Comptes Rendus
Kinetic theory for sheared granular flows
[Théorie cinétique des écoulements granulaires cisaillés]
Comptes Rendus. Physique, Volume 16 (2015) no. 1, pp. 51-61.

Les écoulements granulaires rapides sont des systèmes forcés hautement dissipatifs hors équilibre, dans lesquels les interactions entre particules dissipent l'énergie, et qui, de ce fait, requièrent un apport énergétique ininterrompu pour agiter les particules et faciliter les réarrangements nécessaires à l'écoulement. Ceci les différencie des écoulements de fluides moléculaires, qui sont en général proches de l'équilibre, et dont les molécules sont agitées par des fluctuations thermiques. Les écoulements granulaires cisaillés constituent une classe dans laquelle l'énergie nécéssaire est fournie par le cisaillement moyen. Ils sont étudiés à l'aide de la théorie cinétique des gaz, dans laquelle les particules sont traitées comme des molécules gazeuses, et où leurs intéractions sont binaires, instantanées et dissipatives. Nous discutons d'abord le bien-fondé de ces hypothèses qui sous-tendent la théorie cinétique et leur emploi dans le cas idéaliste d'un écoulement granulaire dilué. Nous résumons ensuite les succès et les défis attachés à la mise en œuvre de la théorie cinétique dans des écoulements réalistes denses et cisaillés.

Rapid granular flows are far-from-equilibrium-driven dissipative systems where the interaction between the particles dissipates energy, and so a continuous supply of energy is required to agitate the particles and facilitate the rearrangement required for the flow. This is in contrast to flows of molecular fluids, which are usually close to equilibrium, where the molecules are agitated by thermal fluctuations. Sheared granular flows form a class of flows where the energy required for agitating the particles in the flowing state is provided by the mean shear. These flows have been studied using the methods of kinetic theory of gases, where the particles are treated in a manner similar to molecules in a molecular gas, and the interactions between particles are treated as instantaneous energy-dissipating binary collisions. The validity of the assumptions underlying kinetic theory, and their applicability to the idealistic case of dilute sheared granular flows are first discussed. The successes and challenges for applying kinetic theory for realistic dense sheared granular flows are then summarised.

Publié le :
DOI : 10.1016/j.crhy.2014.11.008
Keywords: Granular kinetic theory, Sheared granular flows, Dense granular flows
Mot clés : Théorie cinétique granulaire, Écoulements granulaires cisaillés, Écoulements granulaires denses
Viswanathan Kumaran 1

1 Department of Chemical Engineering, Indian Institute of Science, Bangalore 560 012, India
@article{CRPHYS_2015__16_1_51_0,
     author = {Viswanathan Kumaran},
     title = {Kinetic theory for sheared granular flows},
     journal = {Comptes Rendus. Physique},
     pages = {51--61},
     publisher = {Elsevier},
     volume = {16},
     number = {1},
     year = {2015},
     doi = {10.1016/j.crhy.2014.11.008},
     language = {en},
}
TY  - JOUR
AU  - Viswanathan Kumaran
TI  - Kinetic theory for sheared granular flows
JO  - Comptes Rendus. Physique
PY  - 2015
SP  - 51
EP  - 61
VL  - 16
IS  - 1
PB  - Elsevier
DO  - 10.1016/j.crhy.2014.11.008
LA  - en
ID  - CRPHYS_2015__16_1_51_0
ER  - 
%0 Journal Article
%A Viswanathan Kumaran
%T Kinetic theory for sheared granular flows
%J Comptes Rendus. Physique
%D 2015
%P 51-61
%V 16
%N 1
%I Elsevier
%R 10.1016/j.crhy.2014.11.008
%G en
%F CRPHYS_2015__16_1_51_0
Viswanathan Kumaran. Kinetic theory for sheared granular flows. Comptes Rendus. Physique, Volume 16 (2015) no. 1, pp. 51-61. doi : 10.1016/j.crhy.2014.11.008. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2014.11.008/

[1] M. Faraday On a peculiar class of acoustical figures; and on certain forms assumed by groups of particles upon vibrating elastic surfaces, Philos. Trans. R. Soc. Lond., Volume 52 (1831), pp. 299-340

[2] K. Kumar; E. Falcon; K.M.S. Bajaj; S. Fauve Shape of convective cell in Faraday experiment with fine granular materials, Physica A, Volume 270 (1999), pp. 97-104

[3] H.K. Pak; R.P. Behringer Surface waves in vertically vibrated granular materials, Phys. Rev. Lett., Volume 71 (1993), pp. 1832-1835

[4] P.B. Umbanhowar; F. Melo; H.L. Swinney Localized excitations in a vertically vibrated granular layer, Nature, Volume 382 (1996), pp. 793-796

[5] J. Bougie; J. Kreft; J.B. Swift; H.L. Swinney Onset of patterns in an oscillated granular layer: continuum and molecular dynamics simulations, Phys. Rev. E, Volume 71 (2005), p. 021301

[6] P. Sunthar; V. Kumaran Characterization of the stationary states of a dilute vibrofluidized granular bed, Phys. Rev. E, Volume 64 (2001), p. 041303

[7] R. Ramírez; D. Risso; P. Cordero Thermal convection in fluidized granular systems, Phys. Rev. Lett., Volume 85 (2000), pp. 1230-1233

[8] R. Bagnold Experiments on a gravity-free dispersion of large solid spheres in a Newtonian fluid under shear, Proc. R. Soc. Lond. A, Volume 225 (1954), pp. 49-63

[9] R. Bagnold The flow of cohesionless grains in fluids, Proc. R. Soc. Lond. A, Volume 249 (1954), pp. 235-297

[10] M.L. Hunt; R. Zenit; C.S. Campbell; C.E. Brennen Revisiting the 1954 suspension experiments of R.A. Bagnold, J. Fluid Mech., Volume 452 (2002), pp. 1-24

[11] P.A. Cundall; O.D.L. Strack A discrete numerical model for granular assemblies, Geotechnique, Volume 29 (1979), pp. 47-65

[12] O.R. Walton Numerical simulation of inclined chute flows of monodisperse, inelastic, frictional spheres, Mech. Mater., Volume 16 (1993), pp. 239-247

[13] C.S. Campbell Granular shear flows at the elastic limit, J. Fluid Mech., Volume 465 (2002), p. 261

[14] C.S. Campbell Stress-controlled elastic granular shear flows, J. Fluid Mech., Volume 539 (2005), p. 273

[15] L.E. Silbert; D. Ertas; G.S. Grest; T.C. Halsey; D. Levine; S.J. Plimpton Granular flow down an inclined plane: Bagnold scaling and rheology, Phys. Rev. E, Volume 64 (2001), p. 051302

[16] Namiko Mitarai; Hiizu Nakanishi Bagnold scaling, density plateau, and kinetic theory analysis of dense granular flow, Phys. Rev. Lett., Volume 94 ( Apr 2005 ), p. 128001

[17] K.A. Reddy; V. Kumaran Applicability of constitutive relations from kinetic theory for dense granular flows, Phys. Rev. E, Volume 76 (2007), p. 061305

[18] K.A. Reddy; V. Kumaran Dense granular flow down an inclined plane: a comparison between the hard particle model and soft particle simulations, Phys. Fluids, Volume 22 (2010), p. 113302

[19] R.D. Mindlin; H. Deresiewicz Elastic spheres in contact under varying oblique forces, J. Appl. Mech., Volume 20 (1953), pp. 327-344

[20] D.M. Cole; J.F. Peters A physically based approach to granular media mechanics: grain-scale experiments, initial results and implications to numerical modelling, Granul. Matter, Volume 9 (2007), pp. 309-321

[21] D.M. Cole; J.F. Peters Grain-scale mechanics of geologic materials and lunar simulants under normal loading, Granul. Matter, Volume 10 (2008), pp. 171-185

[22] F.B. Pidduck The kinetic theory of a special type of rigid molecule, Proc. R. Soc. A, Math. Phys. Eng. Sci., Volume 101 (1922), pp. 101-112

[23] G.H. Bryan Report on the present state of our knowledge of thermodynamics, Brit. Assoc. Rep., Volume 64 (1894), pp. 62-102

[24] S.F. Foerster; M.Y. Louge; H. Chang; K. Allia Measurements of the collision properties of small spheres, Phys. Fluids, Volume 6 (1994), pp. 1108-1115

[25] V. Kumaran Constitutive relations and linear stability of a sheared granular flow, J. Fluid Mech., Volume 506 (2004), pp. 1-42

[26] V. Kumaran The constitutive relation for the granular flow of rough particles, and its application to the flow down an inclined plane, J. Fluid Mech., Volume 561 (2006), pp. 1-42

[27] Gilberto M. Kremer; Andrés Santos; Vicente Garzó Transport coefficients of a granular gas of inelastic rough hard spheres, Phys. Rev. E, Volume 90 ( Aug 2014 ), p. 022205

[28] C. Campbell Clusters in dense-inertial granular flows, J. Fluid Mech., Volume 687 (2011), pp. 341-359

[29] S. Chapman; T.G. Cowling The Mathematical Theory of Non-Uniform Gases, Cambridge Mathematical Library, 1991

[30] S.B. Savage; D.J. Jeffrey The stress tensor in a granular flow at high shear rates, J. Fluid Mech., Volume 110 (1981), pp. 255-272

[31] J.T. Jenkins; M.W. Richman Grad's 13-moment system for a dense gas of inelastic spheres, Arch. Ration. Mech. Anal., Volume 87 (1985), pp. 355-377

[32] C.K.K. Lun; S.B. Savage; D.J. Jeffrey; N. Chepurniy Kinetic theories for granular flow: inelastic particles in couette flow and slightly inelastic particles in a general flowfield, J. Fluid Mech., Volume 140 (1984), pp. 223-256

[33] C.K.K. Lun Kinetic theory for the flow of dense, slightly inelastic, slightly rough spheres, J. Fluid Mech., Volume 233 (1991), pp. 539-559

[34] V. Garzo; J.W. Dufty Dense fluid transport for inelastic hard spheres, Phys. Rev. E, Volume 59 ( May 1999 ), pp. 5895-5911

[35] N. Sela; I. Goldhirsch; S.H. Noskowicz Kinetic theoretical study of a simply sheared two dimensional granular gas to Burnett order, Phys. Fluids, Volume 8 (1996), pp. 2337-2353

[36] N. Sela; I. Goldhirsch Hydrodynamic equations for rapid flows of smooth inelastic spheres, to Burnett order, J. Fluid Mech., Volume 361 (1998), pp. 41-74

[37] I. Goldhirsch; N. Sela Origin of normal stress differences in rapid granular flows, Phys. Rev. E, Volume 54 ( Oct 1996 ), pp. 4458-4461

[38] Nagi Khalil; Vicente Garzó; Andrés Santos Hydrodynamic Burnett equations for inelastic maxwell models of granular gases, Phys. Rev. E, Volume 89 ( May 2014 ), p. 052201

[39] V. Kumaran Dense granular flow down an inclined plane: from kinetic theory to granular dynamics, J. Fluid Mech., Volume 599 (2008), pp. 121-168

[40] V. Kumaran Dynamics of a dilute sheared inelastic fluid, I: hydrodynamic modes and velocity correlation functions, Phys. Rev. E, Volume 79 (2009), p. 011301

[41] Andrés Santos; Vicente Garzó; James W. Dufty Inherent rheology of a granular fluid in uniform shear flow, Phys. Rev. E, Volume 69 ( Jun 2004 ), p. 061303

[42] J.M. Montanero; V. Garzo Rheological properties in a low-density granular mixture, Physica A, Volume 310 (2002), pp. 17-38

[43] Garzó Vicente Tracer diffusion in granular shear flows, Phys. Rev. E, Volume 66 ( Aug 2002 ), p. 021308

[44] James F. Lutsko Rheology of dense polydisperse granular fluids under shear, Phys. Rev. E, Volume 70 ( Dec 2004 ), p. 061101

[45] Garzó Vicente Transport coefficients for an inelastic gas around uniform shear flow: linear stability analysis, Phys. Rev. E, Volume 73 ( Feb 2006 ), p. 021304

[46] James F. Lutsko Chapman–Enskog expansion about nonequilibrium states with application to the sheared granular fluid, Phys. Rev. E, Volume 73 ( Feb 2006 ), p. 021302

[47] Namiko Mitarai; Hisao Hayakawa; Hiizu Nakanishi Collisional granular flow as a micropolar fluid, Phys. Rev. Lett., Volume 88 ( Apr 2002 ), p. 174301

[48] S.B. Savage Instability of unbounded uniform granular shear flow, J. Fluid Mech., Volume 241 (1992), pp. 109-123

[49] M. Babic On the stability of rapid granular flows, J. Fluid Mech., Volume 254 (1993), pp. 127-158

[50] P.J. Schmid; H.K. Kytomaa Transient and asymptotic stability of granular shear flow, J. Fluid Mech., Volume 264 (1994), pp. 255-275

[51] M. Alam; P.R. Nott Stability of plane couette flow of a granular material, J. Fluid Mech., Volume 377 (1999), pp. 99-136

[52] N. Mitarai; H. Nakanishi Linear stability analysis of rapid granular flow down a slope and density wave formation, J. Fluid Mech., Volume 507 (2004), pp. 309-334

[53] Y. Forterre; O. Pouliquen Stability analysis of rapid granular chute flows: formation of longitudinal vortices, J. Fluid Mech., Volume 467 (2002), pp. 361-387

[54] M.J. Woodhouse; A.J. Hogg Rapid granular flows down inclined planar chutes, Part 2: linear stability analysis of steady flow solutions, J. Fluid Mech. (2010), pp. 461-488

[55] P. Shukla; M. Alam Nonlinear stability and patterns in granular plane couette flow: Hopf and Pitchfork bifurcations, and evidence for resonance, J. Fluid Mech., Volume 672 (2011), pp. 147-195

[56] P. Shukla; M. Alam Nonlinear vorticity-banding instability in granular plane couette flow: higher-order landau coefficients, bistability and the bifurcation scenario, J. Fluid Mech., Volume 718 (2013), pp. 131-180

[57] O. Pouliquen Scaling laws in granular flows down rough inclined planes, Phys. Fluids, Volume 11 (1999), pp. 542-548

[58] V. Kumaran Dynamics of dense sheared granular flows, Part I: structure and diffusion, J. Fluid Mech., Volume 632 (2009), pp. 109-144

[59] V. Kumaran Dynamics of dense sheared granular flows, Part II: the relative velocity distribution, J. Fluid Mech., Volume 632 (2009), pp. 109-145

[60] N.F. Carnahan; K.E. Starling Equation of state for nonattracting rigid spheres, J. Chem. Phys., Volume 51 (1969), pp. 635-636

[61] S. Torquato Nearest-neighbor statistics for packings of hard spheres and disks, Phys. Rev. E, Volume 51 ( Apr 1995 ), pp. 3170-3182

[62] J.T. Jenkins Dense shearing flows of inelastic disks, Phys. Fluids, Volume 18 (2006), p. 103307

[63] J.T. Jenkins Dense inclined flows of inelastic spheres, Granul. Matter, Volume 10 (2007), pp. 47-52

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Dense flows of dry granular material

Olivier Pouliquen; François Chevoir

C. R. Phys (2002)


From a grain to avalanches: on the physics of granular surface flows

Stéphane Douady; Bruno Andreotti; Adrian Daerr; ...

C. R. Phys (2002)


Rheological properties of dense granular flows

Pierre Jop

C. R. Phys (2015)