The control of magnetism by electric fields is an important goal for future low-power spintronics devices. This partly explains the intensified recent interest for magnetoelectric multiferroic materials and heterostructures. The lack of ferro- or ferrimagnetic–ferroelectric materials with large magnetoelectric coupling between the two orders has spurred intensive research on artificial multiferroics combining ferroelectric or piezoelectric materials and ferromagnets. In this paper we review synthetically the potential of thin-film-based heterostructures in which a magnetic film is in contact with a ferroelectric or piezoelectric one to obtain an electric control of magnetic properties. This electric control either results from a strain-induced magnetoelectric coupling, a charge-driven one, or from the modulation of an interfacial exchange-bias interaction.
Contrôler électriquement les propriétés magnétiques des matériaux et réaliser ainsi de nouveaux composants faiblement consommateurs en énergie est un des enjeux de la future électronique de spin. Ceci explique l'intérêt considérable porté aux matériaux et architectures multiferroïques. Malgré des recherches intenses, le graal d'un composé à la fois ferroélectrique et ferro- ou ferrimagnétique à température ambiante avec un fort couplage magnétoélectrique entre ces deux propriétés n'a pas encore été trouvé. Pour pallier ce manque, de nombreux travaux ont porté sur les multiferroïques artificiels, hétérostructures combinant un matériau ferroélectrique ou piézoélectrique et un composé ferromagnétique. Cet article constitue une revue succincte du potentiel de ces hétérostructures en géométrie planaire pour obtenir un contrôle électrique des propriétés magnétiques. Un tel contrôle peut être obtenu par un effet magnétoélectrique indirect basé sur un couplage d'origine élastique, de façon directe par une modulation des charges dans le ferromagnétique induite par la ferroélectricité ou encore en exploitant le couplage d'échange à l'interface entre un multiferroïque et un matériau magnétique.
Mots-clés : Multiferroïques, Hétérostructures, Couplage magnétoélectrique, Interfaces, Spintronique, Ferroélectriques
Vincent Garcia 1; Manuel Bibes 1; Agnès Barthélémy 1
@article{CRPHYS_2015__16_2_168_0, author = {Vincent Garcia and Manuel Bibes and Agn\`es Barth\'el\'emy}, title = {Artificial multiferroic heterostructures for an electric control of magnetic properties}, journal = {Comptes Rendus. Physique}, pages = {168--181}, publisher = {Elsevier}, volume = {16}, number = {2}, year = {2015}, doi = {10.1016/j.crhy.2015.01.007}, language = {en}, }
TY - JOUR AU - Vincent Garcia AU - Manuel Bibes AU - Agnès Barthélémy TI - Artificial multiferroic heterostructures for an electric control of magnetic properties JO - Comptes Rendus. Physique PY - 2015 SP - 168 EP - 181 VL - 16 IS - 2 PB - Elsevier DO - 10.1016/j.crhy.2015.01.007 LA - en ID - CRPHYS_2015__16_2_168_0 ER -
Vincent Garcia; Manuel Bibes; Agnès Barthélémy. Artificial multiferroic heterostructures for an electric control of magnetic properties. Comptes Rendus. Physique, Multiferroic materials and heterostructures / Matériaux et hétérostructures multiferroïques, Volume 16 (2015) no. 2, pp. 168-181. doi : 10.1016/j.crhy.2015.01.007. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2015.01.007/
[1] Multi-ferroic magnetoelectrics, Ferroelectrics, Volume 162 (1994), pp. 317-338
[2] Revival of the magnetoelectric effect, J. Phys. D, Appl. Phys., Volume 38 (2005), p. R123-R152
[3] Multiferroic and magnetoelectric materials, Nature, Volume 442 (2006), pp. 759-765
[4] Why are there so few magnetic ferroelectrics?, J. Phys. Chem. B, Volume 104 (2000), pp. 6694-6709
[5] Multiferroic magnetoelectric composites: historical perspective, status, and future directions, J. Appl. Phys., Volume 103 (2008), p. 031101
[6] Magnetoelectric coupling effects in multiferroic complex oxide composite structures, Adv. Mater., Volume 22 (2010), pp. 2900-2918
[7] Recent progress in multiferroic magnetoelectric composites: from bulk to thin films, Adv. Mater., Volume 23 (2011), pp. 1062-1087
[8] Current status of magnetoelectric composite thin/thick films, Adv. Condens. Matter Phys., Volume 2012 (2012), p. 824643
[9] Electric field control of magnetism in multiferroic heterostructures, J. Phys. Condens. Matter, Volume 24 (2012), p. 333201
[10] Magnetoelectric devices for spintronics, Annu. Rev. Mater. Res., Volume 44 (2014), pp. 91-116
[11] Multiferroic magnetoelectric composite nanostructures, NPG Asia Mater., Volume 2 (2010), pp. 61-68
[12] Magnetoelectric effect in composites of piezoelectric and piezomagnetic phases, Phys. Rev. B, Volume 50 (1994), pp. 6082-6088
[13] Influence of strain on the magnetization and magnetoelectric effect in La0.7A0.3MnO3/PMN–PT(001) (A = Sr, Ca), Phys. Rev. B, Volume 75 (2007), p. 054408
[14] Manipulation of magnetic coercivity of Fe film in Fe/BaTiO3 heterostructure by electric field, Appl. Phys. Lett., Volume 99 (2011), p. 102506
[15] Switching of the symmetry of magnetic anisotropy in Fe/BaTiO3 heterostructures, Appl. Phys. Lett., Volume 99 (2011), p. 022501
[16] Giant magnetoelectric effect via strain-induced spin reorientation transitions in ferromagnetic films, Phys. Rev. B, Volume 78 (2008), p. 212102
[17] Electric-field-induced magnetic easy-axis reorientation in ferromagnetic/ferroelectric layered heterostructures, Phys. Rev. B, Volume 80 (2009), p. 224416
[18] Strain modification of epitaxial perovskite oxide thin films using structural transitions of ferroelectric BaTiO3 substrate, Appl. Phys. Lett., Volume 77 (2000), pp. 3547-3549
[19] Giant sharp and persistent converse magnetoelectric effects in multiferroic epitaxial heterostructures, Nat. Mater., Volume 6 (2007), pp. 348-351
[20] Magnetic anisotropy modulation of magnetite in Fe3O4/BaTiO3(100) epitaxial structures, Appl. Phys. Lett., Volume 94 (2009), p. 022504
[21] Magnetoelectric coupling in epitaxial CoFe2O4 on BaTiO3, Appl. Phys. Lett., Volume 89 (2006), p. 182506
[22] Temperature control of local magnetic anisotropy in multiferroic CoFe/BaTiO3, Appl. Phys. Lett., Volume 102 (2013), p. 112406
[23] Strain induced changes in magnetization of amorphous Co95Zr5 based multiferroic heterostructures, AIP Adv., Volume 3 (2013), p. 022113
[24] Piezoelectric tuning of exchange bias in a heterostructure, Phys. Rev. B, Volume 82 (2010), p. 134419
[25] Multiferroic bilayers of manganites and titanates, Phys. Stat. Sol. (b), Volume 243 (2006), pp. 21-28
[26] Quantification of strain and charge co-mediated magnetoelectric coupling on ultra-thin Permalloy/PMN–PT interface, Sci. Rep., Volume 4 (2014), p. 03688
[27] et al. Electric field controlled manipulation of the magnetization in Ni/BaTiO3 hybrid structures, Appl. Phys. Lett., Volume 96 (2010), p. 142509
[28] Voltage controlled inversion of magnetic anisotropy in a ferromagnetic thin film at room temperature, New J. Phys., Volume 11 (2009), p. 013021
[29] Nonvolatile, reversible electric-field controlled switching of remanent magnetization in multifunctional ferromagnetic/ferroelectric hybrids, J. Appl. Phys., Volume 110 (2011), p. 043913
[30] E-field control of exchange bias and deterministic magnetization switching in AFM/FM/FE multiferroic heterostructures, Adv. Funct. Mater., Volume 21 (2011), pp. 2593-2598
[31] Giant electric-field-induced reversible and permanent magnetization reorientation on magnetoelectric Ni/(011)[Pb(Mg1/3Nb2/3)O3]()[PbTiO3]x heterostructure, Appl. Phys. Lett., Volume 98 (2011), p. 012504
[32] Giant electric field tuning of magnetism in novel multiferroic FeGaB/lead zinc niobate-lead titanate (PZN–PT) heterostructures, Adv. Mater., Volume 21 (2009), pp. 4711-4715
[33] Giant electric field tuning of magnetic properties in multiferroic ferrite/ferroelectric heterostructures, Adv. Funct. Mater., Volume 19 (2009), pp. 1826-1831
[34] Electrically induced enormous magnetic anisotropy in Terfenol-D/lead zinc niobate-lead titanate multiferroic heterostructures, J. Appl. Phys., Volume 112 (2012), p. 063917
[35] Reversible magnetic domain-wall motion under an electric field in a magnetoelectric thin film, Appl. Phys. Lett., Volume 92 (2008), p. 112509
[36] Pattern transfer and electric-field-induced magnetic domain formation in multiferroic heterostructures, Adv. Mater., Volume 23 (2011), pp. 3187-3191
[37] Electric-field control of magnetic domain wall motion and local magnetization reversal, Sci. Rep., Volume 2 (2012), p. 258
[38] Spatially resolved strain-imprinted magnetic states in an artificial multiferroic, Phys. Rev. B, Volume 86 (2012), p. 014408
[39] Electric field driven magnetic domain wall motion in ferromagnetic–ferroelectric heterostructures, Appl. Phys. Lett., Volume 104 (2014), p. 012401
[40] Magnetic domain-wall racetrack memory, Science, Volume 320 (2008), pp. 190-194
[41] Magnetic domain-wall logic, Science, Volume 309 (2005), pp. 1688-1692
[42] Strain-mediated electric-field control of resistance in the La0.85Sr0.15MnO3/0.7Pb(Mg1/3Nb2/3)O30.3PbTiO3 structure, Appl. Phys. Lett., Volume 90 (2007), p. 152904
[43] Epitaxial growth and interface strain coupling effects in manganite film/piezoelectric-crystal multiferroic heterostructures, Mater. Chem. Phys., Volume 133 (2012), pp. 42-46
[44] Piezo-strain induced non-volatile resistance states in (011)La2/3Sr1/3MnO3/0.7Pb(Mg2/3Nb1/3)O30.3PbTiO3 epitaxial heterostructures, Appl. Phys. Lett., Volume 102 (2013), p. 033501
[45] Coaction of electric field induced strain and polarization effects in La0.7Ca0.3MnO3/PMN–PT structures, Phys. Rev. B, Volume 79 (2009), p. 174437
[46] Substrate-induced strain effect in La0.875Ba0.125MnO3 thin films grown on ferroelectric single-crystal substrates, Appl. Phys. Lett., Volume 92 (2008), p. 082908
[47] Electric-field control of phase separation and memory effect in Pr0.6Ca0.4MnO3/Pb(Mg1/3Nb2/3)0.7Ti0.3O3 heterostructures, Appl. Phys. Lett., Volume 98 (2011), p. 172507
[48] Electric-field control of magnetic order above room temperature, Nat. Mater., Volume 13 (2014), pp. 345-351
[49] Magnetic tunnel junction on a ferroelectric substrate, Appl. Phys. Lett., Volume 95 (2009), p. 163503
[50] Resistive switching via the converse magnetoelectric effect in ferromagnetic multilayers on ferroelectric substrates, Nanotechnology, Volume 21 (2010), p. 475202
[51] High-density magnetoresistive random access memory operating at ultralow voltage at room temperature, Nat. Commun., Volume 2 (2011), p. 553
[52] A room-temperature electrical field-controlled magnetic memory cell, J. Mater. Res., Volume 22 (2007), pp. 2111-2115
[53] Strain-controlled magnetic domain wall propagation in hybrid piezoelectric/ferromagnetic structures, Nat. Commun., Volume 4 (2013), p. 1378
[54] Novel magnetostrictive memory device, J. Appl. Phys., Volume 87 (2000), pp. 6400-6402
[55] et al. Magnetoelectric effects in complex oxides with competing ground states, Adv. Mater., Volume 21 (2009), p. 3470
[56] Size-dependent electric voltage controlled magnetic anisotropy in multiferroic heterostructures: interface-charge and strain co-mediated magnetoelectric coupling, Phys. Rev. B, Volume 83 (2011), p. 134408
[57] Theory of electric-field-controlled surface ferromagnetic transition in metals, Phys. Rev. B, Volume 79 (2009), p. 020402(R)
[58] Magnetoelectric effect at the SrRuO3/BaTiO3 (001) interface: an ab initio study, Appl. Phys. Lett., Volume 95 (2009), p. 052501
[59] Magnetoelectric coupling and electric control of magnetization in ferromagnet/ferroelectric/normal-metal superlattices, Phys. Rev. B, Volume 80 (2009), p. 140415(R)
[60] Interfacial magnetoelectric coupling in tricomponent superlattices, Phys. Rev. B, Volume 81 (2010), p. 144425
[61] Predicted magnetoelectric effect in Fe/BaTiO3 multilayers: ferroelectric control of magnetism, Phys. Rev. Lett., Volume 97 (2006), p. 047201
[62] Magnetic phase transition in two-phase multiferroics predicted from first principles, Phys. Rev. B, Volume 78 (2008), p. 212406
[63] Ferroelectric control of the magnetocrystalline anisotropy of the Fe/BaTiO3(001) interface, J. Phys. Condens. Matter, Volume 24 (2012), p. 226003
[64] Interface effects at a half-metal/ferroelectric junction, Appl. Phys. Lett., Volume 91 (2007), p. 062506
[65] Magnetoelectric effect at the Fe3O4/BaTiO3(001) interface: a first-principles study, Phys. Rev. B, Volume 78 (2008), p. 104405
[66] Magnetoelectric effect and critical thickness for ferroelectricity in Co/BaTiO3/Co multiferroic tunnel junctions, J. Appl. Phys., Volume 109 (2011), p. 114107
[67] Ferroelectric control of magnetocrystalline anisotropy at cobalt/poly(vinylidene fluoride) interfaces, ACS Nano, Volume 6 (2012), pp. 9745-9750
[68] Interface-induced room-temperature multiferroicity in BaTiO3, Nat. Mater., Volume 10 (2011), pp. 753-758
[69] Atomic, electronic structure of the BaTiO3/Fe interface in multiferroic tunnel junctions, Nano Lett., Volume 12 (2012), pp. 376-382
[70] Ferroelectric control of the magnetocrystalline anisotropy of the Fe/BaTiO3(001) interface, J. Phys. Condens. Matter, Volume 24 (2012), p. 226003
[71] Ferroelectric control of magnetic anisotropy of FePt/BaTiO3 magnetoelectric heterojunction: a density functional theory study, J. Appl. Phys., Volume 113 (2013), p. 17C729
[72] Ferroelectric control of in-plane to out-of-plane magnetization switching at poly(vinylidene fluoride)/iron interface, J. Appl. Phys., Volume 115 (2014), p. 043909
[73] Prediction of electrically induced magnetic reconstruction at the manganite/ferroelectric interface, Phys. Rev. B, Volume 80 (2009), p. 174406
[74] Microscopic model for the ferroelectric field effect in oxide heterostructures, Phys. Rev. B, Volume 84 (2011), p. 155117
[75] Ferroelectric control of spin polarization, Science, Volume 327 (2010), pp. 1106-1110
[76] Electric-field control of ferromagnetism, Nature, Volume 408 (2000), pp. 944-946
[77] Non-volatile ferroelectric control of ferromagnetism in (Ga, Mn)As, Nat. Mater., Volume 7 (2008), pp. 464-467
[78] Mixed-valence manganites, Adv. Phys., Volume 48 (1999), pp. 167-293
[79] Ferroelectric-field-induced tuning of magnetism in the colossal magnetoresistive oxide La1 − xSrxMnO3, Phys. Rev. B, Volume 68 (2003), p. 133415
[80] Ferroelectric field effect transistor based on epitaxial perovskite heterostructures, Science, Volume 276 (1997), pp. 238-240
[81] Electric control of room temperature ferromagnetism in a Pb(Zr0.2Ti0.8)O3/La0.85Ba0.15MnO3 field-effect transistor, Appl. Phys. Lett., Volume 89 (2006), p. 242506
[82] Electric modulation of magnetization at the BaTiO3/La0.67Sr0.33MnO3 interfaces, Appl. Phys. Lett., Volume 100 (2012), p. 232904
[83] Origin of the magnetoelectric coupling effect in Pb(Zr0.2Ti0.8)O3/La0.8Sr0.2MnO3 multiferroic heterostructures, Phys. Rev. Lett., Volume 104 (2010), p. 127202
[84] Control of magnetism in Pb(Zr0.2Ti0.8)O3/La0.8Sr0.2MnO3 multiferroic heterostructures, Appl. Phys., Volume 109 (2011), p. 07D905
[85] Charge control of antiferromagnetism at PbZr0.52Ti0.48O3/La0.67Sr0.33MnO3 interface, Appl. Phys. Lett., Volume 104 (2014), p. 132905
[86] Ferroelectric control of magnetic anisotropy, Nano Lett., Volume 11 (2011), pp. 3862-3867
[87] Tunneling across a ferroelectric, Science, Volume 313 (2006), pp. 181-183
[88] Ferroelectric and multiferroic tunnel junctions, Mater. Res. Soc. Bull., Volume 37 (2012), pp. 138-143
[89] Ferroelectric tunnel junctions for information storage and processing, Nat. Commun., Volume 5 (2014), p. 4289
[90] Theoretical current–voltage characteristics of ferroelectric tunnel junctions, Phys. Rev. B, Volume 72 (2005), p. 125341
[91] Giant electroresistance in ferroelectric tunnel junctions, Phys. Rev. Lett., Volume 94 (2005), p. 246802
[92] Giant tunnel electroresistance for non-destructive readout of ferroelectric states, Nature, Volume 460 (2009), pp. 81-84
[93] Tunneling electroresistance effect in ferroelectric tunnel junctions at the nanoscale, Nano Lett., Volume 9 (2009), pp. 3539-3543
[94] Room-temperature ferroelectric resistive switching in ultrathin Pb(Zr0.2Ti0.8)O3 films, ACS Nano, Volume 5 (2011), pp. 6032-6038
[95] Solid-state memories based on ferroelectric tunnel junctions, Nat. Nanotechnol., Volume 7 (2012), pp. 101-104
[96] Giant electroresistance of super-tetragonal BiFeO3-based ferroelectric tunnel junctions, ACS Nano, Volume 7 (2013), pp. 5385-5390
[97] Ferroelectric-field-effect-enhanced electroresistance in metal/ferroelectric/semiconductor tunnel junctions, Nat. Mater., Volume 12 (2013), pp. 617-621
[98] A ferroelectric memristor, Nat. Mater., Volume 11 (2012), pp. 860-864
[99] Ferroelectric tunnel memristor, Nano Lett., Volume 12 (2012), pp. 5697-5702
[100] Reversible electrical switching of spin polarization in multiferroic tunnel junctions, Nat. Mater., Volume 11 (2012), pp. 289-293
[101] Temperature dependence of the interfacial spin polarization of La2/3Sr1/3MnO3, Phys. Rev. B, Volume 69 (2004), p. 052403
[102] Exchange bias, J. Magn. Magn. Mater., Volume 192 (1999), pp. 203-232
[103] Magnetoelectric exchange bias systems in spintronics, Appl. Phys. Lett., Volume 89 (2006), p. 202508
[104] Magnetoelectronics with magnetoelectrics, J. Phys. Condens. Matter, Volume 17 (2005), p. L39-L44
[105] Towards a magnetoelectric memory, Nat. Mater., Volume 7 (2008), pp. 425-426
[106] Magnetoelectric switching of exchange bias, Phys. Rev. Lett., Volume 94 (2005), p. 117203
[107] Extrinsic control of the exchange bias, J. Magn. Magn. Mater., Volume 272–276 (2004), pp. 325-326
[108] Robust isothermal electric control of exchange bias at room temperature, Nat. Mater., Volume 9 (2010), pp. 579-585
[109] Electric-field control of exchange bias in multiferroic epitaxial heterostructures, Phys. Rev. Lett., Volume 97 (2006), p. 227201
[110] Observation of coupled magnetic and electric domains, Nature, Volume 419 (2002), p. 818
[111] Magnetization reversal by electric-field decoupling of magnetic and ferroelectric domain walls in multiferroic-based heterostructures, Phys. Rev. Lett., Volume 106 (2011), p. 057206
[112] Epitaxial BiFeO3 multiferroic thin film heterostructures, Science, Volume 299 (2003), pp. 1719-1722
[113] Spiral magnetic ordering in bismuth ferrite, J. Phys. C, Solid State Phys., Volume 15 (1982), pp. 4835-4846
[114] Destruction of spin cycloid in -oriented BiFeO3 thin films by epitiaxial constraint: enhanced polarization and release of latent magnetization, Appl. Phys. Lett., Volume 86 (2005), p. 032511
[115] Structural distortion and magnetism of BiFeO3 epitaxial thin films: a Raman spectroscopy and neutron diffraction study, Philos. Mag. Lett., Volume 87 (2007), pp. 165-174
[116] Electrical control of antiferromagnetic domains in multiferroic BiFeO3 films at room temperature, Nat. Mater., Volume 5 (2006), pp. 823-829
[117] Room temperature electrical manipulation of giant magnetoresistance in spin valves exchange-biased with BiFeO3, Nano Lett., Volume 12 (2012), pp. 1141-1145
[118] Large electric polarization and exchange bias in multiferroic BiFeO3, Adv. Mater., Volume 18 (2006), pp. 1445-1448
[119] Electric field switching of the magnetic anisotropy of a ferromagnetic layer exchange coupled to the multiferroic compound BiFeO3, Phys. Rev. Lett., Volume 103 (2009), p. 257601
[120] Electric-field control of local ferromagnetism using a magnetoelectric multiferroic, Nat. Mater., Volume 7 (2008), p. 478
[121] Electric-field-induced magnetization reversal in a ferromagnet–multiferroic heterostructure, Phys. Rev. Lett., Volume 107 (2011), p. 217202
[122] Tunnel magnetoresistance and robust room temperature exchange bias with multiferroic BiFeO3 epitaxial thin films, Appl. Phys. Lett., Volume 89 (2006), p. 242114
[123] Nanoscale control of exchange bias with BiFeO3 thin films, Nano Lett., Volume 8 (2008), pp. 2050-2055
[124] Mechanisms of exchange bias with multiferroic BiFeO3 epitaxial thin films, Phys. Rev. Lett., Volume 100 (2008), p. 017204
[125] Exchange bias induced by domain walls in BiFeO3, Phys. Rev. B, Volume 82 (2010), p. 064408
[126] Coengineering of ferroelectric and exchange bias properties in BiFeO3 based heterostructures, Appl. Phys. Lett., Volume 95 (2009), p. 182503
[127] Reversible electric control of exchange bias in a multiferroic field-effect device, Nat. Mater., Volume 9 (2010), pp. 756-761
[128] Interface ferromagnetism and orbital reconstruction in BiFeO3/La0.7Sr0.3MnO3 heterostructures, Phys. Rev. Lett., Volume 105 (2010), p. 027201
[129] Magnetoelectric coupling at the interface of BiFeO3/La0.7Sr0.3MnO3 multilayers, Phys. Rev. B, Volume 84 (2011), p. 024422
Cited by Sources:
Comments - Policy