Comptes Rendus
Rheological properties of dense granular flows
[Propriétés rhéologiques des écoulements granulaires denses]
Comptes Rendus. Physique, Volume 16 (2015) no. 1, pp. 62-72.

Les récents progrès dans la compréhension des écoulements granulaires denses sont passés en revue, en nous focalisant sur la rhéologie classique des matériaux granulaires, tout en affinant notamment au niveau des effets non locaux, de l'influence des conditions aux limites des écoulements et de l'évolution des propriétés d'écoulement des systèmes hétérogènes.

Recent progresses in understanding the behavior of dense granular flows are presented. After presenting a bulk rheology of granular materials, I focus on the new developments to account for non-local effects, and on ongoing research concerning the surface rheology and the evolution of mechanical properties for heterogeneous systems.

Publié le :
DOI : 10.1016/j.crhy.2014.12.001
Keywords: Dense granular flow, Rheology, Non local effects, Boundary condition
Mot clés : Écoulement granulaire dense, Rhéologie, Effets non locaux, Conditions aux limites
Pierre Jop 1

1 Surface du verre et interfaces, UMR125 CNRS/Saint-Gobain, 33, quai Lucien-Lefranc, 93303 Aubervilliers, France
@article{CRPHYS_2015__16_1_62_0,
     author = {Pierre Jop},
     title = {Rheological properties of dense granular flows},
     journal = {Comptes Rendus. Physique},
     pages = {62--72},
     publisher = {Elsevier},
     volume = {16},
     number = {1},
     year = {2015},
     doi = {10.1016/j.crhy.2014.12.001},
     language = {en},
}
TY  - JOUR
AU  - Pierre Jop
TI  - Rheological properties of dense granular flows
JO  - Comptes Rendus. Physique
PY  - 2015
SP  - 62
EP  - 72
VL  - 16
IS  - 1
PB  - Elsevier
DO  - 10.1016/j.crhy.2014.12.001
LA  - en
ID  - CRPHYS_2015__16_1_62_0
ER  - 
%0 Journal Article
%A Pierre Jop
%T Rheological properties of dense granular flows
%J Comptes Rendus. Physique
%D 2015
%P 62-72
%V 16
%N 1
%I Elsevier
%R 10.1016/j.crhy.2014.12.001
%G en
%F CRPHYS_2015__16_1_62_0
Pierre Jop. Rheological properties of dense granular flows. Comptes Rendus. Physique, Volume 16 (2015) no. 1, pp. 62-72. doi : 10.1016/j.crhy.2014.12.001. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2014.12.001/

[1] H. Jaeger; S. Nagel; R.P. Behringer Granular solids, liquids, and gases, Rev. Mod. Phys., Volume 68 (1996) no. 4, pp. 1259-1273

[2] GdR MiDi On dense granular flows, Eur. Phys. J. E, Volume 14 (2004) no. 4, pp. 341-365

[3] R. Delannay; M. Louge; P. Richard; N. Taberlet; A. Valance Towards a theoretical picture of dense granular flows down inclines, Nat. Mater., Volume 6 (2007) no. 2, pp. 99-108

[4] Y. Forterre; O. Pouliquen Flows of dense granular media, Annu. Rev. Fluid Mech., Volume 40 (2008) no. 1, pp. 1-24

[5] I. Iordanoff; M.M. Khonsari Granular lubrication: toward an understanding of the transition between kinetic and quasi-fluid regime, J. Tribol., Volume 126 (2004) no. 1, p. 137

[6] F. da Cruz; S. Emam; M. Prochnow; J.-N. Roux; F. Chevoir Rheophysics of dense granular materials: discrete simulation of plane shear flows, Phys. Rev. E, Volume 72 (2005) no. 2, p. 021309

[7] O. Pouliquen Scaling laws in granular flows down rough inclined planes, Phys. Fluids, Volume 11 (1999) no. 3, pp. 542-548

[8] Y. Forterre; O. Pouliquen Long-surface-wave instability in dense granular flows, J. Fluid Mech., Volume 486 (2003), pp. 21-50

[9] T. Börzsönyi; R. Ecke; J.N. McElwaine Patterns in flowing sand: understanding the physics of granular flow, Phys. Rev. Lett., Volume 103 (2009) no. 17, p. 178302

[10] J. Rajchenbach Dense, rapid flows of inelastic grains under gravity, Phys. Rev. Lett., Volume 90 (2003) no. 14, p. 144302

[11] L.E. Silbert; J.W. Landry; G.S. Grest Granular flow down a rough inclined plane: transition between thin and thick piles, Phys. Fluids, Volume 15 (2003) no. 1, p. 1

[12] T. Komatsu; S. Inagaki; N. Nakagawa; S. Nasuno Creep motion in a granular pile exhibiting steady surface flow, Phys. Rev. Lett., Volume 86 (2001) no. 9, pp. 1757-1760

[13] N. Taberlet; P. Richard; A. Valance; W. Losert; J. Pasini; J.T. Jenkins; R. Delannay Superstable granular heap in a thin channel, Phys. Rev. Lett., Volume 91 (2003) no. 26, p. 264301

[14] S.B. Savage Advances in Applied Mechanics, vol. 24, Elsevier, 1984

[15] C. Ancey; P. Coussot; P. Evesque A theoretical framework for granular suspensions in a steady simple shear flow, J. Rheol., Volume 43 (1999) no. 6, p. 1673

[16] O. Pouliquen On the shape of granular fronts down rough inclined planes, Phys. Fluids, Volume 11 (1999) no. 7, p. 1956

[17] P. Jop; Y. Forterre; O. Pouliquen A constitutive law for dense granular flows, Nature, Volume 441 (2006) no. 7094, pp. 727-730

[18] P. Jop; Y. Forterre; O. Pouliquen Crucial role of sidewalls in granular surface flows: consequences for the rheology, J. Fluid Mech., Volume 541 (2005), pp. 167-192

[19] J.D. Goddard Dissipative materials as constitutive models for granular media, Acta Mech., Volume 83 (1986), pp. 3-13

[20] M. Depken; J.B. Lechman; M.V. Hecke; W.V. Saarloos; G.S. Grest Stresses in smooth flows of dense granular media, Europhys. Lett., Volume 78 (2007) no. 5, p. 58001

[21] J.A. Dijksman; M. van Hecke Granular flows in split-bottom geometries, Soft Matter, Volume 6 (2010) no. 13, p. 2901

[22] M. Pailha; M. Nicolas; O. Pouliquen Initiation of underwater granular avalanches: influence of the initial volume fraction, Phys. Fluids, Volume 20 (2008), p. 111701

[23] J. Chauchat; M. Médale A three-dimensional numerical model for incompressible two-phase flow of a granular bed submitted to a laminar shearing flow, Comput. Methods Appl. Mech. Eng., Volume 199 (2010) no. 9–12, pp. 439-449

[24] P.-Y. Lagrée; L. Staron; S. Popinet The granular column collapse as a continuum: validity of a two-dimensional Navier–Stokes model with a μ(I)-rheology, J. Fluid Mech., Volume 686 (2011), pp. 378-408

[25] P. Jop; Y. Forterre; O. Pouliquen Initiation of granular surface flows in a narrow channel, Phys. Fluids, Volume 19 (2007) no. 8, p. 088102

[26] N.J. Balmforth; R.R. Kerswell Granular collapse in two dimensions, J. Fluid Mech., Volume 538 (2005), p. 399

[27] G. Lube; H.E. Huppert; R.S.J. Sparks; M.A. Hallworth Axisymmetric collapses of granular columns, J. Fluid Mech., Volume 508 (2004), pp. 175-199

[28] L. Staron; E.J. Hinch Study of the collapse of granular columns using two-dimensional discrete-grain simulation, J. Fluid Mech., Volume 545 (2005), pp. 1-27

[29] L. Lacaze; R.R. Kerswell Axisymmetric granular collapse: a transient 3D flow test of viscoplasticity, Phys. Rev. Lett., Volume 102 (2009) no. 10, p. 108305

[30] P.-P. Cortet; D. Bonamy; F. Daviaud; O. Dauchot; B. Dubrulle; M. Renouf Relevance of visco-plastic theory in a multi-directional inhomogeneous granular flow, Europhys. Lett., Volume 88 (2009) no. 1, p. 14001

[31] L. Staron; P.-Y. Lagrée; S. Popinet Continuum simulation of the discharge of the granular silo: a validation test for the μ(I) visco-plastic flow law, Eur. Phys. J. E, Volume 37 (2014) no. 1, p. 5

[32] J. Chauchat; M. Médale A three-dimensional numerical model for dense granular flows based on the rheology, J. Comput. Phys., Volume 256 (2014), pp. 696-712

[33] L. Bocquet; R.M. Lueptow; D. Schalk; T. Lubensky; J. Gollub Granular shear flow dynamics and forces: experiment and continuum theory, Phys. Rev. E, Volume 65 (2001) no. 1, p. 011307

[34] L. Lu; S. Hsiau DEM simulation of particle mixing in a sheared granular flow, Particuology, Volume 6 (2008) no. 6, pp. 445-454

[35] O. Pouliquen Velocity correlations in dense granular flows, Phys. Rev. Lett., Volume 93 (2004) no. 24, p. 248001

[36] G. Lois; A. Lemaître; J. Carlson Spatial force correlations in granular shear flow, I: numerical evidence, Phys. Rev. E, Volume 76 (2007) no. 2, p. 021302

[37] E. Gardel; E. Sitaridou; K. Facto; E. Keene; K. Hattam; N. Easwar; N. Menon Dynamical fluctuations in dense granular flows, Philos. Trans. A. Math. Phys. Eng. Sci., Volume 367 (2009) no. 1909, pp. 5109-5121

[38] S. Deboeuf; E. Lajeunesse; O. Dauchot; B. Andreotti Flow rule, self-channelization, and levees in unconfined granular flows, Phys. Rev. Lett., Volume 97 (2006) no. 15, p. 158303

[39] D. Takagi; J.N. McElwaine; H.E. Huppert Shallow granular flows, Phys. Rev. E, Volume 83 (2011) no. 3, p. 031306

[40] J. Crassous; J.-F. Metayer; P. Richard; C. Laroche Experimental study of a creeping granular flow at very low velocity, J. Stat. Mech. Theory Exp., Volume 3 (2008), p. P03009

[41] G. Koval; J.-N. Roux; A. Corfdir; F. Chevoir Annular shear of cohesionless granular materials: from the inertial to quasistatic regime, Phys. Rev. E, Volume 79 (2009) no. 2, p. 021306

[42] D. Fenistein; M. Van Hecke Kinematics: wide shear zones in granular bulk flow, Nature, Volume 425 (2003) no. 6955, p. 256

[43] R. Moosavi; M.R. Shaebani; M. Maleki; J. Török; D.E. Wolf; W. Losert Coexistence and transition between shear zones in slow granular flows, Phys. Rev. Lett., Volume 111 (2013) no. 14, p. 148301

[44] P. Jop Hydrodynamic modeling of granular flows in a modified Couette cell, Phys. Rev. E, Volume 77 (2008) no. 3, pp. 1-4

[45] K.A. Reddy; V. Kumaran; J. Talbot Orientational ordering in sheared inelastic dumbbells, Phys. Rev. E, Volume 80 (2009) no. 3, p. 031304

[46] K. Nichol; A. Zanin; R. Bastien; E. Wandersman; M. van Hecke Flow-induced agitations create a granular fluid, Phys. Rev. Lett., Volume 104 (2010) no. 7, pp. 48-51

[47] T. Unger Collective rheology in quasi static shear flow of granular media, 2010 (arxiv prepr., 1–9) | arXiv

[48] M. Bouzid; M. Trulsson; P. Claudin; E. Clément; B. Andreotti Nonlocal rheology of granular flows across yield conditions, Phys. Rev. Lett., Volume 111 (2013) no. 23, p. 238301

[49] P. Mills; M. Tixier; D. Loggia Influence of roughness and dilatancy for dense granular flow along an inclined wall, Eur. Phys. J. E, Volume 1 (2000) no. 1, pp. 5-8

[50] F. Chevoir; M. Prochnow; J. Jenkins; P. Mills Dense granular flows down an inclined plane (Y. Kishino, ed.), Powders and Grains 2001, Lisse, Swets and Zeitlinger, Tokyo, 2001, pp. 373-376

[51] B. Andreotti A mean-field model for the rheology and the dynamical phase transitions in the flow of granular matter, Europhys. Lett., Volume 79 (2007) no. 3, p. 34001

[52] O. Baran; D. Ertas; T.C. Halsey; G.S. Grest; J.B. Lechman Velocity correlations in dense gravity-driven granular chute flow, Phys. Rev. E, Volume 74 (2006), p. 051302

[53] K.A. Reddy; V. Kumaran Dense granular flow down an inclined plane: a comparison between the hard particle model and soft particle simulations, Phys. Fluids, Volume 22 (2010) no. 11, p. 113302

[54] O. Pouliquen; Y. Forterre A non-local rheology for dense granular flows, Philos. Trans. A. Math. Phys. Eng. Sci., Volume 367 (2009) no. 1909, pp. 5091-5107

[55] L. Bocquet; A. Colin; A. Ajdari Kinetic theory of plastic flow in soft glassy materials, Phys. Rev. Lett., Volume 103 (2009) no. 3, pp. 1-4

[56] K. Kamrin; G. Koval Nonlocal constitutive relation for steady granular flow, Phys. Rev. Lett., Volume 108 (2012) no. 17, p. 178301

[57] D.L. Henann; K. Kamrin A predictive, size-dependent continuum model for dense granular flows, Proc. Natl. Acad. Sci. USA, Volume 110 (2013) no. 17, pp. 6730-6735

[58] T. Miller; P. Rognon; B. Metzger; I. Einav Eddy viscosity in dense granular flows, Phys. Rev. Lett., Volume 111 (2013) no. 5, p. 058002

[59] J. Sun; S. Sundaresan A constitutive model with microstructure evolution for flow of rate-independent granular materials, J. Fluid Mech., Volume 682 (2011), pp. 590-616

[60] E. Wandersman; M. van Hecke Nonlocal granular rheology: role of pressure and anisotropy, Europhys. Lett., Volume 105 (2014) no. 2, p. 24002

[61] G.H. Wortel; J.a. Dijksman; M. van Hecke Rheology of weakly vibrated granular media, Phys. Rev. E, Volume 89 (2014) no. 1, p. 012202

[62] M. van Hecke Slow granular flows: the dominant role of tiny fluctuations, C. R. Phys., Volume 16 (2015) no. 1, pp. 37-44 ( in this issue )

[63] F. Radjaï Modeling force transmission in granular materials, C. R. Phys., Volume 16 (2015) no. 1, pp. 3-9 ( in this issue )

[64] M. Wyart On the dependence of the avalanche angle on the granular layer thickness, Europhys. Lett., Volume 85 (2009) no. 2, p. 24003

[65] C. Goujon; B. Dalloz-Dubrujeaud; N. Thomas Bidisperse granular avalanches on inclined planes: a rich variety of behaviors, Eur. Phys. J. E, Volume 23 (2007) no. 2, pp. 199-215

[66] T. Weinhart; A.R. Thornton; S. Luding; O. Bokhove Closure relations for shallow granular flows from particle simulations, Granul. Matter, Volume 14 (2012), pp. 531-552

[67] S. Maheshwari; V. Kumaran Effect of base dissipation on the granular flow down an inclined plane, Granul. Matter, Volume 14 (2012), pp. 209-213

[68] X.M. Zheng; J.M. Hill Molecular dynamics simulation of granular flows: slip along rough inclined planes, Comput. Mech., Volume 22 (1998) no. 2, pp. 160-166

[69] A.W. Roberts An investigation of the gravity flow of noncohesive granular materials through discharge chutes, Trans. ASME, J. Eng. Indust., Volume 91 (1969), pp. 373-381

[70] N. Taberlet; P. Richard Diffusion of a granular pulse in a rotating drum, Phys. Rev. E, Volume 73 (2006) no. 4, pp. 1-7

[71] W. Bi; R. Delannay; P. Richard; N. Taberlet; A. Valance Two- and three-dimensional confined granular chute flows: experimental and numerical results, J. Phys. Condens. Matter, Volume 17 (2005) no. 24, p. S2457-S2480

[72] P. Richard; A. Valance; J.-F. Métayer; P. Sanchez; J. Crassous; M. Louge; R. Delannay Rheology of confined granular flows: scale invariance, glass transition, and friction weakening, Phys. Rev. Lett., Volume 101 (2008) no. 24, p. 248002

[73] F. Da Cruz Ecoulements de grains secs: frottement et blocages, Ecole nationale des ponts et chaussées, Paris, 2004 (Ph.D. thesis)

[74] N. Mitarai; H. Nakanishi Bagnold scaling, density plateau, and kinetic theory analysis of dense granular flow, Phys. Rev. Lett., Volume 94 (2005) no. 12, p. 128001

[75] F. Da Cruz; F. Chevoir; J.-N. Roux; I. Iordanoff Transient processes in tribology, Proceedings of the 30th Leeds–Lyon Symposium on Tribology, Tribology Series, vol. 43, Elsevier, 2003

[76] S. Dippel; G. Batrouni; D.E. Wolf Collision-induced friction in the motion of a single particle on a bumpy inclined line, Phys. Rev. E, Volume 54 (1996) no. 6, pp. 6845-6856

[77] S. Dippel; G.G. Batrouni; D.E. Wolf How transversal fluctuations affect the friction of a particle on a rough incline, Phys. Rev. E, Volume 56 (1997) no. 3, pp. 3645-3656

[78] G. Koval; F. Chevoir; J.-N. Roux; J. Sulem; A. Corfdir Interface roughness effect on slow cyclic annular shear of granular materials, Granul. Matter, Volume 13 (2011) no. 5, pp. 525-540

[79] G. Koval Comportement d'interface des matériaux granulaires, Ecole nationale des ponts et chaussées, Paris, 2008 (Ph.D. thesis)

[80] V. Kumaran; S. Maheshwari Transition due to base roughness in a dense granular flow down an inclined plane, Phys. Fluids, Volume 24 (2012) no. 5, p. 053302

[81] V. Kumaran; S. Bharathraj The effect of base roughness on the development of a dense granular flow down an inclined plane, Phys. Fluids, Volume 25 (2013) no. 7, p. 070604

[82] L.E. Silbert; G.S. Grest; S.J. Plimpton; D. Levine Boundary effects and self-organization in dense granular flows, Phys. Fluids, Volume 14 (2002) no. 8, p. 2637

[83] Z. Shojaaee; J.-N. Roux; F. Chevoir; D.E. Wolf Shear flow of dense granular materials near smooth walls, I: shear localization and constitutive laws in the boundary region, Phys. Rev. E, Volume 86 (2012) no. 1, p. 011301

[84] N. Estrada; A. Taboada; F. Radjaï Shear strength and force transmission in granular media with rolling resistance, Phys. Rev. E, Volume 78 (2008) no. 2, p. 021301

[85] R. Artoni; A.C. Santomaso; M. Go; P. Canu Scaling laws for the slip velocity in dense granular flows, Phys. Rev. Lett., Volume 108 (2012) no. 23, p. 238002

[86] Z. Shojaaee; L. Brendel; J. Török; D.E. Wolf Shear flow of dense granular materials near smooth walls, II: block formation and suppression of slip by rolling friction, Phys. Rev. E, Volume 86 (2012) no. 1, p. 011302

[87] R. Artoni; A.C. Santomaso; P. Canu Simulation of dense granular flows: dynamics of wall stress in silos, Chem. Eng. Sci., Volume 64 (2009) no. 18, pp. 4040-4050

[88] J.-P. Bouchaud; M.E. Cates; J.R. Prakash; S.F. Edwards A model for the dynamics of sandpile surfaces, J. Phys. I, Volume 4 (1994) no. 10, pp. 1383-1410

[89] T. Boutreux; E. Raphaël; P.-G. de Gennes Surface flows of granular materials: a modified picture for thick avalanches, Phys. Rev. E, Volume 58 (1998) no. 4, pp. 4692-4700

[90] A. Aradian; E. Raphaël; P.D. Gennes; P.-G. de Gennes Surface flows of granular materials: a short introduction to some recent models, C. R. Phys., Volume 3 (2002) no. 2, p. 10

[91] S. Douady; B. Andreotti; A. Daerr On granular surface flow equations, Eur. Phys. J. B, Volume 11 (1999) no. 1, pp. 131-142

[92] D.V. Khakhar; A.V. Orpe; P. Andresen; J.M. Ottino Surface flow of granular materials: model and experiments in heap formation, J. Fluid Mech., Volume 441 (2001), pp. 255-264

[93] S. Douady; B. Andreotti; P. Clade; A. Daerr The four avalanche fronts: a test case for granular surface flow modeling, Adv. Complex Syst., Volume 04 (2001) no. 04, pp. 509-522

[94] Y. Forterre Kapiza waves as a test for three-dimensional granular flow rheology, J. Fluid Mech., Volume 563 (2006), p. 123

[95] A. Mangeney; O. Roche; O. Hungr; N. Mangold; G. Faccanoni; A. Lucas Erosion and mobility in granular collapse over sloping beds, J. Geophys. Res., Volume 115 (2010) no. F3, p. F03040

[96] T. Börzsönyi; T. Halsey; R. Ecke Two scenarios for avalanche dynamics in inclined granular layers, Phys. Rev. Lett., Volume 94 (2005) no. 20, p. 208001

[97] F. Malloggi; J. Lanuza; B. Andreotti; E. Clément Erosion waves: transverse instabilities and fingering, Europhys. Lett., Volume 75 (2006) no. 5, pp. 825-831

[98] I. Aranson; L. Tsimring Patterns and collective behavior in granular media: theoretical concepts, Rev. Mod. Phys., Volume 78 (2006) no. 2, pp. 641-692

[99] G. Lefebvre; P. Jop Erosion dynamics of a wet granular medium, Phys. Rev. E, Volume 88 (2013) no. 3, p. 032205

[100] B. Yohannes; L. Hsu; W.E. Dietrich; K.M. Hill Boundary stresses due to impacts from dry granular flows, J. Geophys. Res., Volume 117 (2012) no. F2, p. F02027

[101] S.W. McCoy; G.E. Tucker; J.W. Kean; J.A. Coe Field measurement of basal forces generated by erosive debris flows, J. Geophys. Res., Earth Surf., Volume 118 (2013) no. 2, pp. 589-602

[102] E. Azéma; F. Radjaï Internal structure of inertial granular flows, Phys. Rev. Lett., Volume 112 (2014) no. 7, p. 078001

[103] L. Silbert; D. Ertas; G. Grest; T. Halsey; D. Levine; S. Plimpton Granular flow down an inclined plane: Bagnold scaling and rheology, Phys. Rev. E, Volume 64 (2001) no. 5, p. 051302

[104] G. Félix; N. Thomas Relation between dry granular flow regimes and morphology of deposits: formation of levées in pyroclastic deposits, Earth Planet. Sci. Lett., Volume 221 (2004) no. 1–4, pp. 197-213

[105] J.N. McElwaine; D. Takagi; H.E. Huppert Surface curvature of steady granular flows, Granul. Matter, Volume 14 (2012) no. 2, pp. 229-234

[106] J.D. Goddard Continuum modeling of granular media, Appl. Mech. Rev., Volume 66 (2014) no. 5, p. 050801

[107] G. Lois Microstructure and modeling of granular materials, University of California Santa Barbara, CA, USA, 2006 (Ph.D. thesis)

[108] S. Chialvo; J. Sun; S. Sundaresan Bridging the rheology of granular flows in three regimes, Phys. Rev. E, Volume 85 (2012) no. 2, p. 021305

[109] N. Taberlet; P. Richard; J.T. Jenkins; R. Delannay Density inversion in rapid granular flows: the supported regime, Eur. Phys. J. E, Volume 22 (2007) no. 1, pp. 17-24

[110] A.J. Holyoake; J.N. McElwaine High-speed granular chute flows, J. Fluid Mech., Volume 710 (2012), pp. 35-71

[111] M. Schaefer; L. Bugnion Velocity profile variations in granular flows with changing boundary conditions: insights from experiments, Phys. Fluids, Volume 25 (2013) no. 6, p. 063303

[112] Y. Forterre; O. Pouliquen Stability analysis of rapid granular chute flows: formation of longitudinal vortices, J. Fluid Mech., Volume 467 (2002), pp. 361-387

[113] N. Brodu; P. Richard; R. Delannay Shallow granular flows down flat frictional channels: steady flows and longitudinal vortices, Phys. Rev. E, Volume 87 (2013) no. 2, p. 022202

[114] G. Lois; A. Lemaître; J.M. Carlson Momentum transport in granular flows, Comput. Math. Appl., Volume 55 (2008) no. 2, pp. 175-183

[115] M. Louge Model for dense granular flows down bumpy inclines, Phys. Rev. E, Volume 67 (2003) no. 6, pp. 1-11

[116] V. Kumaran Dense granular flow down an inclined plane: from kinetic theory to granular dynamics, J. Fluid Mech., Volume 599 (2008), pp. 121-168

[117] J.T. Jenkins Dense shearing flows of inelastic disks, Phys. Fluids, Volume 18 (2006) no. 10, p. 103307

[118] D. Berzi; J.T. Jenkins Surface flows of inelastic spheres, Phys. Fluids, Volume 23 (2011) no. 1, p. 013303

[119] V. Kumaran Kinetic theory for sheared granular flows, C. R. Phys., Volume 16 (2015) no. 1, pp. 51-61 ( in this issue )

[120] K.E. Daniels; M. Schröter Focus on granular segregation, New J. Phys., Volume 15 (2013) no. 3, p. 035017

[121] P.G. Rognon; J.-N. Roux; M. Naaim; F. Chevoir Dense flows of bidisperse assemblies of disks down an inclined plane, Phys. Fluids, Volume 19 (2007) no. 5, p. 058101

[122] B. Yohannes; K.M. Hill Rheology of dense granular mixtures: particle-size distributions, boundary conditions, and collisional time scales, Phys. Rev. E, Volume 82 (2010) no. 6, pp. 1-9

[123] A. Tripathi; D.V. Khakhar Rheology of binary granular mixtures in the dense flow regime, Phys. Fluids, Volume 23 (2011) no. 11, p. 113302

[124] P.G. Rognon; J.-N. Roux; M. Naaïm; F. Chevoir Dense flows of cohesive granular materials, J. Fluid Mech., Volume 596 (2008), pp. 21-47

[125] R. Brewster; G.S. Grest; J.W. Landry; A.J. Levine Plug flow and the breakdown of Bagnold scaling in cohesive granular flows, Phys. Rev. E, Volume 72 (2005) no. 6, p. 061301

[126] S. Khamseh; J.-N. Roux; F. Chevoir Flow of dry and wet granular materials: numerical simulation results (A. Yu; K. Dong; R. Yang; S. Luding, eds.), Proc. Powders and Grains 2013, AIP Publishing, Sydney, 2013, pp. 971-974

[127] O. Pouliquen; C. Cassar; P. Jop; Y. Forterre; M. Nicolas Flow of dense granular material: towards simple constitutive laws, J. Stat. Mech. Theory Exp., Volume 2006 (2006) no. 07, p. P07020

[128] A. Lemaître; J.-N. Roux; F. Chevoir What do dry granular flows tell us about dense non-Brownian suspension rheology?, Rheol. Acta, Volume 48 (2009) no. 8, pp. 925-942

[129] F. Boyer; E. Guazzelli; O. Pouliquen Unifying suspension and granular rheology, Phys. Rev. Lett., Volume 107 (2011) no. 18, pp. 1-5

[130] M. Trulsson; B. Andreotti; P. Claudin Transition from the viscous to inertial regime in dense suspensions, Phys. Rev. Lett., Volume 109 (2012) no. 11, p. 118305

[131] T. Börzsönyi; R. Stannarius Granular materials composed of shape-anisotropic grains, Soft Matter, Volume 9 (2013) no. 31, p. 7401

[132] F. Guillard; Y. Forterre; O. Pouliquen Depth-independent drag force induced by stirring in granular media, Phys. Rev. Lett., Volume 110 (2013) no. 13, p. 138303

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Dense flows of dry granular material

Olivier Pouliquen; François Chevoir

C. R. Phys (2002)


Physics of particulate flows: From sand avalanche to active suspensions in plants

Yoël Forterre; Olivier Pouliquen

C. R. Phys (2018)


Slow granular flows: The dominant role of tiny fluctuations

Martin van Hecke

C. R. Phys (2015)