Comptes Rendus
Particle-size segregation in dense granular avalanches
[Ségrégation par taille de particules dans les avalanches granulaires]
Comptes Rendus. Physique, Granular physics / Physique des milieux granulaires, Volume 16 (2015) no. 1, pp. 73-85.

Des particules de tailles différentes ont naturellement tendance à ségréguer, ce qui constitue un problème récurrent pour la fabrication d'une large gamme de produits utilisés par un grand nombre de personnes, chaque jour à travers le monde. La ségrégation est le facteur le plus important dans la non-uniformité des produits ; il peut donner lieu à des problèmes importants de manutention, ainsi qu'à la mise au rebut de lots complets, engendrant d'énormes pertes financières. Il est généralement admis que, dans les avalanches granulaires, le mécanisme responsable de la ségrégation est la combinaison du tamisage cinétique et de l'expulsion par pincement. Ces écoulements à surface libre sont plus communs qu'il n'y paraît et apparaissent souvent dans des écoulements complexes, comme dans les tambours mélangeurs, les décharges de silos ou à la surface d'amas granulaires, au sein desquels se produit un échange de masse avec une couche sous-jacente de grains statiques ou en déplacement lent. La combinaison de la ségrégation et des changements de phase solide–fluide granulaire crée des motifs complexes dans les dépôts résultants, mais la compréhension complète de ces effets est pour le moment hors de portée. Cet article passe en revue les avancées récentes dans la modélisation des processus basiques de ségrégation au sein d'une avalanche simple (sans échange de masse avec une couche sous-jacente) et des effets subtils de rétroaction sur l'écoulement. Ceci est particulièrement important pour les applications géophysiques, dans lesquelles la ségrégation peut spontanément auto-endiguer et lubrifier l'écoulement, augmentant significativement la portée des écoulements de débris, des coulées pyroclastiques et des avalanches de plaques neigeuses

Compléments :
Des compléments sont fournis pour cet article dans le fichier séparé :

Particles of differing sizes are notoriously prone to segregate, which is a chronic problem in the manufacture of a wide variety of products that are used by billions of people worldwide every day. Segregation is the single most important factor in product non-uniformity, which can lead to significant handling problems as well as complete batches being discarded at huge financial loss. It is generally regarded that the most important mechanism for segregation is the combination of kinetic sieving and squeeze expulsion in shallow granular avalanches. These free-surface flows are more common than one might expect, often forming part of more complicated flows in drums, heaps and silos, where there is mass exchange with underlying regions of static or slowly moving grains. The combination of segregation and solid–fluid granular phase transitions creates incredibly complicated and beautiful patterns in the resulting deposits, but a full understanding of such effects lies beyond our capabilities at present. This paper reviews recent advances in our ability to model the basic segregation processes in a single avalanche (without mass exchange) and the subtle feedback effects that they can have on the bulk flow. This is particularly important for geophysical applications, where segregation can spontaneously self-channelize and lubricate the flow, significantly enhancing the run-out of debris-flows, pyroclastic flows, rock-falls and snow-slab avalanches.

Supplementary Materials:
Supplementary material for this article is supplied as a separate file:

Publié le :
DOI : 10.1016/j.crhy.2015.01.004
Keywords: Avalanches, Granular materials, Particle size-segregation, Particle mixing, Run-out
Mots-clés : Avalanches, Matériaux granulaires, Ségrégation par taille de particules, Mélange de particules, Portée des avalanches

John Mark Nicholas Timm Gray 1 ; Parmesh Gajjar 1 ; Peter Kokelaar 2

1 School of Mathematics and Manchester Centre for Nonlinear Dynamics, University of Manchester, Manchester, M13 9PL, UK
2 Department of Earth and Ocean Sciences, University of Liverpool, Liverpool, L69 3GP, UK
@article{CRPHYS_2015__16_1_73_0,
     author = {John Mark Nicholas Timm Gray and Parmesh Gajjar and Peter Kokelaar},
     title = {Particle-size segregation in dense granular avalanches},
     journal = {Comptes Rendus. Physique},
     pages = {73--85},
     publisher = {Elsevier},
     volume = {16},
     number = {1},
     year = {2015},
     doi = {10.1016/j.crhy.2015.01.004},
     language = {en},
}
TY  - JOUR
AU  - John Mark Nicholas Timm Gray
AU  - Parmesh Gajjar
AU  - Peter Kokelaar
TI  - Particle-size segregation in dense granular avalanches
JO  - Comptes Rendus. Physique
PY  - 2015
SP  - 73
EP  - 85
VL  - 16
IS  - 1
PB  - Elsevier
DO  - 10.1016/j.crhy.2015.01.004
LA  - en
ID  - CRPHYS_2015__16_1_73_0
ER  - 
%0 Journal Article
%A John Mark Nicholas Timm Gray
%A Parmesh Gajjar
%A Peter Kokelaar
%T Particle-size segregation in dense granular avalanches
%J Comptes Rendus. Physique
%D 2015
%P 73-85
%V 16
%N 1
%I Elsevier
%R 10.1016/j.crhy.2015.01.004
%G en
%F CRPHYS_2015__16_1_73_0
John Mark Nicholas Timm Gray; Parmesh Gajjar; Peter Kokelaar. Particle-size segregation in dense granular avalanches. Comptes Rendus. Physique, Granular physics / Physique des milieux granulaires, Volume 16 (2015) no. 1, pp. 73-85. doi : 10.1016/j.crhy.2015.01.004. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2015.01.004/

[1] J.M.N.T. Gray; M. Wieland; K. Hutter Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci., 455 (1999), pp. 1841-1874

[2] D.V. Khakhar; J.J. McCarthy; J.M. Ottino Chaos, 9 (1999), pp. 594-610

[3] S.C. Williams Powder Technol., 2 (1968), pp. 13-20

[4] J. Baxter; U. Tüzün; D. Heyes; I. Hayati; P. Fredlund Nature, 391 (1998), p. 136

[5] L. Bates User Guide to Segregation, British Materials Handling Board, 1997

[6] D. Schulze Powders and Bulk Solids, Springer, Berlin, Heidelberg, 2008

[7] J.M.N.T. Gray; K. Hutter Contin. Mech. Thermodyn., 9 (1997), pp. 341-345

[8] K.M. Hill; D.V. Kharkar; J.F. Gilchrist; J.J. McCarthy; J.M. Ottino Proc. Natl. Acad. Sci. USA, 96 (1999), pp. 11701-11706

[9] D.V. Khakhar Macromol. Mater. Eng., 296 (2011), pp. 278-289

[10] S.B. Savage; C.K.K. Lun J. Fluid Mech., 189 (1988), pp. 311-335

[11] J.W. Vallance; S.B. Savage IUTAM Symposium on Segregation in Granular Flows (A.D. Rosato; D.L. Blackmore, eds.), Solid Mech. Appl., vol. 81, Springer, The Netherlands, 2000, pp. 31-51

[12] T. Shinbrot; F.J. Muzzio Phys. Rev. Lett., 81 (1998), pp. 4365-4368

[13] G.V. Middleton Flysch Sedimentology in North America (J. Lajoie, ed.), Business and Economics Science Ltd, Toronto, 1970, pp. 253-272

[14] G.V. Middleton; M.A. Hampton Marine Sediment Transport and Environmental Management (D.J. Stanley; D.J.P. Swift, eds.), Wiley, 1976, pp. 197-218

[15] Y.I. Fan; K.M. Hill New J. Phys., 13 (2011), p. 095009

[16] K.M. Hill; S.D. Tan J. Fluid Mech., 756 (2014), pp. 54-88

[17] A. Tripathi; D.V. Khakhar J. Fluid Mech., 717 (2013), pp. 643-669

[18] F. Guillard; Y. Forterre; O. Pouliquen Phys. Fluids, 26 (2014), p. 043301

[19] L. Staron; J.C. Phillips Phys. Fluids, 26 (2014), p. 033302

[20] R.M. Iverson Rev. Geophys., 35 (1997), pp. 245-296

[21] R.M. Iverson; R.P. Denlinger J. Geophys. Res., 106 (2001), pp. 553-566

[22] C.G. Johnson; B.P. Kokelaar; R.M. Iverson; M. Logan; R.G. LaHusen; J.M.N.T. Gray J. Geophys. Res., 117 (2012), p. F01032

[23] B. Turnbull; E.T. Bowman; J.N. McElwaine C. R. Phys. (2015)

[24] M.J. Branney; B.P. Kokelaar Bull. Volcanol., 54 (1992), pp. 504-520

[25] D.M. Palladino; G.A. Valentine J. Volcanol. Geotherm. Res., 69 (1995), pp. 343-364

[26] E.S. Calder; R.S.J. Sparks; M.C. Gardeweg J. Volcanol. Geotherm. Res., 104 (2000), pp. 201-235

[27] H.U. Schminck J. Sediment. Petrol., 37 (1967), pp. 438-448

[28] J.W. Vallance Encyclopedia of Volcanoes (H. Sigurdsson, ed.), Academic, 2000, pp. 601-616

[29] S.G. Evans; O. Hungr Can. Geotech. J., 30 (1993), pp. 620-636

[30] S.B. Savage; K. Hutter J. Fluid Mech., 199 (1989), pp. 177-215

[31] J. McElwaine; K. Nishimura IUTAM Symposium on Segregation in Granular Flows (A.D. Rosato; D.L. Blackmore, eds.), Solid Mech. Appl., vol. 81, Springer, The Netherlands, 2000, pp. 81-88

[32] P.G. Rognon; F. Chevoir; H. Bellot; F. Ousset; M. Naaïm; P. Coussot J. Rheol., 52 (2008), pp. 729-748

[33] O. Pouliquen; J. Delour; S.B. Savage Nature, 386 (1997), pp. 816-817

[34] O. Pouliquen; J.W. Vallance Chaos, 9 (1999), pp. 621-630

[35] R.M. Iverson; J.W. Vallance Geology, 29 (2001), pp. 115-118

[36] G. Félix; N. Thomas Earth Planet. Sci. Lett., 221 (2004), pp. 197-213

[37] F. Moro; T. Faug; H. Bellot; F. Ousset Cold Reg. Sci. Technol., 62 (2010), pp. 55-66

[38] M.J. Woodhouse; A.R. Thornton; C.G. Johnson; B.P. Kokelaar; J.M.N.T. Gray J. Fluid Mech., 709 (2012), pp. 543-580

[39] B.P. Kokelaar; R.L. Graham; J.M.N.T. Gray; J.W. Vallance Earth Planet. Sci. Lett., 385 (2014), pp. 172-180

[40] L.T. Fan; Y.M. Chen; F.S. Lai Powder Technol., 61 (1990), pp. 255-287

[41] J.J. McCarthy Powder Technol., 192 (2009), pp. 137-142

[42] J. Bridgwater Particuology, 8 (2010), pp. 563-567

[43] B. Marks; A. Valaulta; A. Puzrin; I. Einav Sydney, Australia, 8–12 July 2013 (A. Yu; K. Dong; R. Yang; S. Luding, eds.), AIP Conf. Proc., vol. 1542 (2013), pp. 658-661

[44] J.M.N.T. Gray; C. Ancey J. Fluid Mech., 678 (2011), pp. 535-588

[45] D.V. Khakhar; A.V. Orpe; S.K. Hajra Physica A, 318 (2003), pp. 129-136

[46] J.R. Johanson Chem. Eng. (1978), pp. 183-188

[47] J.M.N.T. Gray AIP Conf. Proc., 1227 (2010), pp. 343-362

[48] B.A. Wills Mineral Processing Technology, Pergamon, 1979

[49] J. Bridgwater; W. Foo; D. Stephens Powder Technol., 41 (1985), pp. 147-158

[50] J. Bridgwater Powder Technol., 15 (1976), pp. 215-236

[51] A.M. Scott; J. Bridgwater Ind. Eng. Chem. Fundam., 14 (1975), pp. 22-27

[52] J. Bridgwater; M.H. Cooke; A.M. Scott Trans. Inst. Chem. Eng. Lond., 56 (1978), pp. 157-167

[53] J. Bridgwater Granular Matter (A. Mehta, ed.), Springer, New York, 1994, pp. 161-193

[54] J.M.N.T. Gray; A.R. Thornton Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci., 461 (2005), pp. 1447-1473

[55] A.R. Thornton; J.M.N.T. Gray; A.J. Hogg J. Fluid Mech., 550 (2006), pp. 1-25

[56] J.M.N.T. Gray; M. Shearer; A.R. Thornton Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci., 462 (2006), pp. 947-972

[57] M. Shearer; J.M.N.T. Gray; A.R. Thornton Eur. J. Appl. Math., 19 (2008), pp. 61-86

[58] J.M.N.T. Gray; C. Ancey J. Fluid Mech., 629 (2009), pp. 387-423

[59] P. Chadwick Continuum Mechanics. Concise Theory and Problems, George Allen & Unwin, 1976

[60] V.N. Dolgunin; A.A. Ukolov Powder Technol., 83 (1995), pp. 95-103

[61] G.J. Kynch Trans. Faraday Soc., 48 (1952), pp. 166-176

[62] H.K. Rhee; R. Aris; N.R. Amundson First-Order Partial Differential Equations: Volume 1 Theory and Applications of Single Equations, Prentice-Hall, Englewood Cliffs, New Jersey, 1986

[63] J.M.N.T. Gray; V.A. Chugunov J. Fluid Mech., 569 (2006), pp. 365-398

[64] L.E. Silbert; D. Ertas; G.S. Grest; T.C. Halsey; D. Levine; S.J. Plimpton Phys. Rev. E, 64 (2001), p. 051302

[65] GDR-MiDi Eur. Phys. J. E, 14 (2004), pp. 341-365

[66] P.G. Rognon; J.N. Roux; M. Naaim; F. Chevoir Phys. Fluids, 19 (2007), p. 058101

[67] C. Truesdell Rational Thermodynamics, Springer, 1984

[68] L.W. Morland Surv. Geophys., 13 (1992), pp. 209-268

[69] D.R. Tunuguntla; O. Bokhove; A.R. Thornton J. Fluid Mech., 749 (2014), pp. 99-112

[70] J.M.N.T. Gray; C. Ancey J. Fluid Mech. (2015) (submitted for publication)

[71] P. Gajjar; J.M.N.T. Gray J. Fluid Mech., 757 (2014), pp. 297-329

[72] L.A. Golick; K.E. Daniels Phys. Rev. E, 80 (2009), p. 042301

[73] K. van der Vaart, P. Gajjar, G. Epely-Chauvin, N. Andreini, J.M.N.T. Gray, C. Ancey (2015), in preparation.

[74] Y. Fan; K.M. Hill Phys. Rev. Lett., 106 (2011), p. 218301

[75] T. Weinhart; S. Luding; A.R. Thornton AIP Conf. Proc., 1542 (2013), pp. 1202-1205

[76] M. Larcher; J.T. Jenkins Phys. Fluids, 25 (2013), p. 113301

[77] B. Marks; P. Rognon; I. Einav J. Fluid Mech., 690 (2012), pp. 499-511

[78] S.S. Grigorian; M.E. Eglit; I.L. Iakimov Snow, avalanches & glaciers, Tr. Vysokogornogo Geofizich. Inst., Volume 12 (1967), pp. 104-113

[79] E.B. Pitman; C.C. Nichita; A. Patra; A. Bauer; M. Sheridan; M. Bursik Phys. Fluids, 15 (2003), pp. 3638-3646

[80] J.M.N.T. Gray; Y.C. Tai; S. Noelle J. Fluid Mech., 491 (2003), pp. 161-181

[81] A. Mangeney; F. Bouchut; N. Thomas; J.-P. Vilotte; M.O. Bristeau J. Geophys. Res., 112 (2007), p. F02017

[82] O. Bokhove; A.R. Thornton Handbook of Environmental Fluid Dynamics, Volume 1: Overview and Fundamentals (H.J. Fernando, ed.), CRC Press, Boca Raton, FL, USA, 2012, pp. 545-556

[83] X. Cui; J.M.N.T. Gray J. Fluid Mech., 720 (2013), pp. 314-337

[84] J.M.N.T. Gray; A.N. Edwards J. Fluid Mech., 755 (2014), pp. 503-534

[85] P. Jop; Y. Forterre; O. Pouliquen Nature, 44 (2006), pp. 727-730

[86] Y. Fan; C.P. Schlick; P.B. Umbanhowar; J.M. Ottino; R.M. Lueptow J. Fluid Mech., 741 (2014), pp. 252-279

[87] B. Marks; I. Einav Granul. Matter, 13 (2011), pp. 211-214

[88] A. Thornton; T. Weinhart; S. Luding; O. Bokhove Int. J. Mod. Phys. C, 23 (2012), p. 1240014

[89] Y. Fan; Y. Boukerkour; T. Blanc; P.B. Umbanhowar; J.M. Ottino; R.M. Lueptow Phys. Rev. E, 86 (2012), p. 051305

[90] Y. Fan; P.B. Umbanhowar; J.M. Ottino; R.M. Lueptow Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci., 469 (2013), p. 20130235

[91] H.A. Makse; S. Havlin; P.R. King; H.E. Stanley Nature, 386 (1997), pp. 379-382

[92] S. Wiederseiner; N. Andreini; G. Epely-Chauvin; G. Moser; M. Monnereau; J.M.N.T. Gray; C. Ancey Phys. Fluids, 23 (2011), p. 013301

[93] A.R. Thornton; J.M.N.T. Gray J. Fluid Mech., 596 (2008), pp. 261-284

[94] M. Shearer; N. Giffen Discrete Contin. Dyn. Sys., 27 (2010), pp. 693-714

[95] T. Takahashi J. Hydraul. Div., 106 (1980), pp. 381-396

[96] J.E. Costa; G. Williams Debris flow dynamics, U.S. Geological Survey, 1984 Technical report 84-606 (videotape)

[97] J.M.N.T. Gray; B.P. Kokelaar J. Fluid Mech., 652 (2010), pp. 105-137

[98] J.M.N.T. Gray; B.P. Kokelaar J. Fluid Mech., 657 (2010), p. 539

[99] T.C. Pierson Hillslope Processes (A.D. Abrahams, ed.), Allen and Unwin, Winchester, MA, USA, 1986, pp. 269-296

[100] T.R.H. Davies J. Hydrol. (NZ), 29 (1990), pp. 18-46

[101] C. Goujon; B. Dalloz-Dubrujeaud; N. Thomas Eur. Phys. J. E, 23 (2007), pp. 199-215

[102] R.M. Iverson; M. Logan; R.G. LaHusen; M. Berti J. Geophys. Res., 115 (2010), p. F03005

[103] B. Cagnoli; G.P. Romano J. Volcanol. Geotherm. Res., 193 (2010), pp. 18-24

[104] L.B.H. May; L.A. Golick; K.C. Phillips; M. Shearer; K.E. Daniels Phys. Rev. E, 81 (2010), p. 051301

[105] L.B.H. May; M. Shearer; K.E. Daniels J. Nonlinear Sci., 20 (2010), pp. 689-707

[106] S.D.S. Reis; N.A.M. Araújo; J.S. Andrade; H.J. Herrmann Europhys. Lett., 97 (2012), p. 18004

[107] D.D. Joseph; J.C. Saut Theor. Comput. Fluid Dyn., 1 (1990), pp. 191-227

[108] O. Pouliquen; Y. Forterre J. Fluid Mech., 453 (2002), pp. 133-151

[109] A. Tripathi; D.V. Khakhar Phys. Rev. Lett., 107 (2011), p. 108001

[110] P. Jop; Y. Forterre; O. Pouliquen J. Fluid Mech., 541 (2005), pp. 167-192

[111] M. Harrington; J.H. Weijs; W. Losert Phys. Rev. Lett., 111 (2013), p. 078001

[112] S. McDonald; D. Harris; P. Withers Int. J. Mater. Res., 103 (2012), pp. 162-169

[113] L. Staron; P.-Y. Lagrée; S. Popinet Phys. Fluids, 24 (2012), p. 103301

[114] P.-Y. Lagrée; L. Staron; S. Popinet J. Fluid Mech., 686 (2011), pp. 378-408

  • Yongkang Yang; Xinyu Dong; Ting Xiong Drag Force and Heat Transfer Characteristics of Ellipsoidal Particles near the Wall, Water, Volume 17 (2025) no. 5, p. 736 | DOI:10.3390/w17050736
  • Yue 悦 Xu 徐; Ran 然 Li 李; Zhipeng 志鹏 Chi 迟; Wenzheng 文正 Xiu 修; Qicheng 其诚 Sun 孙; Hui 晖 Yang 杨 Effect of granular shape on radial segregation in a two-dimensional drum, Chinese Physics B, Volume 33 (2024) no. 4, p. 044502 | DOI:10.1088/1674-1056/ad1092
  • Erin L. Harvey; Tristram C. Hales; Jie Liu; Daniel E.J. Hobley; Fan Yang; Bing Xia; Xuanmei Fan Grain-size variability in debris flows of different runout lengths, Wenchuan, China, Geological Society of America Bulletin, Volume 136 (2024) no. 7-8, p. 2676 | DOI:10.1130/b37027.1
  • Yuting Zhao; W. Andy Take; Roland Kaitna; Brian W. McArdell; Jim N. McElwaine; Elisabeth T. Bowman Fluid effects in model granular flows, Granular Matter, Volume 26 (2024) no. 1 | DOI:10.1007/s10035-023-01365-4
  • Aditya Pratap Singh; Vasileios Angelidakis; Thorsten Pöschel; Sudeshna Roy Shear zones in granular mixtures of hard and soft particles with high and low friction, Soft Matter, Volume 20 (2024) no. 14, p. 3118 | DOI:10.1039/d4sm00100a
  • Dariush Zare; Arash Nourmohamadi-Moghadami; Shubham Subrot Panigrahi; Azharul Karim; Chandra B. Singh Dimensionless modeling of fine material distribution in an experimental silo during central spout loading, Journal of Stored Products Research, Volume 100 (2023), p. 102063 | DOI:10.1016/j.jspr.2022.102063
  • Wen-Rong Cui; Jian-Gang Chen; Wan-Yu Zhao; Xiao-Qing Chen Characteristics of wake morphology during debris flow when passing a cylindrical obstacle, Physics of Fluids, Volume 35 (2023) no. 11 | DOI:10.1063/5.0171674
  • Fuji Jian A Review of Distribution and Segregation Mechanisms of Dockage and Foreign Materials in On-Farm Grain Silos for Central Spout Loading, KONA Powder and Particle Journal, Volume 39 (2022) no. 0, p. 100 | DOI:10.14356/kona.2022014
  • Yaqing Zhang; Jialong Zhu; Peng Liang; Tiantian Jiao; Xiangping Li Flow characteristics of mixed particles with a simulated cold state in moving bed reactor, Particuology, Volume 71 (2022), p. 11 | DOI:10.1016/j.partic.2022.01.002
  • Tatiana Savranskaia; Ramon Egli; Jean-Pierre Valet Multiscale Brazil nut effects in bioturbated sediment, Scientific Reports, Volume 12 (2022) no. 1 | DOI:10.1038/s41598-022-14276-w
  • L.Y.M. Yang; Q.J. Zheng; L. Bai; A.B. Yu Continuum modelling of granular segregation by coupling flow rheology and transport equation, Powder Technology, Volume 378 (2021), p. 371 | DOI:10.1016/j.powtec.2020.10.010
  • W.Z. Xiu; R. Li; Q. Chen; Q.C. Sun; V. Zivkovic; H. Yang Binary-size granules segregation from core pattern to streak pattern in a rotating drum, Powder Technology, Volume 380 (2021), p. 518 | DOI:10.1016/j.powtec.2020.11.035
  • J. Torres-Serra; A. Rodríguez-Ferran; E. Romero Study of grain-scale effects in bulk handling using discrete element simulations, Powder Technology, Volume 382 (2021), p. 284 | DOI:10.1016/j.powtec.2020.12.029
  • Saleema Panda; Danielle S. Tan Effect of external factors on segregation of different granular mixtures, Advanced Powder Technology, Volume 31 (2020) no. 2, p. 571 | DOI:10.1016/j.apt.2019.11.013
  • Saleema Panda; Danielle S Tan Study of external factors to minimize segregation of granular particles, International Journal of Modern Physics C, Volume 31 (2020) no. 10, p. 2050147 | DOI:10.1142/s0129183120501478
  • J. Torres-Serra; E. Romero; A. Rodríguez-Ferran A new column collapse apparatus for the characterisation of the flowability of granular materials, Powder Technology, Volume 362 (2020), p. 559 | DOI:10.1016/j.powtec.2019.11.080
  • Aditya A. Ghodgaonkar; Ivan C. Christov Solving Nonlinear Parabolic Equations by a Strongly Implicit Finite Difference Scheme, Applied Wave Mathematics II, Volume 6 (2019), p. 305 | DOI:10.1007/978-3-030-29951-4_14
  • Simon Matthias May; Dirk Hoffmeister; Dennis Wolf; Olaf Bubenzer Zebra stripes in the Atacama Desert revisited – Granular fingering as a mechanism for zebra stripe formation?, Geomorphology, Volume 344 (2019), p. 46 | DOI:10.1016/j.geomorph.2019.07.014
  • J. S. Fannon; I. R. Moyles; A. C. Fowler Application of the compressible -dependent rheology to chute and shear flow instabilities, Journal of Fluid Mechanics, Volume 864 (2019), p. 1026 | DOI:10.1017/jfm.2019.43
  • Sandip Mandal; D. V. Khakhar Dense granular flow of mixtures of spheres and dumbbells down a rough inclined plane: Segregation and rheology, Physics of Fluids, Volume 31 (2019) no. 2 | DOI:10.1063/1.5082355
  • Ahmed Jarray; Hao Shi; Bert J. Scheper; Mehdi Habibi; Stefan Luding Cohesion-driven mixing and segregation of dry granular media, Scientific Reports, Volume 9 (2019) no. 1 | DOI:10.1038/s41598-019-49451-z
  • Khashayar Saleh; Shahab Golshan; Reza Zarghami A review on gravity flow of free-flowing granular solids in silos – Basics and practical aspects, Chemical Engineering Science, Volume 192 (2018), p. 1011 | DOI:10.1016/j.ces.2018.08.028
  • K. van der Vaart; A. R. Thornton; C. G. Johnson; T. Weinhart; L. Jing; P. Gajjar; J. M. N. T. Gray; C. Ancey Breaking size-segregation waves and mobility feedback in dense granular avalanches, Granular Matter, Volume 20 (2018) no. 3 | DOI:10.1007/s10035-018-0818-x
  • Peng Liang; Jia-Long Zhu; Ya-Qing Zhang; Xi-Zhuang Qin; Xue-Long Lv Study on the Flow Characteristics of Mixed Solid–Solid Particles, JOURNAL OF CHEMICAL ENGINEERING OF JAPAN, Volume 51 (2018) no. 6, p. 477 | DOI:10.1252/jcej.16we327
  • P. Valderrama; O. Roche; P. Samaniego; B. van Wyk des Vries; G. Araujo Granular fingering as a mechanism for ridge formation in debris avalanche deposits: Laboratory experiments and implications for Tutupaca volcano, Peru, Journal of Volcanology and Geothermal Research, Volume 349 (2018), p. 409 | DOI:10.1016/j.jvolgeores.2017.12.004
  • Yang Xu; Jian Xu; Chengfeng Sun; Kaihui Ma; Cheng Shan; Liangying Wen; Shengfu Zhang; Chenguang Bai Quantitative comparison of binary particle mass and size segregation between serial and parallel type hoppers of blast furnace bell-less top charging system, Powder Technology, Volume 328 (2018), p. 245 | DOI:10.1016/j.powtec.2018.01.020
  • Masoud Hosseinpoor; Kamal H. Khayat; Ammar Yahia Numerical simulation of self-consolidating concrete flow as a heterogeneous material in L-Box set-up: Effect of rheological parameters on flow performance, Cement and Concrete Composites, Volume 83 (2017), p. 290 | DOI:10.1016/j.cemconcomp.2017.07.027
  • Behrooz Ferdowsi; Carlos P. Ortiz; Morgane Houssais; Douglas J. Jerolmack River-bed armouring as a granular segregation phenomenon, Nature Communications, Volume 8 (2017) no. 1 | DOI:10.1038/s41467-017-01681-3
  • Rahul K. Soni; B. K. Mishra Understanding Size Segregation in Tumbling Mills, Proceedings of the 7th International Conference on Discrete Element Methods, Volume 188 (2017), p. 1153 | DOI:10.1007/978-981-10-1926-5_120
  • Wei Zhou; Zhiqiang Lai; Gang Ma; Lifu Yang; Yuan Chen Effect of base roughness on size segregation in dry granular flows, Granular Matter, Volume 18 (2016) no. 4 | DOI:10.1007/s10035-016-0680-7
  • James BAKER; Nico GRAY; Peter KOKELAAR Particle Size-Segregation and Spontaneous Levee Formation in Geophysical Granular Flows, International Journal of Erosion Control Engineering, Volume 9 (2016) no. 4, p. 174 | DOI:10.13101/ijece.9.174
  • P. Gajjar; K. van der Vaart; A. R. Thornton; C. G. Johnson; C. Ancey; J. M. N. T. Gray Asymmetric breaking size-segregation waves in dense granular free-surface flows, Journal of Fluid Mechanics, Volume 794 (2016), p. 460 | DOI:10.1017/jfm.2016.170
  • J. L. Baker; C. G. Johnson; J. M. N. T. Gray Segregation-induced finger formation in granular free-surface flows, Journal of Fluid Mechanics, Volume 809 (2016), p. 168 | DOI:10.1017/jfm.2016.673
  • Xiao-yi Fan; Shu-jun Tian; You-yi Zhang Mass-front velocity of dry granular flows influenced by the angle of the slope to the runout plane and particle size gradation, Journal of Mountain Science, Volume 13 (2016) no. 2, p. 234 | DOI:10.1007/s11629-014-3396-3
  • L.A. Rodriguez-Sedano; D. Sarocchi; R. Sulpizio; L. Borselli; G. Campos; G. Moreno Chavez Influence of particle density on flow behavior and deposit architecture of concentrated pyroclastic density currents over a break in slope: Insights from laboratory experiments, Journal of Volcanology and Geothermal Research, Volume 328 (2016), p. 178 | DOI:10.1016/j.jvolgeores.2016.10.017
  • A. N. Edwards; N. M. Vriend Size segregation in a granular bore, Physical Review Fluids, Volume 1 (2016) no. 6 | DOI:10.1103/physrevfluids.1.064201
  • J. M. N. T. Gray; C. Ancey Particle-size and -density segregation in granular free-surface flows, Journal of Fluid Mechanics, Volume 779 (2015), p. 622 | DOI:10.1017/jfm.2015.438
  • K. van der Vaart; P. Gajjar; G. Epely-Chauvin; N. Andreini; J. M. N. T. Gray; C. Ancey Underlying Asymmetry within Particle Size Segregation, Physical Review Letters, Volume 114 (2015) no. 23 | DOI:10.1103/physrevlett.114.238001

Cité par 38 documents. Sources : Crossref

Commentaires - Politique