Comptes Rendus
Bismuth-based perovskites as multiferroics
[Multiferroïcité dans les pérovskites au bismuth]
Comptes Rendus. Physique, Volume 16 (2015) no. 2, pp. 182-192.

Cette revue consacrée aux pérovskites multiferroïques à base de bismuth BiBO3 est scindée en deux parties. La première est consacrée au cas de BiFeO3 et résume les progrès récents réalisés dans l'étude de son diagramme de phases pression–température et de ses phénomènes de couplage magnéto-électrique. La seconde partie aborde de manière plus générale, à partir d'un inventaire des composés récemment synthétisés, la question de la stabilité des phases polaires – et multiferroiques – dans les pérovskites BiBO3 et la compétition entre la ferroélectricité et les autres instabilités structurales.

This review devoted to multiferroic properties of bismuth-based perovskites is divided into two parts. The first one focuses on BiFeO3 and summarizes the recent progress made in the studies of its pressure–temperature phase diagram and magnetoelectric coupling phenomena. The second part discusses in a more general way the issue of polar—and multiferroic—phases in BiBO3 perovskites and the competition between ferroelectricity and other structural instabilities, from an inventory of recently synthesized compounds.

Publié le :
DOI : 10.1016/j.crhy.2015.01.008
Keywords: Multiferroic, Perovskite, $ {\text{BiFeO}}_{3}$
Mot clés : Multiferroïque, Pérovskite, $ {\text{BiFeO}}_{3}$
Mael Guennou 1 ; Michel Viret 2 ; Jens Kreisel 1, 3

1 Materials Research and Technology Department, Luxembourg Institute of Science and Technology, 41, rue du Brill, L-4422 Belvaux, Luxembourg
2 Service de physique de l'état condensé, CEA Saclay, DSM/IRAMIS/SPEC, UMR CNRS 3680, 91191 Gif-Sur-Yvette Cedex, France
3 Physics and Materials Science Research Unit, University of Luxembourg, 41, rue du Brill, L-4422 Belvaux, Luxembourg
@article{CRPHYS_2015__16_2_182_0,
     author = {Mael Guennou and Michel Viret and Jens Kreisel},
     title = {Bismuth-based perovskites as multiferroics},
     journal = {Comptes Rendus. Physique},
     pages = {182--192},
     publisher = {Elsevier},
     volume = {16},
     number = {2},
     year = {2015},
     doi = {10.1016/j.crhy.2015.01.008},
     language = {en},
}
TY  - JOUR
AU  - Mael Guennou
AU  - Michel Viret
AU  - Jens Kreisel
TI  - Bismuth-based perovskites as multiferroics
JO  - Comptes Rendus. Physique
PY  - 2015
SP  - 182
EP  - 192
VL  - 16
IS  - 2
PB  - Elsevier
DO  - 10.1016/j.crhy.2015.01.008
LA  - en
ID  - CRPHYS_2015__16_2_182_0
ER  - 
%0 Journal Article
%A Mael Guennou
%A Michel Viret
%A Jens Kreisel
%T Bismuth-based perovskites as multiferroics
%J Comptes Rendus. Physique
%D 2015
%P 182-192
%V 16
%N 2
%I Elsevier
%R 10.1016/j.crhy.2015.01.008
%G en
%F CRPHYS_2015__16_2_182_0
Mael Guennou; Michel Viret; Jens Kreisel. Bismuth-based perovskites as multiferroics. Comptes Rendus. Physique, Volume 16 (2015) no. 2, pp. 182-192. doi : 10.1016/j.crhy.2015.01.008. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2015.01.008/

[1] D. Khomskii Physics, 2 (2009), p. 20

[2] G. Catalan; J.F. Scott Adv. Mater., 21 (2009), pp. 2463-2485

[3] D. Lebeugle; D. Colson; A. Forget; M. Viret; P. Bonville; J.F. Marucco; S. Fusil Phys. Rev. B, 76 (2007), p. 024116

[4] O. Diéguez; O.E. González-Vázquez; J.C. Wojdeł; J. Íñiguez Phys. Rev. B, 83 (2011), p. 094105

[5] J. Kreisel; P. Jadhav; O. Chaix-Pluchery; M. Varela; N. Dix; S. Sánchez; J. Fontcuberta J. Phys. Condens. Matter, 23 (2011), p. 342202

[6] W. Siemons; M.D. Biegalski; J.H. Nam; H.M. Christen Appl. Phys. Express, 4 (2011), p. 095801

[7] I.C. Infante; J. Juraszek; S. Fusil; B. Dupé; P. Gemeiner; O. Diéguez; F. Pailloux; S. Jouen; E. Jacquet; G. Geneste; J. Pacaud; J. Íñiguez; L. Bellaiche; A. Barthélémy; B. Dkhil; M. Bibes Phys. Rev. Lett., 107 (2011), p. 237601

[8] D. Sando; A. Barthélémy; M. Bibes J. Phys. Condens. Matter, 26 (2014), p. 473201

[9] M. Guennou; P. Bouvier; G.S. Chen; B. Dkhil; R. Haumont; G. Garbarino; J. Kreisel Phys. Rev. B, 84 (2011), p. 174107

[10] I.A. Kornev; S. Lisenkov; R. Haumont; B. Dkhil; L. Bellaiche Phys. Rev. Lett., 99 (2007), p. 227602

[11] D.C. Arnold; K.S. Knight; F.D. Morrison; P. Lightfoot Phys. Rev. Lett., 102 (2009), p. 027602

[12] D.C. Arnold; K.S. Knight; G. Catalan; S.A.T. Redfern; J.F. Scott; P. Lightfoot; F.D. Morrison Adv. Funct. Mater., 20 (2010), pp. 2116-2123

[13] T. Ishidate; S. Abe; H. Takahashi; N. Mori Phys. Rev. Lett., 78 (1997), p. 2397

[14] P.-E. Janolin; P. Bouvier; J. Kreisel; P.A. Thomas; I.A. Kornev; L. Bellaiche; W. Crichton; M. Hanfland; B. Dkhil Phys. Rev. Lett., 101 (2008), p. 237601

[15] M. Guennou; P. Bouvier; J. Kreisel; D. Machon Phys. Rev. B, 81 (2010), p. 054115

[16] M. Guennou; P. Bouvier; B. Krikler; J. Kreisel; R. Haumont; G. Garbarino Phys. Rev. B, 82 (2010), p. 134101

[17] M. Guennou; P. Bouvier; R. Haumont; G. Garbarino; J. Kreisel Phase Transit., 84 (2011), pp. 474-482

[18] S. Prosandeev; D. Wang; W. Ren; J. Íñiguez; L. Bellaiche Adv. Funct. Mater., 23 (2013), pp. 234-240

[19] A. Gavriliuk; V. Struzhkin; I. Lyubutin; M. Hu; H. Mao JETP Lett., 82 (2005), pp. 224-227

[20] A.G. Gavriliuk; V.V. Struzhkin; I.S. Lyubutin; I.A. Troyan JETP Lett., 86 (2007), pp. 197-201

[21] G.K. Rozenberg; M.P. Pasternak; W.M. Xu; L.S. Dubrovinsky; S. Carlson; R.D. Taylor Europhys. Lett., 71 (2005), p. 228

[22] I. Sosnowska; T.P. Neumaier; E. Steichele J. Phys. C, Solid State Phys., 15 (1982), p. 4835

[23] R. Przeniosło; M. Regulski; I. Sosnowska J. Phys. Soc. Jpn., 75 (2006), p. 084718

[24] D. Lebeugle; D. Colson; A. Forget; M. Viret; A.M. Bataille; A. Gukasov Phys. Rev. Lett., 100 (2008), p. 227602

[25] A.K. Agyei; J.L. Birman J. Phys. Condens. Matter, 2 (1990), p. 3007

[26] V. Laukhin; V. Skumryev; X. Martí; D. Hrabovsky; F. Sánchez; M.V. García-Cuenca; C. Ferrater; M. Varela; U. Lüders; J.F. Bobo; J. Fontcuberta Phys. Rev. Lett., 97 (2006), p. 227201

[27] L.C. Sampaio; A. Mougin; J. Ferré; P. Georges; A. Brun; H. Bernas; S. Poppe; T. Mewes; J. Fassbender; B. Hillebrands Europhys. Lett., 63 (2003), p. 819

[28] H. Béa; M. Gajek; M. Bibes; A. Barthélémy J. Phys. Condens. Matter, 20 (2008), p. 434221

[29] D. Sando; A. Agbelele; D. Rahmedov; J. Liu; P. Rovillain; C. Toulouse; I.C. Infante; A.P. Pyatakov; S. Fusil; E. Jacquet; C. Carrétéro; C. Deranlot; S. Lisenkov; D. Wang; J.-M. Le Breton; M. Cazayous; A. Sacuto; J. Juraszek; A.K. Zvezdin; L. Bellaiche; B. Dkhil; A. Barthélémy; M. Bibes Nat. Mater., 12 (2013), pp. 641-646

[30] H. Béa; M. Bibes; S. Petit; J. Kreisel; A. Barthélémy Philos. Mag. Lett., 87 (2007), pp. 165-174

[31] T. Zhao; A. Scholl; F. Zavaliche; K. Lee; M. Barry; A. Doran; M.P. Cruz; Y.H. Chu; C. Ederer; N.A. Spaldin; R.R. Das; D.M. Kim; S.H. Baek; C.B. Eom; R. Ramesh Nat. Mater., 5 (2006), pp. 823-829

[32] W.H. Meiklejohn; C.P. Bean Phys. Rev., 102 (1956), pp. 1413-1414

[33] W.H. Meiklejohn; C.P. Bean Phys. Rev., 105 (1957), pp. 904-913

[34] A. Berkowitz; K. Takano J. Magn. Magn. Mater., 200 (1999), pp. 552-570

[35] J. Nogués; I.K. Schuller J. Magn. Magn. Mater., 192 (1999), pp. 203-232

[36] R.L. Stamps J. Phys. D, Appl. Phys., 33 (2000), p. R247

[37] L.W. Martin; Y.-H. Chu; M.B. Holcomb; M. Huijben; P. Yu; S.-J. Han; D. Lee; S.X. Wang; R. Ramesh Nano Lett., 8 (2008), pp. 2050-2055

[38] H. Béa; M. Bibes; F. Ott; B. Dupé; X.-H. Zhu; S. Petit; S. Fusil; C. Deranlot; K. Bouzehouane; A. Barthélémy Phys. Rev. Lett., 100 (2008), p. 017204

[39] J. Dho; M.G. Blamire J. Appl. Phys., 106 (2009), p. 073914

[40] D. Lebeugle; A. Mougin; M. Viret; D. Colson; L. Ranno Phys. Rev. Lett., 103 (2009), p. 257601

[41] W.J. Antel; F. Perjeru; G.R. Harp Phys. Rev. Lett., 83 (1999), pp. 1439-1442

[42] H. Ohldag; T.J. Regan; J. Stöhr; A. Scholl; F. Nolting; J. Lüning; C. Stamm; S. Anders; R.L. White Phys. Rev. Lett., 87 (2001), p. 247201

[43] T.P.A. Hase; B.D. Fulthorpe; S.B. Wilkins; B.K. Tanner; C.H. Marrows; B.J. Hickey Appl. Phys. Lett., 79 (2001), pp. 985-987

[44] U. Nowak; A. Misra; K. Usadel J. Magn. Magn. Mater., 240 (2002), pp. 243-247

[45] D. Lebeugle; A. Mougin; M. Viret; D. Colson; J. Allibe; H. Béa; E. Jacquet; C. Deranlot; M. Bibes; A. Barthélémy Phys. Rev. B, 81 (2010), p. 134411

[46] M. Elzo, 2014 | DOI

[47] Y.-H. Chu; L.W. Martin; M.B. Holcomb; M. Gajek; S.-J. Han; Q. He; N. Balke; C.-H. Yang; D. Lee; W. Hu; Q. Zhan; P.-L. Yang; A. Fraile-Rodriguez; A. Scholl; S.X. Wang; R. Ramesh Nat. Mater., 7 (2008), pp. 478-482

[48] Y.-H. Chu; L.W. Martin; M.B. Holcomb; M. Gajek; S.-J. Han; Q. He; N. Balke; C.-H. Yang; D. Lee; W. Hu; Q. Zhan; P.-L. Yang; A. Fraile-Rodriguez; A. Scholl; S.X. Wang; R. Ramesh Nat. Mater., 7 (2008), p. 678

[49] J.T. Heron; D.G. Schlom; R. Ramesh Appl. Phys. Rev., 1 (2014), p. 021303

[50] J.T. Heron; M. Trassin; K. Ashraf; M. Gajek; Q. He; S.Y. Yang; D.E. Nikonov; Y.-H. Chu; S. Salahuddin; R. Ramesh Phys. Rev. Lett., 107 (2011), p. 217202

[51] A.A. Belik J. Solid State Chem., 195 (2012), pp. 32-40

[52] A.A. Belik; D.A. Rusakov; T. Furubayashi; E. Takayama-Muromachi Chem. Mater., 24 (2012), pp. 3056-3064

[53] J. Rödel; W. Jo; K.T.P. Seifert; E.-M. Anton; T. Granzow; D. Damjanovic J. Am. Ceram. Soc., 92 (2009), pp. 1153-1177

[54] M.E. Lines; A.M. Glass Principles and Applications of Ferroelectrics and Related Materials, Clarendon Press, Oxford, UK, 1977

[55] S. Teslic; T. Egami Acta Crystallogr. B, 54 (1998), pp. 750-765

[56] D.L. Corker; A.M. Glazer; W. Kaminsky; R.W. Whatmore; J. Dec; K. Roleder Acta Crystallogr. B, 54 (1998), pp. 18-28

[57] K. Oka; I. Yamada; M. Azuma; S. Takeshita; K.H. Satoh; A. Koda; R. Kadono; M. Takano; Y. Shimakawa Inorg. Chem., 47 (2008), pp. 7355-7359

[58] K. Oka; M. Azuma; S. Hirai; A.A. Belik; H. Kojitani; M. Akaogi; M. Takano; Y. Shimakawa Inorg. Chem., 48 (2009), pp. 2285-2288

[59] C.-J. Cheng; D. Kan; S.-H. Lim; W.R. McKenzie; P.R. Munroe; L.G. Salamanca-Riba; R.L. Withers; I. Takeuchi; V. Nagarajan Phys. Rev. B, 80 (2009), p. 014109

[60] I. Levin; M.G. Tucker; H. Wu; V. Provenzano; C.L. Dennis; S. Karimi; T. Comyn; T. Stevenson; R.I. Smith; I.M. Reaney Chem. Mater., 23 (2011), pp. 2166-2175

[61] K. Aizu J. Phys. Soc. Jpn., 28 (1970), pp. 706-716

[62] E.K.H. Salje Phase Transitions in Ferroelastic and Co-elastic Crystals, Cambridge University Press, Cambridge, UK, 1993

[63] D.S. Keeble; E.R. Barney; D.A. Keen; M.G. Tucker; J. Kreisel; P.A. Thomas Adv. Funct. Mater., 23 (2013), pp. 185-190

[64] A.A. Belik; S. Iikubo; K. Kodama; N. Igawa; S.-i. Shamoto; S. Niitaka; M. Azuma; Y. Shimakawa; M. Takano; F. Izumi; E. Takayama-Muromachi Chem. Mater., 18 (2006), pp. 798-803

[65] H. Béa; B. Dupé; S. Fusil; R. Mattana; E. Jacquet; B. Warot-Fonrose; F. Wilhelm; A. Rogalev; S. Petit; V. Cros; A. Anane; F. Petroff; K. Bouzehouane; G. Geneste; B. Dkhil; S. Lisenkov; I. Ponomareva; L. Bellaiche; M. Bibes; A. Barthélémy Phys. Rev. Lett., 102 (2009), p. 217603

[66] R.J. Zeches; M.D. Rossell; J.X. Zhang; A.J. Hatt; Q. He; C.-H. Yang; A. Kumar; C.H. Wang; A. Melville; C. Adamo; G. Sheng; Y.-H. Chu; J.F. Ihlefeld; R. Erni; C. Ederer; V. Gopalan; L.Q. Chen; D.G. Schlom; N.A. Spaldin; L.W. Martin; R. Ramesh Science, 326 (2009), pp. 977-980

[67] A.A. Belik; M. Azuma; T. Saito; Y. Shimakawa; M. Takano Chem. Mater., 17 (2005), pp. 269-273

[68] H. Yamada; V. Garcia; S. Fusil; S. Boyn; M. Marinova; A. Gloter; S. Xavier; J. Grollier; E. Jacquet; C. Carrétéro; C. Deranlot; M. Bibes; A. Barthélémy ACS Nano, 7 (2013), pp. 5385-5390

[69] J.X. Zhang; Q. He; M. Trassin; W. Luo; D. Yi; M.D. Rossell; P. Yu; L. You; C.H. Wang; C.Y. Kuo; J.T. Heron; Z. Hu; R.J. Zeches; H.J. Lin; A. Tanaka; C.T. Chen; L.H. Tjeng; Y.-H. Chu; R. Ramesh Phys. Rev. Lett., 107 (2011), p. 147602

[70] K. Oka; T. Koyama; T. Ozaaki; S. Mori; Y. Shimakawa; M. Azuma Angew. Chem., Int. Ed. Engl., 51 (2012), pp. 7977-7980

[71] K. Wang; J.-M. Liu; Z. Ren Adv. Phys., 58 (2009), pp. 321-448

[72] D. Khomskii J. Magn. Magn. Mater., 306 (2006), pp. 1-8

[73] A.J. Hatt; N.A. Spaldin Eur. Phys. J. B, 71 (2009), pp. 435-437

[74] J.Y. Son; Y.-H. Shin Appl. Phys. Lett., 93 (2008), p. 062902

[75] H. Jeen; G. Singh-Bhalla; P.R. Mickel; K. Voigt; C. Morien; S. Tongay; A.F. Hebard; A. Biswas J. Appl. Phys., 109 (2011), p. 074104

[76] G.M. De Luca; D. Preziosi; F. Chiarella; R. Di Capua; S. Gariglio; S. Lettieri; M. Salluzzo Appl. Phys. Lett., 103 (2013), p. 062902

[77] M. Gajek; M. Bibes; S. Fusil; K. Bouzehouane; J. Fontcuberta; A. Barthélémy; A. Fert Nat. Mater., 6 (2007), pp. 296-302

[78] M.-H. Jung; I. Yang; Y. Jeong J. Korean Phys. Soc., 63 (2013), pp. 624-626

[79] M. Guennou; P. Bouvier; P. Toulemonde; C. Darie; C. Goujon; P. Bordet; M. Hanfland; J. Kreisel Phys. Rev. Lett., 112 (2014), p. 075501

[80] J. Blasco; J. García; J. Campo; M.C. Sánchez; G. Subías Phys. Rev. B, 66 (2002), p. 174431

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Multiferroic RMnO3 thin films

Josep Fontcuberta

C. R. Phys (2015)


Novel magneto-electric multiferroics from first-principles calculations

Julien Varignon; Nicholas C. Bristowe; Éric Bousquet; ...

C. R. Phys (2015)


Mechanisms and origin of multiferroicity

Paolo Barone; Silvia Picozzi

C. R. Phys (2015)