[Ségrégation par taille de particules dans les avalanches granulaires]
Des particules de tailles différentes ont naturellement tendance à ségréguer, ce qui constitue un problème récurrent pour la fabrication d'une large gamme de produits utilisés par un grand nombre de personnes, chaque jour à travers le monde. La ségrégation est le facteur le plus important dans la non-uniformité des produits ; il peut donner lieu à des problèmes importants de manutention, ainsi qu'à la mise au rebut de lots complets, engendrant d'énormes pertes financières. Il est généralement admis que, dans les avalanches granulaires, le mécanisme responsable de la ségrégation est la combinaison du tamisage cinétique et de l'expulsion par pincement. Ces écoulements à surface libre sont plus communs qu'il n'y paraît et apparaissent souvent dans des écoulements complexes, comme dans les tambours mélangeurs, les décharges de silos ou à la surface d'amas granulaires, au sein desquels se produit un échange de masse avec une couche sous-jacente de grains statiques ou en déplacement lent. La combinaison de la ségrégation et des changements de phase solide–fluide granulaire crée des motifs complexes dans les dépôts résultants, mais la compréhension complète de ces effets est pour le moment hors de portée. Cet article passe en revue les avancées récentes dans la modélisation des processus basiques de ségrégation au sein d'une avalanche simple (sans échange de masse avec une couche sous-jacente) et des effets subtils de rétroaction sur l'écoulement. Ceci est particulièrement important pour les applications géophysiques, dans lesquelles la ségrégation peut spontanément auto-endiguer et lubrifier l'écoulement, augmentant significativement la portée des écoulements de débris, des coulées pyroclastiques et des avalanches de plaques neigeuses
Compléments :
Des compléments sont fournis pour cet article dans le fichier séparé :
-
mmc1.jpg
&
Particles of differing sizes are notoriously prone to segregate, which is a chronic problem in the manufacture of a wide variety of products that are used by billions of people worldwide every day. Segregation is the single most important factor in product non-uniformity, which can lead to significant handling problems as well as complete batches being discarded at huge financial loss. It is generally regarded that the most important mechanism for segregation is the combination of kinetic sieving and squeeze expulsion in shallow granular avalanches. These free-surface flows are more common than one might expect, often forming part of more complicated flows in drums, heaps and silos, where there is mass exchange with underlying regions of static or slowly moving grains. The combination of segregation and solid–fluid granular phase transitions creates incredibly complicated and beautiful patterns in the resulting deposits, but a full understanding of such effects lies beyond our capabilities at present. This paper reviews recent advances in our ability to model the basic segregation processes in a single avalanche (without mass exchange) and the subtle feedback effects that they can have on the bulk flow. This is particularly important for geophysical applications, where segregation can spontaneously self-channelize and lubricate the flow, significantly enhancing the run-out of debris-flows, pyroclastic flows, rock-falls and snow-slab avalanches.
Supplementary Materials:
Supplementary material for this article is supplied as a separate file:
-
mmc1.jpg
&
Mots-clés : Avalanches, Matériaux granulaires, Ségrégation par taille de particules, Mélange de particules, Portée des avalanches
John Mark Nicholas Timm Gray 1 ; Parmesh Gajjar 1 ; Peter Kokelaar 2
@article{CRPHYS_2015__16_1_73_0, author = {John Mark Nicholas Timm Gray and Parmesh Gajjar and Peter Kokelaar}, title = {Particle-size segregation in dense granular avalanches}, journal = {Comptes Rendus. Physique}, pages = {73--85}, publisher = {Elsevier}, volume = {16}, number = {1}, year = {2015}, doi = {10.1016/j.crhy.2015.01.004}, language = {en}, }
TY - JOUR AU - John Mark Nicholas Timm Gray AU - Parmesh Gajjar AU - Peter Kokelaar TI - Particle-size segregation in dense granular avalanches JO - Comptes Rendus. Physique PY - 2015 SP - 73 EP - 85 VL - 16 IS - 1 PB - Elsevier DO - 10.1016/j.crhy.2015.01.004 LA - en ID - CRPHYS_2015__16_1_73_0 ER -
John Mark Nicholas Timm Gray; Parmesh Gajjar; Peter Kokelaar. Particle-size segregation in dense granular avalanches. Comptes Rendus. Physique, Granular physics / Physique des milieux granulaires, Volume 16 (2015) no. 1, pp. 73-85. doi : 10.1016/j.crhy.2015.01.004. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2015.01.004/
[1] Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci., 455 (1999), pp. 1841-1874
[2] Chaos, 9 (1999), pp. 594-610
[3] Powder Technol., 2 (1968), pp. 13-20
[4] Nature, 391 (1998), p. 136
[5] User Guide to Segregation, British Materials Handling Board, 1997
[6] Powders and Bulk Solids, Springer, Berlin, Heidelberg, 2008
[7] Contin. Mech. Thermodyn., 9 (1997), pp. 341-345
[8] Proc. Natl. Acad. Sci. USA, 96 (1999), pp. 11701-11706
[9] Macromol. Mater. Eng., 296 (2011), pp. 278-289
[10] J. Fluid Mech., 189 (1988), pp. 311-335
[11] IUTAM Symposium on Segregation in Granular Flows (A.D. Rosato; D.L. Blackmore, eds.), Solid Mech. Appl., vol. 81, Springer, The Netherlands, 2000, pp. 31-51
[12] Phys. Rev. Lett., 81 (1998), pp. 4365-4368
[13] Flysch Sedimentology in North America (J. Lajoie, ed.), Business and Economics Science Ltd, Toronto, 1970, pp. 253-272
[14] Marine Sediment Transport and Environmental Management (D.J. Stanley; D.J.P. Swift, eds.), Wiley, 1976, pp. 197-218
[15] New J. Phys., 13 (2011), p. 095009
[16] J. Fluid Mech., 756 (2014), pp. 54-88
[17] J. Fluid Mech., 717 (2013), pp. 643-669
[18] Phys. Fluids, 26 (2014), p. 043301
[19] Phys. Fluids, 26 (2014), p. 033302
[20] Rev. Geophys., 35 (1997), pp. 245-296
[21] J. Geophys. Res., 106 (2001), pp. 553-566
[22] J. Geophys. Res., 117 (2012), p. F01032
[23] C. R. Phys. (2015)
[24] Bull. Volcanol., 54 (1992), pp. 504-520
[25] J. Volcanol. Geotherm. Res., 69 (1995), pp. 343-364
[26] J. Volcanol. Geotherm. Res., 104 (2000), pp. 201-235
[27] J. Sediment. Petrol., 37 (1967), pp. 438-448
[28] Encyclopedia of Volcanoes (H. Sigurdsson, ed.), Academic, 2000, pp. 601-616
[29] Can. Geotech. J., 30 (1993), pp. 620-636
[30] J. Fluid Mech., 199 (1989), pp. 177-215
[31] IUTAM Symposium on Segregation in Granular Flows (A.D. Rosato; D.L. Blackmore, eds.), Solid Mech. Appl., vol. 81, Springer, The Netherlands, 2000, pp. 81-88
[32] J. Rheol., 52 (2008), pp. 729-748
[33] Nature, 386 (1997), pp. 816-817
[34] Chaos, 9 (1999), pp. 621-630
[35] Geology, 29 (2001), pp. 115-118
[36] Earth Planet. Sci. Lett., 221 (2004), pp. 197-213
[37] Cold Reg. Sci. Technol., 62 (2010), pp. 55-66
[38] J. Fluid Mech., 709 (2012), pp. 543-580
[39] Earth Planet. Sci. Lett., 385 (2014), pp. 172-180
[40] Powder Technol., 61 (1990), pp. 255-287
[41] Powder Technol., 192 (2009), pp. 137-142
[42] Particuology, 8 (2010), pp. 563-567
[43] Sydney, Australia, 8–12 July 2013 (A. Yu; K. Dong; R. Yang; S. Luding, eds.), AIP Conf. Proc., vol. 1542 (2013), pp. 658-661
[44] J. Fluid Mech., 678 (2011), pp. 535-588
[45] Physica A, 318 (2003), pp. 129-136
[46] Chem. Eng. (1978), pp. 183-188
[47] AIP Conf. Proc., 1227 (2010), pp. 343-362
[48] Mineral Processing Technology, Pergamon, 1979
[49] Powder Technol., 41 (1985), pp. 147-158
[50] Powder Technol., 15 (1976), pp. 215-236
[51] Ind. Eng. Chem. Fundam., 14 (1975), pp. 22-27
[52] Trans. Inst. Chem. Eng. Lond., 56 (1978), pp. 157-167
[53] Granular Matter (A. Mehta, ed.), Springer, New York, 1994, pp. 161-193
[54] Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci., 461 (2005), pp. 1447-1473
[55] J. Fluid Mech., 550 (2006), pp. 1-25
[56] Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci., 462 (2006), pp. 947-972
[57] Eur. J. Appl. Math., 19 (2008), pp. 61-86
[58] J. Fluid Mech., 629 (2009), pp. 387-423
[59] Continuum Mechanics. Concise Theory and Problems, George Allen & Unwin, 1976
[60] Powder Technol., 83 (1995), pp. 95-103
[61] Trans. Faraday Soc., 48 (1952), pp. 166-176
[62] First-Order Partial Differential Equations: Volume 1 Theory and Applications of Single Equations, Prentice-Hall, Englewood Cliffs, New Jersey, 1986
[63] J. Fluid Mech., 569 (2006), pp. 365-398
[64] Phys. Rev. E, 64 (2001), p. 051302
[65] Eur. Phys. J. E, 14 (2004), pp. 341-365
[66] Phys. Fluids, 19 (2007), p. 058101
[67] Rational Thermodynamics, Springer, 1984
[68] Surv. Geophys., 13 (1992), pp. 209-268
[69] J. Fluid Mech., 749 (2014), pp. 99-112
[70] J. Fluid Mech. (2015) (submitted for publication)
[71] J. Fluid Mech., 757 (2014), pp. 297-329
[72] Phys. Rev. E, 80 (2009), p. 042301
[73] K. van der Vaart, P. Gajjar, G. Epely-Chauvin, N. Andreini, J.M.N.T. Gray, C. Ancey (2015), in preparation.
[74] Phys. Rev. Lett., 106 (2011), p. 218301
[75] AIP Conf. Proc., 1542 (2013), pp. 1202-1205
[76] Phys. Fluids, 25 (2013), p. 113301
[77] J. Fluid Mech., 690 (2012), pp. 499-511
[78] Snow, avalanches & glaciers, Tr. Vysokogornogo Geofizich. Inst., Volume 12 (1967), pp. 104-113
[79] Phys. Fluids, 15 (2003), pp. 3638-3646
[80] J. Fluid Mech., 491 (2003), pp. 161-181
[81] J. Geophys. Res., 112 (2007), p. F02017
[82] Handbook of Environmental Fluid Dynamics, Volume 1: Overview and Fundamentals (H.J. Fernando, ed.), CRC Press, Boca Raton, FL, USA, 2012, pp. 545-556
[83] J. Fluid Mech., 720 (2013), pp. 314-337
[84] J. Fluid Mech., 755 (2014), pp. 503-534
[85] Nature, 44 (2006), pp. 727-730
[86] J. Fluid Mech., 741 (2014), pp. 252-279
[87] Granul. Matter, 13 (2011), pp. 211-214
[88] Int. J. Mod. Phys. C, 23 (2012), p. 1240014
[89] Phys. Rev. E, 86 (2012), p. 051305
[90] Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci., 469 (2013), p. 20130235
[91] Nature, 386 (1997), pp. 379-382
[92] Phys. Fluids, 23 (2011), p. 013301
[93] J. Fluid Mech., 596 (2008), pp. 261-284
[94] Discrete Contin. Dyn. Sys., 27 (2010), pp. 693-714
[95] J. Hydraul. Div., 106 (1980), pp. 381-396
[96] Debris flow dynamics, U.S. Geological Survey, 1984 Technical report 84-606 (videotape)
[97] J. Fluid Mech., 652 (2010), pp. 105-137
[98] J. Fluid Mech., 657 (2010), p. 539
[99] Hillslope Processes (A.D. Abrahams, ed.), Allen and Unwin, Winchester, MA, USA, 1986, pp. 269-296
[100] J. Hydrol. (NZ), 29 (1990), pp. 18-46
[101] Eur. Phys. J. E, 23 (2007), pp. 199-215
[102] J. Geophys. Res., 115 (2010), p. F03005
[103] J. Volcanol. Geotherm. Res., 193 (2010), pp. 18-24
[104] Phys. Rev. E, 81 (2010), p. 051301
[105] J. Nonlinear Sci., 20 (2010), pp. 689-707
[106] Europhys. Lett., 97 (2012), p. 18004
[107] Theor. Comput. Fluid Dyn., 1 (1990), pp. 191-227
[108] J. Fluid Mech., 453 (2002), pp. 133-151
[109] Phys. Rev. Lett., 107 (2011), p. 108001
[110] J. Fluid Mech., 541 (2005), pp. 167-192
[111] Phys. Rev. Lett., 111 (2013), p. 078001
[112] Int. J. Mater. Res., 103 (2012), pp. 162-169
[113] Phys. Fluids, 24 (2012), p. 103301
[114] J. Fluid Mech., 686 (2011), pp. 378-408
- Drag Force and Heat Transfer Characteristics of Ellipsoidal Particles near the Wall, Water, Volume 17 (2025) no. 5, p. 736 | DOI:10.3390/w17050736
- Effect of granular shape on radial segregation in a two-dimensional drum, Chinese Physics B, Volume 33 (2024) no. 4, p. 044502 | DOI:10.1088/1674-1056/ad1092
- Grain-size variability in debris flows of different runout lengths, Wenchuan, China, Geological Society of America Bulletin, Volume 136 (2024) no. 7-8, p. 2676 | DOI:10.1130/b37027.1
- Fluid effects in model granular flows, Granular Matter, Volume 26 (2024) no. 1 | DOI:10.1007/s10035-023-01365-4
- Shear zones in granular mixtures of hard and soft particles with high and low friction, Soft Matter, Volume 20 (2024) no. 14, p. 3118 | DOI:10.1039/d4sm00100a
- Dimensionless modeling of fine material distribution in an experimental silo during central spout loading, Journal of Stored Products Research, Volume 100 (2023), p. 102063 | DOI:10.1016/j.jspr.2022.102063
- Characteristics of wake morphology during debris flow when passing a cylindrical obstacle, Physics of Fluids, Volume 35 (2023) no. 11 | DOI:10.1063/5.0171674
- A Review of Distribution and Segregation Mechanisms of Dockage and Foreign Materials in On-Farm Grain Silos for Central Spout Loading, KONA Powder and Particle Journal, Volume 39 (2022) no. 0, p. 100 | DOI:10.14356/kona.2022014
- Flow characteristics of mixed particles with a simulated cold state in moving bed reactor, Particuology, Volume 71 (2022), p. 11 | DOI:10.1016/j.partic.2022.01.002
- Multiscale Brazil nut effects in bioturbated sediment, Scientific Reports, Volume 12 (2022) no. 1 | DOI:10.1038/s41598-022-14276-w
- Continuum modelling of granular segregation by coupling flow rheology and transport equation, Powder Technology, Volume 378 (2021), p. 371 | DOI:10.1016/j.powtec.2020.10.010
- Binary-size granules segregation from core pattern to streak pattern in a rotating drum, Powder Technology, Volume 380 (2021), p. 518 | DOI:10.1016/j.powtec.2020.11.035
- Study of grain-scale effects in bulk handling using discrete element simulations, Powder Technology, Volume 382 (2021), p. 284 | DOI:10.1016/j.powtec.2020.12.029
- Effect of external factors on segregation of different granular mixtures, Advanced Powder Technology, Volume 31 (2020) no. 2, p. 571 | DOI:10.1016/j.apt.2019.11.013
- Study of external factors to minimize segregation of granular particles, International Journal of Modern Physics C, Volume 31 (2020) no. 10, p. 2050147 | DOI:10.1142/s0129183120501478
- A new column collapse apparatus for the characterisation of the flowability of granular materials, Powder Technology, Volume 362 (2020), p. 559 | DOI:10.1016/j.powtec.2019.11.080
- Solving Nonlinear Parabolic Equations by a Strongly Implicit Finite Difference Scheme, Applied Wave Mathematics II, Volume 6 (2019), p. 305 | DOI:10.1007/978-3-030-29951-4_14
- Zebra stripes in the Atacama Desert revisited – Granular fingering as a mechanism for zebra stripe formation?, Geomorphology, Volume 344 (2019), p. 46 | DOI:10.1016/j.geomorph.2019.07.014
- Application of the compressible -dependent rheology to chute and shear flow instabilities, Journal of Fluid Mechanics, Volume 864 (2019), p. 1026 | DOI:10.1017/jfm.2019.43
- Dense granular flow of mixtures of spheres and dumbbells down a rough inclined plane: Segregation and rheology, Physics of Fluids, Volume 31 (2019) no. 2 | DOI:10.1063/1.5082355
- Cohesion-driven mixing and segregation of dry granular media, Scientific Reports, Volume 9 (2019) no. 1 | DOI:10.1038/s41598-019-49451-z
- A review on gravity flow of free-flowing granular solids in silos – Basics and practical aspects, Chemical Engineering Science, Volume 192 (2018), p. 1011 | DOI:10.1016/j.ces.2018.08.028
- Breaking size-segregation waves and mobility feedback in dense granular avalanches, Granular Matter, Volume 20 (2018) no. 3 | DOI:10.1007/s10035-018-0818-x
- Study on the Flow Characteristics of Mixed Solid–Solid Particles, JOURNAL OF CHEMICAL ENGINEERING OF JAPAN, Volume 51 (2018) no. 6, p. 477 | DOI:10.1252/jcej.16we327
- Granular fingering as a mechanism for ridge formation in debris avalanche deposits: Laboratory experiments and implications for Tutupaca volcano, Peru, Journal of Volcanology and Geothermal Research, Volume 349 (2018), p. 409 | DOI:10.1016/j.jvolgeores.2017.12.004
- Quantitative comparison of binary particle mass and size segregation between serial and parallel type hoppers of blast furnace bell-less top charging system, Powder Technology, Volume 328 (2018), p. 245 | DOI:10.1016/j.powtec.2018.01.020
- Numerical simulation of self-consolidating concrete flow as a heterogeneous material in L-Box set-up: Effect of rheological parameters on flow performance, Cement and Concrete Composites, Volume 83 (2017), p. 290 | DOI:10.1016/j.cemconcomp.2017.07.027
- River-bed armouring as a granular segregation phenomenon, Nature Communications, Volume 8 (2017) no. 1 | DOI:10.1038/s41467-017-01681-3
- Understanding Size Segregation in Tumbling Mills, Proceedings of the 7th International Conference on Discrete Element Methods, Volume 188 (2017), p. 1153 | DOI:10.1007/978-981-10-1926-5_120
- Effect of base roughness on size segregation in dry granular flows, Granular Matter, Volume 18 (2016) no. 4 | DOI:10.1007/s10035-016-0680-7
- Particle Size-Segregation and Spontaneous Levee Formation in Geophysical Granular Flows, International Journal of Erosion Control Engineering, Volume 9 (2016) no. 4, p. 174 | DOI:10.13101/ijece.9.174
- Asymmetric breaking size-segregation waves in dense granular free-surface flows, Journal of Fluid Mechanics, Volume 794 (2016), p. 460 | DOI:10.1017/jfm.2016.170
- Segregation-induced finger formation in granular free-surface flows, Journal of Fluid Mechanics, Volume 809 (2016), p. 168 | DOI:10.1017/jfm.2016.673
- Mass-front velocity of dry granular flows influenced by the angle of the slope to the runout plane and particle size gradation, Journal of Mountain Science, Volume 13 (2016) no. 2, p. 234 | DOI:10.1007/s11629-014-3396-3
- Influence of particle density on flow behavior and deposit architecture of concentrated pyroclastic density currents over a break in slope: Insights from laboratory experiments, Journal of Volcanology and Geothermal Research, Volume 328 (2016), p. 178 | DOI:10.1016/j.jvolgeores.2016.10.017
- Size segregation in a granular bore, Physical Review Fluids, Volume 1 (2016) no. 6 | DOI:10.1103/physrevfluids.1.064201
- Particle-size and -density segregation in granular free-surface flows, Journal of Fluid Mechanics, Volume 779 (2015), p. 622 | DOI:10.1017/jfm.2015.438
- Underlying Asymmetry within Particle Size Segregation, Physical Review Letters, Volume 114 (2015) no. 23 | DOI:10.1103/physrevlett.114.238001
Cité par 38 documents. Sources : Crossref
Commentaires - Politique