The dynamics of inclined granular packings driven towards their stability limits are studied experimentally using imaging techniques as well as acoustic methods. The former allow one to study grain rearrangements during the tilting. The implementation of both passive and active acoustic methods for probing the granular packings, with capabilities for time-resolved measurements, provides information on various elastic properties of the layers along the destabilization process, including the transient precursors. Systematic experiments of granular layer destabilization for various granular media and external conditions are compared and allow one to better understand the mechanisms responsible for the appearance, periodicity, and intensity of precursors.
La dynamique des empilements granulaires inclinés jusqu'à leur limite de stabilité peut être étudiée à l'aide d'expériences utilisant des techniques d'imagerie ou des méthodes acoustiques. Les premières permettent l'étude des réarrangements de grains pendant l'inclinaison. L'implémentation de méthodes acoustiques passives et actives pour le sondage d'empilements granulaires en temps réel permet d'estimer la variation des propriétés élastiques au cours du processus de déstabilisation, incluant le régime des précurseurs. Des expériences systématiques de déstabilisation de couches granulaires pour divers milieux granulaires et conditions extérieures sont comparées et permettent une meilleure compréhension des mécanismes responsables de l'apparition, de la périodicité et de l'intensité des précurseurs.
Mots-clés : Milieux granulaires, Précurseurs d'avalanches, Acoustique
Renaud Delannay 1; Mickaël Duranteau 2; Vincent Tournat 3
@article{CRPHYS_2015__16_1_45_0, author = {Renaud Delannay and Micka\"el Duranteau and Vincent Tournat}, title = {Precursors and triggering mechanisms of granular avalanches}, journal = {Comptes Rendus. Physique}, pages = {45--50}, publisher = {Elsevier}, volume = {16}, number = {1}, year = {2015}, doi = {10.1016/j.crhy.2015.01.002}, language = {en}, }
Renaud Delannay; Mickaël Duranteau; Vincent Tournat. Precursors and triggering mechanisms of granular avalanches. Comptes Rendus. Physique, Granular physics / Physique des milieux granulaires, Volume 16 (2015) no. 1, pp. 45-50. doi : 10.1016/j.crhy.2015.01.002. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2015.01.002/
[1] Self-organized criticality in a continuous, nonconservative cellular automaton modeling earthquakes, Phys. Rev. Lett., Volume 68 (1992) no. 8, pp. 1244-1247
[2] Effects of acoustic waves on stick-slip in granular media and implications for earthquakes, Nature, Volume 451 (2008) no. 3, pp. 57-61
[3] Dynamics of dry granular avalanches, Phys. Rev. E, Volume 78 (2008), p. 021302
[4] Transition by intermittency in granular matter: from discontinuous avalanches to continuous flow, Phys. Rev. Lett., Volume 103 (2009), p. 128002
[5] On dense granular flows, Eur. Phys. J. E, Volume 14 (2004) no. 4, pp. 341-365
[6] Avalanche dynamics in a pile of rice, Nature, Volume 379 (1996), pp. 49-52
[7] Relaxation at the angle of repose, Phys. Rev. Lett., Volume 62 (1989) no. 1, pp. 40-43
[8] Relation between self-organized criticality and grain aspect ratio in granular piles, Phys. Rev. E, Volume 85 (2012), p. 051309
[9] Surface fluctuations in a slowly driven granular system, Physica A, Volume 283 (2000) no. 1–2, pp. 218-222
[10] Instabilities in slowly driven granular packing, Phys. Rev. E, Volume 67 (2003), p. 011302
[11] Surface fluctuations and the inertia effect in sandpiles, Granul. Matter, Volume 3 (2001), pp. 117-120
[12] Pre-avalanche structural rearrangements in the bulk of granular medium: experimental evidence, Europhys. Lett., Volume 83 (2008), p. 64003
[13] Granular micro-structure and avalanche precursors, J. Stat. Mech. Theory Exp., Volume 7 (2006), p. 07014
[14] Preavalanche instabilities in a granular pile, Phys. Rev. Lett., Volume 89 (2002) no. 20, p. 204302
[15] Model and theoretical seismicity, Bull. Seis. Soc. Amer., Volume 57 (1967), p. 341
[16] Friction in granular layers: hysteresis and precursors, Phys. Rev. Lett., Volume 79 (1997), pp. 949-952 | DOI
[17] Experimental investigation of plastic deformations before granular avalanche, Phys. Rev. E, Volume 87 (2013), p. 012204
[18] Quasi-periodic events in crystal plasticity and the self-organized avalanche oscillator, Nature, Volume 490 (2012), pp. 517-522
[19] Tilting process with humidity: DEM modeling and comparison with experiments, Granul. Matter, Volume 15 (2013), pp. 629-643
[20] Effect of volume fraction on granular avalanche dynamics, Phys. Rev. E, Volume 90 (2014), p. 032202
[21] Dynamics of rearrangements during inclination of granular packings: the avalanche precursor regime, J. Stat. Mech. Theory Exp., Volume 4 (2012), p. P04013
[22] X-ray observation of micro-failures in granular piles approaching an avalanche, Europhys. Lett., Volume 71 (2005) no. 6, pp. 932-937
[23] M. Duranteau, R. Delannay, P. Richard, V. Tournat, Avalanches and quasi-periodic events in slowly tilted granular media, in preparation.
[24] Experimental evidence of ageing and slow restoration of the weak-contact configuration in tilted 3d granular packings, J. Stat. Mech. Theory Exp., Volume 11 (2010), p. P11023
[25] Acoustic emission before avalanches in granular media, J. Acoust. Soc. Am., Volume 123 (2008), p. 3142
[26] Acoustic emissions in multiscale granular structures under gravitational destabilization, International Congress of Ultrasonics Proceedings, 2012
[27] M. Duranteau, V. Tournat, V. Zaitsev, Y. L. Gonidec, P. Richard, R. Delannay, Transient elastic softening/hardening for avalanche precursors of destabilized granular layers probed with acoustic waves, in preparation.
[28] Identification of avalanche precursors by acoustic probing in the bulk of tilted granular layers, Sydney, Australia (2013), pp. 650-653
[29] Acceleration of acoustical emission precursors preceding failure in sheared granular material, Geophys. Res. Lett., Volume 21 (2013) no. 40, pp. 5627-5631
[30] Extremal dynamics and the approach to the critical state: experiments on a three dimensional pile of rice, Phys. Rev. Lett., Volume 92 (2004) no. 5, p. 058702
[31] Linear and nonlinear Biot waves in a noncohesive granular medium slab: transfer function, self-action, second harmonic generation, J. Acoust. Soc. Am., Volume 131 (2012) no. 6, pp. 4292-4303
[32] Song of the dunes as a self-synchronized instrument, Phys. Rev. Lett., Volume 97 (2006), p. 018002
[33] The song of dunes as a wave-particle mode locking, Phys. Rev. Lett., Volume 93 (2004), p. 238001
[34] Detection of acoustic pulses in river sand: theory, Acoust. Phys., Volume 45 (1999) no. 3, pp. 347-353
[35] Detection of acoustic pulses in river sand: experiment, Acoust. Phys., Volume 45 (1999) no. 2, pp. 235-241
[36] Probing weak forces in granular media through nonlinear dynamic dilatancy: clapping contacts and polarization anisotropy, Phys. Rev. Lett., Volume 92 (2004) no. 8, p. 085502
[37] Contact Mechanics, Cambridge University Press, Cambridge, UK, 1985
[38] Theory of Elasticity, Pergamon Press, Oxford, UK, 1986
[39] Nonlinear Underwater Acoustics, ASA, New York, 1987
[40] Dynamique granulaire à l'approche de l'état critique, Université de Rennes-1, 2013 (PhD thesis)
[41] Déformations d'un empilement granulaire lors des cycles de rotation quasi-statique sous gravité, 17e Congrès français de mécanique, 2005
Cited by Sources:
Comments - Policy