Recent progresses in understanding the behavior of dense granular flows are presented. After presenting a bulk rheology of granular materials, I focus on the new developments to account for non-local effects, and on ongoing research concerning the surface rheology and the evolution of mechanical properties for heterogeneous systems.
Les récents progrès dans la compréhension des écoulements granulaires denses sont passés en revue, en nous focalisant sur la rhéologie classique des matériaux granulaires, tout en affinant notamment au niveau des effets non locaux, de l'influence des conditions aux limites des écoulements et de l'évolution des propriétés d'écoulement des systèmes hétérogènes.
Mots-clés : Écoulement granulaire dense, Rhéologie, Effets non locaux, Conditions aux limites
Pierre Jop 1
@article{CRPHYS_2015__16_1_62_0, author = {Pierre Jop}, title = {Rheological properties of dense granular flows}, journal = {Comptes Rendus. Physique}, pages = {62--72}, publisher = {Elsevier}, volume = {16}, number = {1}, year = {2015}, doi = {10.1016/j.crhy.2014.12.001}, language = {en}, }
Pierre Jop. Rheological properties of dense granular flows. Comptes Rendus. Physique, Granular physics / Physique des milieux granulaires, Volume 16 (2015) no. 1, pp. 62-72. doi : 10.1016/j.crhy.2014.12.001. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2014.12.001/
[1] Granular solids, liquids, and gases, Rev. Mod. Phys., Volume 68 (1996) no. 4, pp. 1259-1273
[2] On dense granular flows, Eur. Phys. J. E, Volume 14 (2004) no. 4, pp. 341-365
[3] Towards a theoretical picture of dense granular flows down inclines, Nat. Mater., Volume 6 (2007) no. 2, pp. 99-108
[4] Flows of dense granular media, Annu. Rev. Fluid Mech., Volume 40 (2008) no. 1, pp. 1-24
[5] Granular lubrication: toward an understanding of the transition between kinetic and quasi-fluid regime, J. Tribol., Volume 126 (2004) no. 1, p. 137
[6] Rheophysics of dense granular materials: discrete simulation of plane shear flows, Phys. Rev. E, Volume 72 (2005) no. 2, p. 021309
[7] Scaling laws in granular flows down rough inclined planes, Phys. Fluids, Volume 11 (1999) no. 3, pp. 542-548
[8] Long-surface-wave instability in dense granular flows, J. Fluid Mech., Volume 486 (2003), pp. 21-50
[9] Patterns in flowing sand: understanding the physics of granular flow, Phys. Rev. Lett., Volume 103 (2009) no. 17, p. 178302
[10] Dense, rapid flows of inelastic grains under gravity, Phys. Rev. Lett., Volume 90 (2003) no. 14, p. 144302
[11] Granular flow down a rough inclined plane: transition between thin and thick piles, Phys. Fluids, Volume 15 (2003) no. 1, p. 1
[12] Creep motion in a granular pile exhibiting steady surface flow, Phys. Rev. Lett., Volume 86 (2001) no. 9, pp. 1757-1760
[13] Superstable granular heap in a thin channel, Phys. Rev. Lett., Volume 91 (2003) no. 26, p. 264301
[14] Advances in Applied Mechanics, vol. 24, Elsevier, 1984
[15] A theoretical framework for granular suspensions in a steady simple shear flow, J. Rheol., Volume 43 (1999) no. 6, p. 1673
[16] On the shape of granular fronts down rough inclined planes, Phys. Fluids, Volume 11 (1999) no. 7, p. 1956
[17] A constitutive law for dense granular flows, Nature, Volume 441 (2006) no. 7094, pp. 727-730
[18] Crucial role of sidewalls in granular surface flows: consequences for the rheology, J. Fluid Mech., Volume 541 (2005), pp. 167-192
[19] Dissipative materials as constitutive models for granular media, Acta Mech., Volume 83 (1986), pp. 3-13
[20] Stresses in smooth flows of dense granular media, Europhys. Lett., Volume 78 (2007) no. 5, p. 58001
[21] Granular flows in split-bottom geometries, Soft Matter, Volume 6 (2010) no. 13, p. 2901
[22] Initiation of underwater granular avalanches: influence of the initial volume fraction, Phys. Fluids, Volume 20 (2008), p. 111701
[23] A three-dimensional numerical model for incompressible two-phase flow of a granular bed submitted to a laminar shearing flow, Comput. Methods Appl. Mech. Eng., Volume 199 (2010) no. 9–12, pp. 439-449
[24] The granular column collapse as a continuum: validity of a two-dimensional Navier–Stokes model with a -rheology, J. Fluid Mech., Volume 686 (2011), pp. 378-408
[25] Initiation of granular surface flows in a narrow channel, Phys. Fluids, Volume 19 (2007) no. 8, p. 088102
[26] Granular collapse in two dimensions, J. Fluid Mech., Volume 538 (2005), p. 399
[27] Axisymmetric collapses of granular columns, J. Fluid Mech., Volume 508 (2004), pp. 175-199
[28] Study of the collapse of granular columns using two-dimensional discrete-grain simulation, J. Fluid Mech., Volume 545 (2005), pp. 1-27
[29] Axisymmetric granular collapse: a transient 3D flow test of viscoplasticity, Phys. Rev. Lett., Volume 102 (2009) no. 10, p. 108305
[30] Relevance of visco-plastic theory in a multi-directional inhomogeneous granular flow, Europhys. Lett., Volume 88 (2009) no. 1, p. 14001
[31] Continuum simulation of the discharge of the granular silo: a validation test for the visco-plastic flow law, Eur. Phys. J. E, Volume 37 (2014) no. 1, p. 5
[32] A three-dimensional numerical model for dense granular flows based on the rheology, J. Comput. Phys., Volume 256 (2014), pp. 696-712
[33] Granular shear flow dynamics and forces: experiment and continuum theory, Phys. Rev. E, Volume 65 (2001) no. 1, p. 011307
[34] DEM simulation of particle mixing in a sheared granular flow, Particuology, Volume 6 (2008) no. 6, pp. 445-454
[35] Velocity correlations in dense granular flows, Phys. Rev. Lett., Volume 93 (2004) no. 24, p. 248001
[36] Spatial force correlations in granular shear flow, I: numerical evidence, Phys. Rev. E, Volume 76 (2007) no. 2, p. 021302
[37] Dynamical fluctuations in dense granular flows, Philos. Trans. A. Math. Phys. Eng. Sci., Volume 367 (2009) no. 1909, pp. 5109-5121
[38] Flow rule, self-channelization, and levees in unconfined granular flows, Phys. Rev. Lett., Volume 97 (2006) no. 15, p. 158303
[39] Shallow granular flows, Phys. Rev. E, Volume 83 (2011) no. 3, p. 031306
[40] Experimental study of a creeping granular flow at very low velocity, J. Stat. Mech. Theory Exp., Volume 3 (2008), p. P03009
[41] Annular shear of cohesionless granular materials: from the inertial to quasistatic regime, Phys. Rev. E, Volume 79 (2009) no. 2, p. 021306
[42] Kinematics: wide shear zones in granular bulk flow, Nature, Volume 425 (2003) no. 6955, p. 256
[43] Coexistence and transition between shear zones in slow granular flows, Phys. Rev. Lett., Volume 111 (2013) no. 14, p. 148301
[44] Hydrodynamic modeling of granular flows in a modified Couette cell, Phys. Rev. E, Volume 77 (2008) no. 3, pp. 1-4
[45] Orientational ordering in sheared inelastic dumbbells, Phys. Rev. E, Volume 80 (2009) no. 3, p. 031304
[46] Flow-induced agitations create a granular fluid, Phys. Rev. Lett., Volume 104 (2010) no. 7, pp. 48-51
[47] Collective rheology in quasi static shear flow of granular media, 2010 (arxiv prepr., 1–9) | arXiv
[48] Nonlocal rheology of granular flows across yield conditions, Phys. Rev. Lett., Volume 111 (2013) no. 23, p. 238301
[49] Influence of roughness and dilatancy for dense granular flow along an inclined wall, Eur. Phys. J. E, Volume 1 (2000) no. 1, pp. 5-8
[50] Dense granular flows down an inclined plane (Y. Kishino, ed.), Powders and Grains 2001, Lisse, Swets and Zeitlinger, Tokyo, 2001, pp. 373-376
[51] A mean-field model for the rheology and the dynamical phase transitions in the flow of granular matter, Europhys. Lett., Volume 79 (2007) no. 3, p. 34001
[52] Velocity correlations in dense gravity-driven granular chute flow, Phys. Rev. E, Volume 74 (2006), p. 051302
[53] Dense granular flow down an inclined plane: a comparison between the hard particle model and soft particle simulations, Phys. Fluids, Volume 22 (2010) no. 11, p. 113302
[54] A non-local rheology for dense granular flows, Philos. Trans. A. Math. Phys. Eng. Sci., Volume 367 (2009) no. 1909, pp. 5091-5107
[55] Kinetic theory of plastic flow in soft glassy materials, Phys. Rev. Lett., Volume 103 (2009) no. 3, pp. 1-4
[56] Nonlocal constitutive relation for steady granular flow, Phys. Rev. Lett., Volume 108 (2012) no. 17, p. 178301
[57] A predictive, size-dependent continuum model for dense granular flows, Proc. Natl. Acad. Sci. USA, Volume 110 (2013) no. 17, pp. 6730-6735
[58] Eddy viscosity in dense granular flows, Phys. Rev. Lett., Volume 111 (2013) no. 5, p. 058002
[59] A constitutive model with microstructure evolution for flow of rate-independent granular materials, J. Fluid Mech., Volume 682 (2011), pp. 590-616
[60] Nonlocal granular rheology: role of pressure and anisotropy, Europhys. Lett., Volume 105 (2014) no. 2, p. 24002
[61] Rheology of weakly vibrated granular media, Phys. Rev. E, Volume 89 (2014) no. 1, p. 012202
[62] Slow granular flows: the dominant role of tiny fluctuations, C. R. Phys., Volume 16 (2015) no. 1, pp. 37-44 ( in this issue )
[63] Modeling force transmission in granular materials, C. R. Phys., Volume 16 (2015) no. 1, pp. 3-9 ( in this issue )
[64] On the dependence of the avalanche angle on the granular layer thickness, Europhys. Lett., Volume 85 (2009) no. 2, p. 24003
[65] Bidisperse granular avalanches on inclined planes: a rich variety of behaviors, Eur. Phys. J. E, Volume 23 (2007) no. 2, pp. 199-215
[66] Closure relations for shallow granular flows from particle simulations, Granul. Matter, Volume 14 (2012), pp. 531-552
[67] Effect of base dissipation on the granular flow down an inclined plane, Granul. Matter, Volume 14 (2012), pp. 209-213
[68] Molecular dynamics simulation of granular flows: slip along rough inclined planes, Comput. Mech., Volume 22 (1998) no. 2, pp. 160-166
[69] An investigation of the gravity flow of noncohesive granular materials through discharge chutes, Trans. ASME, J. Eng. Indust., Volume 91 (1969), pp. 373-381
[70] Diffusion of a granular pulse in a rotating drum, Phys. Rev. E, Volume 73 (2006) no. 4, pp. 1-7
[71] Two- and three-dimensional confined granular chute flows: experimental and numerical results, J. Phys. Condens. Matter, Volume 17 (2005) no. 24, p. S2457-S2480
[72] Rheology of confined granular flows: scale invariance, glass transition, and friction weakening, Phys. Rev. Lett., Volume 101 (2008) no. 24, p. 248002
[73] Ecoulements de grains secs: frottement et blocages, Ecole nationale des ponts et chaussées, Paris, 2004 (Ph.D. thesis)
[74] Bagnold scaling, density plateau, and kinetic theory analysis of dense granular flow, Phys. Rev. Lett., Volume 94 (2005) no. 12, p. 128001
[75] Transient processes in tribology, Proceedings of the 30th Leeds–Lyon Symposium on Tribology, Tribology Series, vol. 43, Elsevier, 2003
[76] Collision-induced friction in the motion of a single particle on a bumpy inclined line, Phys. Rev. E, Volume 54 (1996) no. 6, pp. 6845-6856
[77] How transversal fluctuations affect the friction of a particle on a rough incline, Phys. Rev. E, Volume 56 (1997) no. 3, pp. 3645-3656
[78] Interface roughness effect on slow cyclic annular shear of granular materials, Granul. Matter, Volume 13 (2011) no. 5, pp. 525-540
[79] Comportement d'interface des matériaux granulaires, Ecole nationale des ponts et chaussées, Paris, 2008 (Ph.D. thesis)
[80] Transition due to base roughness in a dense granular flow down an inclined plane, Phys. Fluids, Volume 24 (2012) no. 5, p. 053302
[81] The effect of base roughness on the development of a dense granular flow down an inclined plane, Phys. Fluids, Volume 25 (2013) no. 7, p. 070604
[82] Boundary effects and self-organization in dense granular flows, Phys. Fluids, Volume 14 (2002) no. 8, p. 2637
[83] Shear flow of dense granular materials near smooth walls, I: shear localization and constitutive laws in the boundary region, Phys. Rev. E, Volume 86 (2012) no. 1, p. 011301
[84] Shear strength and force transmission in granular media with rolling resistance, Phys. Rev. E, Volume 78 (2008) no. 2, p. 021301
[85] Scaling laws for the slip velocity in dense granular flows, Phys. Rev. Lett., Volume 108 (2012) no. 23, p. 238002
[86] Shear flow of dense granular materials near smooth walls, II: block formation and suppression of slip by rolling friction, Phys. Rev. E, Volume 86 (2012) no. 1, p. 011302
[87] Simulation of dense granular flows: dynamics of wall stress in silos, Chem. Eng. Sci., Volume 64 (2009) no. 18, pp. 4040-4050
[88] A model for the dynamics of sandpile surfaces, J. Phys. I, Volume 4 (1994) no. 10, pp. 1383-1410
[89] Surface flows of granular materials: a modified picture for thick avalanches, Phys. Rev. E, Volume 58 (1998) no. 4, pp. 4692-4700
[90] Surface flows of granular materials: a short introduction to some recent models, C. R. Phys., Volume 3 (2002) no. 2, p. 10
[91] On granular surface flow equations, Eur. Phys. J. B, Volume 11 (1999) no. 1, pp. 131-142
[92] Surface flow of granular materials: model and experiments in heap formation, J. Fluid Mech., Volume 441 (2001), pp. 255-264
[93] The four avalanche fronts: a test case for granular surface flow modeling, Adv. Complex Syst., Volume 04 (2001) no. 04, pp. 509-522
[94] Kapiza waves as a test for three-dimensional granular flow rheology, J. Fluid Mech., Volume 563 (2006), p. 123
[95] Erosion and mobility in granular collapse over sloping beds, J. Geophys. Res., Volume 115 (2010) no. F3, p. F03040
[96] Two scenarios for avalanche dynamics in inclined granular layers, Phys. Rev. Lett., Volume 94 (2005) no. 20, p. 208001
[97] Erosion waves: transverse instabilities and fingering, Europhys. Lett., Volume 75 (2006) no. 5, pp. 825-831
[98] Patterns and collective behavior in granular media: theoretical concepts, Rev. Mod. Phys., Volume 78 (2006) no. 2, pp. 641-692
[99] Erosion dynamics of a wet granular medium, Phys. Rev. E, Volume 88 (2013) no. 3, p. 032205
[100] Boundary stresses due to impacts from dry granular flows, J. Geophys. Res., Volume 117 (2012) no. F2, p. F02027
[101] Field measurement of basal forces generated by erosive debris flows, J. Geophys. Res., Earth Surf., Volume 118 (2013) no. 2, pp. 589-602
[102] Internal structure of inertial granular flows, Phys. Rev. Lett., Volume 112 (2014) no. 7, p. 078001
[103] Granular flow down an inclined plane: Bagnold scaling and rheology, Phys. Rev. E, Volume 64 (2001) no. 5, p. 051302
[104] Relation between dry granular flow regimes and morphology of deposits: formation of levées in pyroclastic deposits, Earth Planet. Sci. Lett., Volume 221 (2004) no. 1–4, pp. 197-213
[105] Surface curvature of steady granular flows, Granul. Matter, Volume 14 (2012) no. 2, pp. 229-234
[106] Continuum modeling of granular media, Appl. Mech. Rev., Volume 66 (2014) no. 5, p. 050801
[107] Microstructure and modeling of granular materials, University of California Santa Barbara, CA, USA, 2006 (Ph.D. thesis)
[108] Bridging the rheology of granular flows in three regimes, Phys. Rev. E, Volume 85 (2012) no. 2, p. 021305
[109] Density inversion in rapid granular flows: the supported regime, Eur. Phys. J. E, Volume 22 (2007) no. 1, pp. 17-24
[110] High-speed granular chute flows, J. Fluid Mech., Volume 710 (2012), pp. 35-71
[111] Velocity profile variations in granular flows with changing boundary conditions: insights from experiments, Phys. Fluids, Volume 25 (2013) no. 6, p. 063303
[112] Stability analysis of rapid granular chute flows: formation of longitudinal vortices, J. Fluid Mech., Volume 467 (2002), pp. 361-387
[113] Shallow granular flows down flat frictional channels: steady flows and longitudinal vortices, Phys. Rev. E, Volume 87 (2013) no. 2, p. 022202
[114] Momentum transport in granular flows, Comput. Math. Appl., Volume 55 (2008) no. 2, pp. 175-183
[115] Model for dense granular flows down bumpy inclines, Phys. Rev. E, Volume 67 (2003) no. 6, pp. 1-11
[116] Dense granular flow down an inclined plane: from kinetic theory to granular dynamics, J. Fluid Mech., Volume 599 (2008), pp. 121-168
[117] Dense shearing flows of inelastic disks, Phys. Fluids, Volume 18 (2006) no. 10, p. 103307
[118] Surface flows of inelastic spheres, Phys. Fluids, Volume 23 (2011) no. 1, p. 013303
[119] Kinetic theory for sheared granular flows, C. R. Phys., Volume 16 (2015) no. 1, pp. 51-61 ( in this issue )
[120] Focus on granular segregation, New J. Phys., Volume 15 (2013) no. 3, p. 035017
[121] Dense flows of bidisperse assemblies of disks down an inclined plane, Phys. Fluids, Volume 19 (2007) no. 5, p. 058101
[122] Rheology of dense granular mixtures: particle-size distributions, boundary conditions, and collisional time scales, Phys. Rev. E, Volume 82 (2010) no. 6, pp. 1-9
[123] Rheology of binary granular mixtures in the dense flow regime, Phys. Fluids, Volume 23 (2011) no. 11, p. 113302
[124] Dense flows of cohesive granular materials, J. Fluid Mech., Volume 596 (2008), pp. 21-47
[125] Plug flow and the breakdown of Bagnold scaling in cohesive granular flows, Phys. Rev. E, Volume 72 (2005) no. 6, p. 061301
[126] Flow of dry and wet granular materials: numerical simulation results (A. Yu; K. Dong; R. Yang; S. Luding, eds.), Proc. Powders and Grains 2013, AIP Publishing, Sydney, 2013, pp. 971-974
[127] Flow of dense granular material: towards simple constitutive laws, J. Stat. Mech. Theory Exp., Volume 2006 (2006) no. 07, p. P07020
[128] What do dry granular flows tell us about dense non-Brownian suspension rheology?, Rheol. Acta, Volume 48 (2009) no. 8, pp. 925-942
[129] Unifying suspension and granular rheology, Phys. Rev. Lett., Volume 107 (2011) no. 18, pp. 1-5
[130] Transition from the viscous to inertial regime in dense suspensions, Phys. Rev. Lett., Volume 109 (2012) no. 11, p. 118305
[131] Granular materials composed of shape-anisotropic grains, Soft Matter, Volume 9 (2013) no. 31, p. 7401
[132] Depth-independent drag force induced by stirring in granular media, Phys. Rev. Lett., Volume 110 (2013) no. 13, p. 138303
Cited by Sources:
Comments - Policy