; B. Imre; S.M. Springman Experimental modelling of debris flow behaviour using a geotechnical centrifuge, Can. Geotech. J., Volume 47 (2010) no. 7, pp. 742-762

[31] R. Taylor Centrifuges in modelling: principles and scale effects (R.N. Taylor, ed.), Geotechnical Centrifuge Technology, W.W. Norton, Boston, 1995, pp. 19-33

[32] P. Kailey; E. Bowman; J. Laue; S. Springman Modelling debris flow processes with a geotechnical centrifuge, Ital. J. Eng. Geol. Environ., Volume 13 (2011), pp. 339-349

[33] C. Gue; K. Soga; M. Bolton; N. Thusyanthan Centrifuge modelling of submarine landslide flows, Zurich (S. Springman; J. Laude; L. Seward, eds.), Taylor and Francis, London (2010), pp. 1113-1118

[34] F. Milne; M. Brown; J. Knappett; M. Davies Centrifuge modelling of hillslope debris flow initiation, Catena, Volume 92 (2012), pp. 162-171

[35] R. Steedman; X. Zeng Dynamics (R. Taylor, ed.), Geotechnical Centrifuge Technology, Blackie Academic & Professional, London, 1995, pp. 168-195

[36] T.R. Davies Debris-flow surges—experimental simulation, J. Hydrol. (NZ), Volume 29 (1990) no. 1, pp. 18-46

[37] A. Armanini; H. Capart; L. Fraccarollo; M. Larcher Rheological stratification in experimental free-surface flows of granular–liquid mixtures, J. Fluid Mech., Volume 532 (2005), pp. 269-319

[38] B. Yohannes; L. Hsu; W. Dietrich; K. Hill Boundary stresses due to impacts from dry granular flows, J. Geophys. Res., Earth Surf., Volume 117 ( 2003–2012 ) no. F2

[39] L. Hsu; W.E. Dietrich; L.S. Sklar Experimental study of bedrock erosion by granular flows, J. Geophys. Res. Earth Surf., Volume 113 ( 2003–2012 ) no. F2

[40] J.D. Stock; D.R. Montgomery; B.D. Collins; W.E. Dietrich; L. Sklar Field measurements of incision rates following bedrock exposure: implications for process controls on the long profiles of valleys cut by rivers and debris flows, Geol. Soc. Am. Bull., Volume 117 (2005) no. 1–2, pp. 174-194

[41] S. Dalziel DigiFlow, Dalziel Research Partners, 2002

[42] O. Hungr, A model for the runout analysis of rapid flow slides, debris flows, and avalanches, Can. Geotech. J., . | DOI

[43] O. Hungr Numerical modelling of the dynamics of debris flows and rock avalanches, Geomech. Tunn., Volume 1 (2008), pp. 112-119

[44] R.M. Iverson; D.L. George A depth-averaged debris-flow model that includes the effects of evolving dilatancy. I. Physical basis, Proc. R. Soc., Math. Phys. Eng. Sci., Volume 470 (2014) no. 2170, p. 20130819

[45] D.L. George; R.M. Iverson A depth-averaged debris-flow model that includes the effects of evolving dilatancy. II. Numerical predictions and experimental tests, Proc. R. Soc., Math. Phys. Eng. Sci., Volume 470 (2014) no. 2170, p. 20130820

[46] D. Berzi; J. Jenkins Steady inclined flows of granular-fluid mixtures, J. Fluid Mech., Volume 641 (2009), pp. 359-387

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Geomorphology and kinematics of debris flows with high entrainment rates: A case study in the South French Alps

Alexandre Remaître; Jean-Philippe Malet; Olivier Maquaire

C. R. Géos (2011)


Rheological properties of dense granular flows

Pierre Jop

C. R. Phys (2015)


The structure of powder snow avalanches

Betty Sovilla; Jim N. McElwaine; Michel Y. Louge

C. R. Phys (2015)