Particles of differing sizes are notoriously prone to segregate, which is a chronic problem in the manufacture of a wide variety of products that are used by billions of people worldwide every day. Segregation is the single most important factor in product non-uniformity, which can lead to significant handling problems as well as complete batches being discarded at huge financial loss. It is generally regarded that the most important mechanism for segregation is the combination of kinetic sieving and squeeze expulsion in shallow granular avalanches. These free-surface flows are more common than one might expect, often forming part of more complicated flows in drums, heaps and silos, where there is mass exchange with underlying regions of static or slowly moving grains. The combination of segregation and solid–fluid granular phase transitions creates incredibly complicated and beautiful patterns in the resulting deposits, but a full understanding of such effects lies beyond our capabilities at present. This paper reviews recent advances in our ability to model the basic segregation processes in a single avalanche (without mass exchange) and the subtle feedback effects that they can have on the bulk flow. This is particularly important for geophysical applications, where segregation can spontaneously self-channelize and lubricate the flow, significantly enhancing the run-out of debris-flows, pyroclastic flows, rock-falls and snow-slab avalanches.
Supplementary Materials:
Supplementary material for this article is supplied as a separate file:
Des particules de tailles différentes ont naturellement tendance à ségréguer, ce qui constitue un problème récurrent pour la fabrication d'une large gamme de produits utilisés par un grand nombre de personnes, chaque jour à travers le monde. La ségrégation est le facteur le plus important dans la non-uniformité des produits ; il peut donner lieu à des problèmes importants de manutention, ainsi qu'à la mise au rebut de lots complets, engendrant d'énormes pertes financières. Il est généralement admis que, dans les avalanches granulaires, le mécanisme responsable de la ségrégation est la combinaison du tamisage cinétique et de l'expulsion par pincement. Ces écoulements à surface libre sont plus communs qu'il n'y paraît et apparaissent souvent dans des écoulements complexes, comme dans les tambours mélangeurs, les décharges de silos ou à la surface d'amas granulaires, au sein desquels se produit un échange de masse avec une couche sous-jacente de grains statiques ou en déplacement lent. La combinaison de la ségrégation et des changements de phase solide–fluide granulaire crée des motifs complexes dans les dépôts résultants, mais la compréhension complète de ces effets est pour le moment hors de portée. Cet article passe en revue les avancées récentes dans la modélisation des processus basiques de ségrégation au sein d'une avalanche simple (sans échange de masse avec une couche sous-jacente) et des effets subtils de rétroaction sur l'écoulement. Ceci est particulièrement important pour les applications géophysiques, dans lesquelles la ségrégation peut spontanément auto-endiguer et lubrifier l'écoulement, augmentant significativement la portée des écoulements de débris, des coulées pyroclastiques et des avalanches de plaques neigeuses
Compléments :
Des compléments sont fournis pour cet article dans le fichier séparé :
Mots-clés : Avalanches, Matériaux granulaires, Ségrégation par taille de particules, Mélange de particules, Portée des avalanches
John Mark Nicholas Timm Gray 1; Parmesh Gajjar 1; Peter Kokelaar 2
@article{CRPHYS_2015__16_1_73_0, author = {John Mark Nicholas Timm Gray and Parmesh Gajjar and Peter Kokelaar}, title = {Particle-size segregation in dense granular avalanches}, journal = {Comptes Rendus. Physique}, pages = {73--85}, publisher = {Elsevier}, volume = {16}, number = {1}, year = {2015}, doi = {10.1016/j.crhy.2015.01.004}, language = {en}, }
TY - JOUR AU - John Mark Nicholas Timm Gray AU - Parmesh Gajjar AU - Peter Kokelaar TI - Particle-size segregation in dense granular avalanches JO - Comptes Rendus. Physique PY - 2015 SP - 73 EP - 85 VL - 16 IS - 1 PB - Elsevier DO - 10.1016/j.crhy.2015.01.004 LA - en ID - CRPHYS_2015__16_1_73_0 ER -
John Mark Nicholas Timm Gray; Parmesh Gajjar; Peter Kokelaar. Particle-size segregation in dense granular avalanches. Comptes Rendus. Physique, Granular physics / Physique des milieux granulaires, Volume 16 (2015) no. 1, pp. 73-85. doi : 10.1016/j.crhy.2015.01.004. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2015.01.004/
[1] Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci., 455 (1999), pp. 1841-1874
[2] Chaos, 9 (1999), pp. 594-610
[3] Powder Technol., 2 (1968), pp. 13-20
[4] Nature, 391 (1998), p. 136
[5] User Guide to Segregation, British Materials Handling Board, 1997
[6] Powders and Bulk Solids, Springer, Berlin, Heidelberg, 2008
[7] Contin. Mech. Thermodyn., 9 (1997), pp. 341-345
[8] Proc. Natl. Acad. Sci. USA, 96 (1999), pp. 11701-11706
[9] Macromol. Mater. Eng., 296 (2011), pp. 278-289
[10] J. Fluid Mech., 189 (1988), pp. 311-335
[11] IUTAM Symposium on Segregation in Granular Flows (A.D. Rosato; D.L. Blackmore, eds.), Solid Mech. Appl., vol. 81, Springer, The Netherlands, 2000, pp. 31-51
[12] Phys. Rev. Lett., 81 (1998), pp. 4365-4368
[13] Flysch Sedimentology in North America (J. Lajoie, ed.), Business and Economics Science Ltd, Toronto, 1970, pp. 253-272
[14] Marine Sediment Transport and Environmental Management (D.J. Stanley; D.J.P. Swift, eds.), Wiley, 1976, pp. 197-218
[15] New J. Phys., 13 (2011), p. 095009
[16] J. Fluid Mech., 756 (2014), pp. 54-88
[17] J. Fluid Mech., 717 (2013), pp. 643-669
[18] Phys. Fluids, 26 (2014), p. 043301
[19] Phys. Fluids, 26 (2014), p. 033302
[20] Rev. Geophys., 35 (1997), pp. 245-296
[21] J. Geophys. Res., 106 (2001), pp. 553-566
[22] J. Geophys. Res., 117 (2012), p. F01032
[23] C. R. Phys. (2015)
[24] Bull. Volcanol., 54 (1992), pp. 504-520
[25] J. Volcanol. Geotherm. Res., 69 (1995), pp. 343-364
[26] J. Volcanol. Geotherm. Res., 104 (2000), pp. 201-235
[27] J. Sediment. Petrol., 37 (1967), pp. 438-448
[28] Encyclopedia of Volcanoes (H. Sigurdsson, ed.), Academic, 2000, pp. 601-616
[29] Can. Geotech. J., 30 (1993), pp. 620-636
[30] J. Fluid Mech., 199 (1989), pp. 177-215
[31] IUTAM Symposium on Segregation in Granular Flows (A.D. Rosato; D.L. Blackmore, eds.), Solid Mech. Appl., vol. 81, Springer, The Netherlands, 2000, pp. 81-88
[32] J. Rheol., 52 (2008), pp. 729-748
[33] Nature, 386 (1997), pp. 816-817
[34] Chaos, 9 (1999), pp. 621-630
[35] Geology, 29 (2001), pp. 115-118
[36] Earth Planet. Sci. Lett., 221 (2004), pp. 197-213
[37] Cold Reg. Sci. Technol., 62 (2010), pp. 55-66
[38] J. Fluid Mech., 709 (2012), pp. 543-580
[39] Earth Planet. Sci. Lett., 385 (2014), pp. 172-180
[40] Powder Technol., 61 (1990), pp. 255-287
[41] Powder Technol., 192 (2009), pp. 137-142
[42] Particuology, 8 (2010), pp. 563-567
[43] Sydney, Australia, 8–12 July 2013 (A. Yu; K. Dong; R. Yang; S. Luding, eds.), AIP Conf. Proc., vol. 1542 (2013), pp. 658-661
[44] J. Fluid Mech., 678 (2011), pp. 535-588
[45] Physica A, 318 (2003), pp. 129-136
[46] Chem. Eng. (1978), pp. 183-188
[47] AIP Conf. Proc., 1227 (2010), pp. 343-362
[48] Mineral Processing Technology, Pergamon, 1979
[49] Powder Technol., 41 (1985), pp. 147-158
[50] Powder Technol., 15 (1976), pp. 215-236
[51] Ind. Eng. Chem. Fundam., 14 (1975), pp. 22-27
[52] Trans. Inst. Chem. Eng. Lond., 56 (1978), pp. 157-167
[53] Granular Matter (A. Mehta, ed.), Springer, New York, 1994, pp. 161-193
[54] Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci., 461 (2005), pp. 1447-1473
[55] J. Fluid Mech., 550 (2006), pp. 1-25
[56] Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci., 462 (2006), pp. 947-972
[57] Eur. J. Appl. Math., 19 (2008), pp. 61-86
[58] J. Fluid Mech., 629 (2009), pp. 387-423
[59] Continuum Mechanics. Concise Theory and Problems, George Allen & Unwin, 1976
[60] Powder Technol., 83 (1995), pp. 95-103
[61] Trans. Faraday Soc., 48 (1952), pp. 166-176
[62] First-Order Partial Differential Equations: Volume 1 Theory and Applications of Single Equations, Prentice-Hall, Englewood Cliffs, New Jersey, 1986
[63] J. Fluid Mech., 569 (2006), pp. 365-398
[64] Phys. Rev. E, 64 (2001), p. 051302
[65] Eur. Phys. J. E, 14 (2004), pp. 341-365
[66] Phys. Fluids, 19 (2007), p. 058101
[67] Rational Thermodynamics, Springer, 1984
[68] Surv. Geophys., 13 (1992), pp. 209-268
[69] J. Fluid Mech., 749 (2014), pp. 99-112
[70] J. Fluid Mech. (2015) (submitted for publication)
[71] J. Fluid Mech., 757 (2014), pp. 297-329
[72] Phys. Rev. E, 80 (2009), p. 042301
[73] K. van der Vaart, P. Gajjar, G. Epely-Chauvin, N. Andreini, J.M.N.T. Gray, C. Ancey (2015), in preparation.
[74] Phys. Rev. Lett., 106 (2011), p. 218301
[75] AIP Conf. Proc., 1542 (2013), pp. 1202-1205
[76] Phys. Fluids, 25 (2013), p. 113301
[77] J. Fluid Mech., 690 (2012), pp. 499-511
[78] Snow, avalanches & glaciers, Tr. Vysokogornogo Geofizich. Inst., Volume 12 (1967), pp. 104-113
[79] Phys. Fluids, 15 (2003), pp. 3638-3646
[80] J. Fluid Mech., 491 (2003), pp. 161-181
[81] J. Geophys. Res., 112 (2007), p. F02017
[82] Handbook of Environmental Fluid Dynamics, Volume 1: Overview and Fundamentals (H.J. Fernando, ed.), CRC Press, Boca Raton, FL, USA, 2012, pp. 545-556
[83] J. Fluid Mech., 720 (2013), pp. 314-337
[84] J. Fluid Mech., 755 (2014), pp. 503-534
[85] Nature, 44 (2006), pp. 727-730
[86] J. Fluid Mech., 741 (2014), pp. 252-279
[87] Granul. Matter, 13 (2011), pp. 211-214
[88] Int. J. Mod. Phys. C, 23 (2012), p. 1240014
[89] Phys. Rev. E, 86 (2012), p. 051305
[90] Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci., 469 (2013), p. 20130235
[91] Nature, 386 (1997), pp. 379-382
[92] Phys. Fluids, 23 (2011), p. 013301
[93] J. Fluid Mech., 596 (2008), pp. 261-284
[94] Discrete Contin. Dyn. Sys., 27 (2010), pp. 693-714
[95] J. Hydraul. Div., 106 (1980), pp. 381-396
[96] Debris flow dynamics, U.S. Geological Survey, 1984 Technical report 84-606 (videotape)
[97] J. Fluid Mech., 652 (2010), pp. 105-137
[98] J. Fluid Mech., 657 (2010), p. 539
[99] Hillslope Processes (A.D. Abrahams, ed.), Allen and Unwin, Winchester, MA, USA, 1986, pp. 269-296
[100] J. Hydrol. (NZ), 29 (1990), pp. 18-46
[101] Eur. Phys. J. E, 23 (2007), pp. 199-215
[102] J. Geophys. Res., 115 (2010), p. F03005
[103] J. Volcanol. Geotherm. Res., 193 (2010), pp. 18-24
[104] Phys. Rev. E, 81 (2010), p. 051301
[105] J. Nonlinear Sci., 20 (2010), pp. 689-707
[106] Europhys. Lett., 97 (2012), p. 18004
[107] Theor. Comput. Fluid Dyn., 1 (1990), pp. 191-227
[108] J. Fluid Mech., 453 (2002), pp. 133-151
[109] Phys. Rev. Lett., 107 (2011), p. 108001
[110] J. Fluid Mech., 541 (2005), pp. 167-192
[111] Phys. Rev. Lett., 111 (2013), p. 078001
[112] Int. J. Mater. Res., 103 (2012), pp. 162-169
[113] Phys. Fluids, 24 (2012), p. 103301
[114] J. Fluid Mech., 686 (2011), pp. 378-408
Cited by Sources:
Comments - Policy