Comptes Rendus
Particle-size segregation in dense granular avalanches
[Ségrégation par taille de particules dans les avalanches granulaires]
Comptes Rendus. Physique, Volume 16 (2015) no. 1, pp. 73-85.

Des particules de tailles différentes ont naturellement tendance à ségréguer, ce qui constitue un problème récurrent pour la fabrication d'une large gamme de produits utilisés par un grand nombre de personnes, chaque jour à travers le monde. La ségrégation est le facteur le plus important dans la non-uniformité des produits ; il peut donner lieu à des problèmes importants de manutention, ainsi qu'à la mise au rebut de lots complets, engendrant d'énormes pertes financières. Il est généralement admis que, dans les avalanches granulaires, le mécanisme responsable de la ségrégation est la combinaison du tamisage cinétique et de l'expulsion par pincement. Ces écoulements à surface libre sont plus communs qu'il n'y paraît et apparaissent souvent dans des écoulements complexes, comme dans les tambours mélangeurs, les décharges de silos ou à la surface d'amas granulaires, au sein desquels se produit un échange de masse avec une couche sous-jacente de grains statiques ou en déplacement lent. La combinaison de la ségrégation et des changements de phase solide–fluide granulaire crée des motifs complexes dans les dépôts résultants, mais la compréhension complète de ces effets est pour le moment hors de portée. Cet article passe en revue les avancées récentes dans la modélisation des processus basiques de ségrégation au sein d'une avalanche simple (sans échange de masse avec une couche sous-jacente) et des effets subtils de rétroaction sur l'écoulement. Ceci est particulièrement important pour les applications géophysiques, dans lesquelles la ségrégation peut spontanément auto-endiguer et lubrifier l'écoulement, augmentant significativement la portée des écoulements de débris, des coulées pyroclastiques et des avalanches de plaques neigeuses

Compléments :
Des compléments sont fournis pour cet article dans le fichier séparé :

Particles of differing sizes are notoriously prone to segregate, which is a chronic problem in the manufacture of a wide variety of products that are used by billions of people worldwide every day. Segregation is the single most important factor in product non-uniformity, which can lead to significant handling problems as well as complete batches being discarded at huge financial loss. It is generally regarded that the most important mechanism for segregation is the combination of kinetic sieving and squeeze expulsion in shallow granular avalanches. These free-surface flows are more common than one might expect, often forming part of more complicated flows in drums, heaps and silos, where there is mass exchange with underlying regions of static or slowly moving grains. The combination of segregation and solid–fluid granular phase transitions creates incredibly complicated and beautiful patterns in the resulting deposits, but a full understanding of such effects lies beyond our capabilities at present. This paper reviews recent advances in our ability to model the basic segregation processes in a single avalanche (without mass exchange) and the subtle feedback effects that they can have on the bulk flow. This is particularly important for geophysical applications, where segregation can spontaneously self-channelize and lubricate the flow, significantly enhancing the run-out of debris-flows, pyroclastic flows, rock-falls and snow-slab avalanches.

Supplementary Materials:
Supplementary material for this article is supplied as a separate file:

Publié le :
DOI : 10.1016/j.crhy.2015.01.004
Keywords: Avalanches, Granular materials, Particle size-segregation, Particle mixing, Run-out
Mot clés : Avalanches, Matériaux granulaires, Ségrégation par taille de particules, Mélange de particules, Portée des avalanches
John Mark Nicholas Timm Gray 1 ; Parmesh Gajjar 1 ; Peter Kokelaar 2

1 School of Mathematics and Manchester Centre for Nonlinear Dynamics, University of Manchester, Manchester, M13 9PL, UK
2 Department of Earth and Ocean Sciences, University of Liverpool, Liverpool, L69 3GP, UK
@article{CRPHYS_2015__16_1_73_0,
     author = {John Mark Nicholas Timm Gray and Parmesh Gajjar and Peter Kokelaar},
     title = {Particle-size segregation in dense granular avalanches},
     journal = {Comptes Rendus. Physique},
     pages = {73--85},
     publisher = {Elsevier},
     volume = {16},
     number = {1},
     year = {2015},
     doi = {10.1016/j.crhy.2015.01.004},
     language = {en},
}
TY  - JOUR
AU  - John Mark Nicholas Timm Gray
AU  - Parmesh Gajjar
AU  - Peter Kokelaar
TI  - Particle-size segregation in dense granular avalanches
JO  - Comptes Rendus. Physique
PY  - 2015
SP  - 73
EP  - 85
VL  - 16
IS  - 1
PB  - Elsevier
DO  - 10.1016/j.crhy.2015.01.004
LA  - en
ID  - CRPHYS_2015__16_1_73_0
ER  - 
%0 Journal Article
%A John Mark Nicholas Timm Gray
%A Parmesh Gajjar
%A Peter Kokelaar
%T Particle-size segregation in dense granular avalanches
%J Comptes Rendus. Physique
%D 2015
%P 73-85
%V 16
%N 1
%I Elsevier
%R 10.1016/j.crhy.2015.01.004
%G en
%F CRPHYS_2015__16_1_73_0
John Mark Nicholas Timm Gray; Parmesh Gajjar; Peter Kokelaar. Particle-size segregation in dense granular avalanches. Comptes Rendus. Physique, Volume 16 (2015) no. 1, pp. 73-85. doi : 10.1016/j.crhy.2015.01.004. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2015.01.004/

[1] J.M.N.T. Gray; M. Wieland; K. Hutter Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci., 455 (1999), pp. 1841-1874

[2] D.V. Khakhar; J.J. McCarthy; J.M. Ottino Chaos, 9 (1999), pp. 594-610

[3] S.C. Williams Powder Technol., 2 (1968), pp. 13-20

[4] J. Baxter; U. Tüzün; D. Heyes; I. Hayati; P. Fredlund Nature, 391 (1998), p. 136

[5] L. Bates User Guide to Segregation, British Materials Handling Board, 1997

[6] D. Schulze Powders and Bulk Solids, Springer, Berlin, Heidelberg, 2008

[7] J.M.N.T. Gray; K. Hutter Contin. Mech. Thermodyn., 9 (1997), pp. 341-345

[8] K.M. Hill; D.V. Kharkar; J.F. Gilchrist; J.J. McCarthy; J.M. Ottino Proc. Natl. Acad. Sci. USA, 96 (1999), pp. 11701-11706

[9] D.V. Khakhar Macromol. Mater. Eng., 296 (2011), pp. 278-289

[10] S.B. Savage; C.K.K. Lun J. Fluid Mech., 189 (1988), pp. 311-335

[11] J.W. Vallance; S.B. Savage IUTAM Symposium on Segregation in Granular Flows (A.D. Rosato; D.L. Blackmore, eds.), Solid Mech. Appl., vol. 81, Springer, The Netherlands, 2000, pp. 31-51

[12] T. Shinbrot; F.J. Muzzio Phys. Rev. Lett., 81 (1998), pp. 4365-4368

[13] G.V. Middleton Flysch Sedimentology in North America (J. Lajoie, ed.), Business and Economics Science Ltd, Toronto, 1970, pp. 253-272

[14] G.V. Middleton; M.A. Hampton Marine Sediment Transport and Environmental Management (D.J. Stanley; D.J.P. Swift, eds.), Wiley, 1976, pp. 197-218

[15] Y.I. Fan; K.M. Hill New J. Phys., 13 (2011), p. 095009

[16] K.M. Hill; S.D. Tan J. Fluid Mech., 756 (2014), pp. 54-88

[17] A. Tripathi; D.V. Khakhar J. Fluid Mech., 717 (2013), pp. 643-669

[18] F. Guillard; Y. Forterre; O. Pouliquen Phys. Fluids, 26 (2014), p. 043301

[19] L. Staron; J.C. Phillips Phys. Fluids, 26 (2014), p. 033302

[20] R.M. Iverson Rev. Geophys., 35 (1997), pp. 245-296

[21] R.M. Iverson; R.P. Denlinger J. Geophys. Res., 106 (2001), pp. 553-566

[22] C.G. Johnson; B.P. Kokelaar; R.M. Iverson; M. Logan; R.G. LaHusen; J.M.N.T. Gray J. Geophys. Res., 117 (2012), p. F01032

[23] B. Turnbull; E.T. Bowman; J.N. McElwaine C. R. Phys. (2015)

[24] M.J. Branney; B.P. Kokelaar Bull. Volcanol., 54 (1992), pp. 504-520

[25] D.M. Palladino; G.A. Valentine J. Volcanol. Geotherm. Res., 69 (1995), pp. 343-364

[26] E.S. Calder; R.S.J. Sparks; M.C. Gardeweg J. Volcanol. Geotherm. Res., 104 (2000), pp. 201-235

[27] H.U. Schminck J. Sediment. Petrol., 37 (1967), pp. 438-448

[28] J.W. Vallance Encyclopedia of Volcanoes (H. Sigurdsson, ed.), Academic, 2000, pp. 601-616

[29] S.G. Evans; O. Hungr Can. Geotech. J., 30 (1993), pp. 620-636

[30] S.B. Savage; K. Hutter J. Fluid Mech., 199 (1989), pp. 177-215

[31] J. McElwaine; K. Nishimura IUTAM Symposium on Segregation in Granular Flows (A.D. Rosato; D.L. Blackmore, eds.), Solid Mech. Appl., vol. 81, Springer, The Netherlands, 2000, pp. 81-88

[32] P.G. Rognon; F. Chevoir; H. Bellot; F. Ousset; M. Naaïm; P. Coussot J. Rheol., 52 (2008), pp. 729-748

[33] O. Pouliquen; J. Delour; S.B. Savage Nature, 386 (1997), pp. 816-817

[34] O. Pouliquen; J.W. Vallance Chaos, 9 (1999), pp. 621-630

[35] R.M. Iverson; J.W. Vallance Geology, 29 (2001), pp. 115-118

[36] G. Félix; N. Thomas Earth Planet. Sci. Lett., 221 (2004), pp. 197-213

[37] F. Moro; T. Faug; H. Bellot; F. Ousset Cold Reg. Sci. Technol., 62 (2010), pp. 55-66

[38] M.J. Woodhouse; A.R. Thornton; C.G. Johnson; B.P. Kokelaar; J.M.N.T. Gray J. Fluid Mech., 709 (2012), pp. 543-580

[39] B.P. Kokelaar; R.L. Graham; J.M.N.T. Gray; J.W. Vallance Earth Planet. Sci. Lett., 385 (2014), pp. 172-180

[40] L.T. Fan; Y.M. Chen; F.S. Lai Powder Technol., 61 (1990), pp. 255-287

[41] J.J. McCarthy Powder Technol., 192 (2009), pp. 137-142

[42] J. Bridgwater Particuology, 8 (2010), pp. 563-567

[43] B. Marks; A. Valaulta; A. Puzrin; I. Einav Sydney, Australia, 8–12 July 2013 (A. Yu; K. Dong; R. Yang; S. Luding, eds.), AIP Conf. Proc., vol. 1542 (2013), pp. 658-661

[44] J.M.N.T. Gray; C. Ancey J. Fluid Mech., 678 (2011), pp. 535-588

[45] D.V. Khakhar; A.V. Orpe; S.K. Hajra Physica A, 318 (2003), pp. 129-136

[46] J.R. Johanson Chem. Eng. (1978), pp. 183-188

[47] J.M.N.T. Gray AIP Conf. Proc., 1227 (2010), pp. 343-362

[48] B.A. Wills Mineral Processing Technology, Pergamon, 1979

[49] J. Bridgwater; W. Foo; D. Stephens Powder Technol., 41 (1985), pp. 147-158

[50] J. Bridgwater Powder Technol., 15 (1976), pp. 215-236

[51] A.M. Scott; J. Bridgwater Ind. Eng. Chem. Fundam., 14 (1975), pp. 22-27

[52] J. Bridgwater; M.H. Cooke; A.M. Scott Trans. Inst. Chem. Eng. Lond., 56 (1978), pp. 157-167

[53] J. Bridgwater Granular Matter (A. Mehta, ed.), Springer, New York, 1994, pp. 161-193

[54] J.M.N.T. Gray; A.R. Thornton Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci., 461 (2005), pp. 1447-1473

[55] A.R. Thornton; J.M.N.T. Gray; A.J. Hogg J. Fluid Mech., 550 (2006), pp. 1-25

[56] J.M.N.T. Gray; M. Shearer; A.R. Thornton Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci., 462 (2006), pp. 947-972

[57] M. Shearer; J.M.N.T. Gray; A.R. Thornton Eur. J. Appl. Math., 19 (2008), pp. 61-86

[58] J.M.N.T. Gray; C. Ancey J. Fluid Mech., 629 (2009), pp. 387-423

[59] P. Chadwick Continuum Mechanics. Concise Theory and Problems, George Allen & Unwin, 1976

[60] V.N. Dolgunin; A.A. Ukolov Powder Technol., 83 (1995), pp. 95-103

[61] G.J. Kynch Trans. Faraday Soc., 48 (1952), pp. 166-176

[62] H.K. Rhee; R. Aris; N.R. Amundson First-Order Partial Differential Equations: Volume 1 Theory and Applications of Single Equations, Prentice-Hall, Englewood Cliffs, New Jersey, 1986

[63] J.M.N.T. Gray; V.A. Chugunov J. Fluid Mech., 569 (2006), pp. 365-398

[64] L.E. Silbert; D. Ertas; G.S. Grest; T.C. Halsey; D. Levine; S.J. Plimpton Phys. Rev. E, 64 (2001), p. 051302

[65] GDR-MiDi Eur. Phys. J. E, 14 (2004), pp. 341-365

[66] P.G. Rognon; J.N. Roux; M. Naaim; F. Chevoir Phys. Fluids, 19 (2007), p. 058101

[67] C. Truesdell Rational Thermodynamics, Springer, 1984

[68] L.W. Morland Surv. Geophys., 13 (1992), pp. 209-268

[69] D.R. Tunuguntla; O. Bokhove; A.R. Thornton J. Fluid Mech., 749 (2014), pp. 99-112

[70] J.M.N.T. Gray; C. Ancey J. Fluid Mech. (2015) (submitted for publication)

[71] P. Gajjar; J.M.N.T. Gray J. Fluid Mech., 757 (2014), pp. 297-329

[72] L.A. Golick; K.E. Daniels Phys. Rev. E, 80 (2009), p. 042301

[73] K. van der Vaart, P. Gajjar, G. Epely-Chauvin, N. Andreini, J.M.N.T. Gray, C. Ancey (2015), in preparation.

[74] Y. Fan; K.M. Hill Phys. Rev. Lett., 106 (2011), p. 218301

[75] T. Weinhart; S. Luding; A.R. Thornton AIP Conf. Proc., 1542 (2013), pp. 1202-1205

[76] M. Larcher; J.T. Jenkins Phys. Fluids, 25 (2013), p. 113301

[77] B. Marks; P. Rognon; I. Einav J. Fluid Mech., 690 (2012), pp. 499-511

[78] S.S. Grigorian; M.E. Eglit; I.L. Iakimov Snow, avalanches & glaciers, Tr. Vysokogornogo Geofizich. Inst., Volume 12 (1967), pp. 104-113

[79] E.B. Pitman; C.C. Nichita; A. Patra; A. Bauer; M. Sheridan; M. Bursik Phys. Fluids, 15 (2003), pp. 3638-3646

[80] J.M.N.T. Gray; Y.C. Tai; S. Noelle J. Fluid Mech., 491 (2003), pp. 161-181

[81] A. Mangeney; F. Bouchut; N. Thomas; J.-P. Vilotte; M.O. Bristeau J. Geophys. Res., 112 (2007), p. F02017

[82] O. Bokhove; A.R. Thornton Handbook of Environmental Fluid Dynamics, Volume 1: Overview and Fundamentals (H.J. Fernando, ed.), CRC Press, Boca Raton, FL, USA, 2012, pp. 545-556

[83] X. Cui; J.M.N.T. Gray J. Fluid Mech., 720 (2013), pp. 314-337

[84] J.M.N.T. Gray; A.N. Edwards J. Fluid Mech., 755 (2014), pp. 503-534

[85] P. Jop; Y. Forterre; O. Pouliquen Nature, 44 (2006), pp. 727-730

[86] Y. Fan; C.P. Schlick; P.B. Umbanhowar; J.M. Ottino; R.M. Lueptow J. Fluid Mech., 741 (2014), pp. 252-279

[87] B. Marks; I. Einav Granul. Matter, 13 (2011), pp. 211-214

[88] A. Thornton; T. Weinhart; S. Luding; O. Bokhove Int. J. Mod. Phys. C, 23 (2012), p. 1240014

[89] Y. Fan; Y. Boukerkour; T. Blanc; P.B. Umbanhowar; J.M. Ottino; R.M. Lueptow Phys. Rev. E, 86 (2012), p. 051305

[90] Y. Fan; P.B. Umbanhowar; J.M. Ottino; R.M. Lueptow Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci., 469 (2013), p. 20130235

[91] H.A. Makse; S. Havlin; P.R. King; H.E. Stanley Nature, 386 (1997), pp. 379-382

[92] S. Wiederseiner; N. Andreini; G. Epely-Chauvin; G. Moser; M. Monnereau; J.M.N.T. Gray; C. Ancey Phys. Fluids, 23 (2011), p. 013301

[93] A.R. Thornton; J.M.N.T. Gray J. Fluid Mech., 596 (2008), pp. 261-284

[94] M. Shearer; N. Giffen Discrete Contin. Dyn. Sys., 27 (2010), pp. 693-714

[95] T. Takahashi J. Hydraul. Div., 106 (1980), pp. 381-396

[96] J.E. Costa; G. Williams Debris flow dynamics, U.S. Geological Survey, 1984 Technical report 84-606 (videotape)

[97] J.M.N.T. Gray; B.P. Kokelaar J. Fluid Mech., 652 (2010), pp. 105-137

[98] J.M.N.T. Gray; B.P. Kokelaar J. Fluid Mech., 657 (2010), p. 539

[99] T.C. Pierson Hillslope Processes (A.D. Abrahams, ed.), Allen and Unwin, Winchester, MA, USA, 1986, pp. 269-296

[100] T.R.H. Davies J. Hydrol. (NZ), 29 (1990), pp. 18-46

[101] C. Goujon; B. Dalloz-Dubrujeaud; N. Thomas Eur. Phys. J. E, 23 (2007), pp. 199-215

[102] R.M. Iverson; M. Logan; R.G. LaHusen; M. Berti J. Geophys. Res., 115 (2010), p. F03005

[103] B. Cagnoli; G.P. Romano J. Volcanol. Geotherm. Res., 193 (2010), pp. 18-24

[104] L.B.H. May; L.A. Golick; K.C. Phillips; M. Shearer; K.E. Daniels Phys. Rev. E, 81 (2010), p. 051301

[105] L.B.H. May; M. Shearer; K.E. Daniels J. Nonlinear Sci., 20 (2010), pp. 689-707

[106] S.D.S. Reis; N.A.M. Araújo; J.S. Andrade; H.J. Herrmann Europhys. Lett., 97 (2012), p. 18004

[107] D.D. Joseph; J.C. Saut Theor. Comput. Fluid Dyn., 1 (1990), pp. 191-227

[108] O. Pouliquen; Y. Forterre J. Fluid Mech., 453 (2002), pp. 133-151

[109] A. Tripathi; D.V. Khakhar Phys. Rev. Lett., 107 (2011), p. 108001

[110] P. Jop; Y. Forterre; O. Pouliquen J. Fluid Mech., 541 (2005), pp. 167-192

[111] M. Harrington; J.H. Weijs; W. Losert Phys. Rev. Lett., 111 (2013), p. 078001

[112] S. McDonald; D. Harris; P. Withers Int. J. Mater. Res., 103 (2012), pp. 162-169

[113] L. Staron; P.-Y. Lagrée; S. Popinet Phys. Fluids, 24 (2012), p. 103301

[114] P.-Y. Lagrée; L. Staron; S. Popinet J. Fluid Mech., 686 (2011), pp. 378-408

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

From a grain to avalanches: on the physics of granular surface flows

Stéphane Douady; Bruno Andreotti; Adrian Daerr; ...

C. R. Phys (2002)


Debris flows: Experiments and modelling

Barbara Turnbull; Elisabeth T. Bowman; Jim N. McElwaine

C. R. Phys (2015)


Dense flows of dry granular material

Olivier Pouliquen; François Chevoir

C. R. Phys (2002)