Comptes Rendus
Dune morphodynamics
[Morphodynamique des dunes]
Comptes Rendus. Physique, Volume 16 (2015) no. 1, pp. 118-138.

La physique des dunes repose sur l'interaction entre le vent et une topographie érodable. Quand le vent souffle au-dessus d'une surface de sable, des dunes se forment dès lors que des grains sont transportés. Ces dunes offrent un paysage qui ressemble à une mer mouvementée et les déserts sableux sont appelés des mers de sable. Cependant, l'analogie entre dunes et vagues s'arrête là. Contrairement aux vagues, les dunes ne se propagent que sous l'action du vent, et si le vent s'arrête de souffler, elle ne disparaissent pas, mais persistent. Ces tas de sable ne sont pas seulement le fruit des vents présents, mais peuvent intégrer l'histoire des vents sur de longues périodes. Cette propriété explique la richesse des formes et des échelles observées, et fait des dunes des témoins des vents passés. Ainsi, on utilise leur forme et surtout leur orientation pour contraindre les modèles climatiques des corps célestes comme Titan, Mars ou Vénus, où elles sont observées. Dans cet article, nous expliquons la forme, la taille et l'orientation des dunes en passant en revue la littérature récente et en nous attachant à identifier et à expliquer les mécanismes physiques mis en jeu.

The physics of dunes relies on the interaction between a wind flow and an erodible topography. Thus, if strong enough to transport grains, the wind shapes sandy areas into dune fields. These dunes are reminiscent of a wavy sea so that sandy deserts are called sand seas. However, the comparison stops there. Contrary to water waves, dunes propagate only under wind action and when the wind stops, they do not vanish but stand. Consequently, dunes are not only the result of the present winds, but can integrate the wind regimes over long periods. Thus, they exhibit a range of shapes and sizes with superimposed patterns. They are witnesses of past wind regimes and their shape and orientation are used to constraint climatic models on other planetary bodies where they are observed as well (e.g., Mars, Titan and Venus). Here, we discuss the morphodynamics of dunes and endeavor to identify and to explain the physical mechanisms at play in the selection of their shape, size and orientation, whilst focusing on Earth desert sand dunes.

Publié le :
DOI : 10.1016/j.crhy.2015.02.002
Keywords: Dune, Geomorphology, Desert, Barchan, Sand transport, Collective motion
Mot clés : Dune, Géomorphologie, Désert, Barchane, Transport de sable, Mouvements collectifs
Sylvain Courrech du Pont 1

1 Laboratoire “Matière et systèmes complexes”, Sorbonne Paris Cité, Université Paris-Diderot, CNRS UMR 7057, 10, rue Alice-Domon-et-Léonie-Duquet, 75205 Paris cedex 13, France
@article{CRPHYS_2015__16_1_118_0,
     author = {Sylvain Courrech du Pont},
     title = {Dune morphodynamics},
     journal = {Comptes Rendus. Physique},
     pages = {118--138},
     publisher = {Elsevier},
     volume = {16},
     number = {1},
     year = {2015},
     doi = {10.1016/j.crhy.2015.02.002},
     language = {en},
}
TY  - JOUR
AU  - Sylvain Courrech du Pont
TI  - Dune morphodynamics
JO  - Comptes Rendus. Physique
PY  - 2015
SP  - 118
EP  - 138
VL  - 16
IS  - 1
PB  - Elsevier
DO  - 10.1016/j.crhy.2015.02.002
LA  - en
ID  - CRPHYS_2015__16_1_118_0
ER  - 
%0 Journal Article
%A Sylvain Courrech du Pont
%T Dune morphodynamics
%J Comptes Rendus. Physique
%D 2015
%P 118-138
%V 16
%N 1
%I Elsevier
%R 10.1016/j.crhy.2015.02.002
%G en
%F CRPHYS_2015__16_1_118_0
Sylvain Courrech du Pont. Dune morphodynamics. Comptes Rendus. Physique, Volume 16 (2015) no. 1, pp. 118-138. doi : 10.1016/j.crhy.2015.02.002. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2015.02.002/

[1] R.A. Bagnold The Physics of Blown Sand and Desert Dunes, Chapman and Hall, London, 1941

[2] R.A. Bagnold Libyan Sands: Travel in a Dead World, Hodder and Stoughton, London, 1935

[3] E. Guyon; J.P. Hulin; L. Petit Hydrodynamique Physique, EDP Sciences, 2001

[4] W. Gong; A. Ibbestson A wind tunnel study of turbulent flow over model hills, Bound.-Layer Meteorol., Volume 49 (1989), pp. 113-148

[5] J.D. Iversen; R. Greeley; J. Marshall; J. Pollack Aeolian saltation threshold: the effect of density ratio, Sedimentology, Volume 34 (1987), pp. 699-706 | DOI

[6] O. Durán; P. Claudin; B. Andreotti On aeolian transport: grain-scale interactions, dynamical mechanisms and scaling laws, Aeolian Res., Volume 3 (2011), pp. 243-270 | DOI

[7] J. Kok; E. Parteli; T. Michaels; D. Bou Karam The physics of wind-blown sand and dust, Rep. Prog. Phys., Volume 75 (2012), p. 106901 | DOI

[8] J. Ungar; P. Haff Steady state saltation in air, Sedimentology, Volume 34 (1987), pp. 289-299 | DOI

[9] P. Gondret; L. Lance; M. Petit Bouncing motion of spherical particles in fluids, Phys. Fluids, Volume 14 (2002), pp. 643-656

[10] M. Creyssels; P. Dupont; A. Ould el Moctar; A. Valance; I. Cantat; J. Jenkins; J. Pasini; K. Rasmussen Saltating particles in a turbulent boundary layer: experiment and theory, J. Fluid Mech., Volume 625 (2009), pp. 47-74 | DOI

[11] Z. Dong; P. Lv; Z. Zhang; G. Qian; W. Luo Aeolian transport in the field: a comparison of the effects of different surface treatments, J. Geophys. Res., Volume 117 (2012), p. D09210 | DOI

[12] K. Rasmussen; M. Sorensen Vertical variation of particle speed and flux density in aeolian saltation: measurement and modeling, J. Geophys. Res., Volume 113 (2008), p. F02S12 | DOI

[13] P. Owen Saltation of uniform grains in air, J. Fluid Mech., Volume 20 (1964), pp. 225-242 | DOI

[14] M. Sørensen On the rate of aeolian sand transport, Geomorphology, Volume 59 (2004), pp. 53-62 | DOI

[15] T. Ho; A. Valance; P. Dupont; A. Ould El Moctar Scaling laws in aeolian sand transport, Phys. Rev. Lett., Volume 106 (2011), p. 094501

[16] O. Durán; P. Claudin; B. Andreotti Numerical simulation of turbulent sediment transport, from bed load to saltation, Phys. Fluids, Volume 24 (2012), p. 103306 | DOI

[17] K. Lettau; H. Lettau Experimental and micro-meteorological field studies of dune migration (K. Lettau; H. Lettau, eds.), Exploring the World's Driest Climate, University of Wisconsin Press, Madison, 1978, pp. 110-147

[18] G. Sauermann; K. Kray; H. Herrmann Continuum saltation model for sand dunes, Phys. Rev. E, Volume 64 (2001), p. 031305 | DOI

[19] P. Hersen; S. Douady; B. Andreotti Relevant length scale for barchan dunes, Phys. Rev. Lett., Volume 89 (2002) no. 26, p. 264301

[20] T. Pahtz; J. Kok; E. Parteli; H. Herrmann Flux saturation length of sediment transport, Phys. Rev. Lett., Volume 111 (2013), p. 218002 | DOI

[21] B. Andreotti; P. Claudin; O. Pouliquen Measurements of the aeolian sand transport saturation length, Geomorphology, Volume 123 (2010), pp. 343-348 | DOI

[22] P. Claudin; G. Wiggs; B. Andreotti Field evidence for the upwind velocity shift at the crest of low dunes, Bound.-Layer Meteorol., Volume 148 (2013), pp. 195-206

[23] S. Coleman; B. Melville Bed-form development, J. Hydraul. Eng., Volume 120 (1994) no. 4, p. 5108

[24] P. Hersen Morphogenesis and dynamics of barchan dunes, 2004 https://tel.archives-ouvertes.fr/tel-00008602 (PhD thesis)

[25] V. Langlois; A. Valance Initiation and evolution of current ripples on a flat sand bed under turbulent water flow, Eur. Phys. J. E, Volume 22 (2005), pp. 201-208

[26] C. Narteau; D. Zhang; O. Rozier; P. Claudin Setting the length and time scales of a cellular automaton dune model from the analysis of superimposed bed forms, J. Geophys. Res., Earth Surf., Volume 114 (2009), p. F3 | DOI

[27] L. Ping; C. Narteau; Z. Dong; Z. Zhang; S. Courrech du Pont Emergence of oblique dunes in a landscape-scale experiment, Nat. Geosci., Volume 7 (2014), pp. 99-103 | DOI

[28] G. Wiggs; I. Livingstone; A. Warren The role of streamline curvature in sand dune dynamics: evidence from field and wind tunnel measurements, Geomorphology, Volume 17 (1996), pp. 29-46

[29] J. Finnigan; M. Rauchpach; E. Bradley; G. Aldis A wind tunnel study of turbulent flow over a two-dimensional ridge, Bound.-Layer Meteorol., Volume 50 (1990), pp. 277-317

[30] P. Taylor; P. Mason; E.F. Bradley Boundary-layer flow over low hills (a review), Bound.-Layer Meteorol., Volume 39 (1987), pp. 107-132

[31] A. Fourrière River morphodynamics: width selection, ripples and dunes, 2009 https://pastel.archives-ouvertes.fr/pastel-00005562v1 (PhD thesis)

[32] F. Charru; B. Andreotti; P. Claudin Sand ripples and dunes, Annu. Rev. Fluid Mech., Volume 45 (2013), pp. 469-493

[33] P. Jackson; J. Hunt Turbulent wind flow over a low hill, Q. J. R. Meteorol. Soc., Volume 101 (1975), pp. 929-955 | DOI

[34] K. Kroy; G. Sauermann; H. Herrmann Minimal model for aeolian sand dunes, Phys. Rev. E, Volume 66 (2002) no. 3, p. 031302

[35] A. Fourrière; P. Claudin; B. Andreotti Bedforms in a turbulent stream: formation of ripples by primary linear instability and of dunes by non linear pattern coarsening, J. Fluid Mech., Volume 649 (2010), pp. 287-328 | DOI

[36] S. Arens; H. Van Kaam-Peters; J. Van Boxel Air flow over foredunes and implications for sand transport, Earth Surf. Process. Landf., Volume 20 (1995), pp. 315-332

[37] I. Walker; W. Nickling Simulation and measurement of surface shear stress over isolated and closely spaced transverse dunes in a wind tunnel, Earth Surf. Process. Landf., Volume 28 (2003), pp. 1111-1124 | DOI

[38] I. Walker; P. Hesp; R. Davidson-Arnott; B. Bauer; S. Namikas; J. Ollerhead Response of three-dimensional flow to variations in the angle of incident wind and profile form of dunes: Greenwich dunes, Prince Edward Island, Canada, Geomorphology, Volume 105 (2009), pp. 127-138

[39] B. Andreotti; P. Claudin; S. Douady Selection of dune shapes and velocities. Part 2: a two-dimensional modeling, Eur. Phys. J. B, Volume 28 (2002), pp. 341-352 | DOI

[40] H. Elbelrhiti; P. Claudin; B. Andreotti Field evidence for surface-wave-induced instability of sand dunes, Nature, Volume 437 (2005), pp. 720-723 | DOI

[41] O. Dauchot; F. Lechénault; C. Gasquet; F. Daviaud Barchan dunes in the lab, C. R. Mecanique, Volume 330 (2002), pp. 185-191

[42] F. Charru Selection of the ripple length on a granular bed sheared by a liquid flow, Phys. Fluids, Volume 18 (2006), p. 121508

[43] K. Pye; H. Tsoar Aeolian Sand and Sand Dunes, Unwin Hyman, London, 1990

[44] R. Cooke; A. Warren; A. Goudie Desert Geomorphology, UCL press, 1993

[45] I. Walker; W. Nickling Dynamics of secondary airflow and sediment transport over and in the lee of transverse dunes, Prog. Phys. Geogr., Volume 26 (2002), pp. 47-75 | DOI

[46] P. Hesp; K. Hastings Width, height and slope relationships and aerodynamics maintenance of barchans, Geomorphology, Volume 22 (1998), pp. 193-204

[47] B. Andreotti; P. Claudin; S. Douady Selection of dune shapes and velocities. Part 1: dynamics of sand, wind and barchans, Eur. Phys. J. B, Volume 28 (2002), pp. 321-339 | DOI

[48] D. Zhang; X. Yang; O. Rozier; C. Narteau Mean sediment residence time in barchan dunes, J. Geophys. Res. Earth Surf., Volume 119 (2014) no. 3, pp. 451-463 | DOI

[49] O. Durán; E. Parteli; H. Herrmann A continuous model for sand dunes: review, new developments and application to barchan dunes and barchan dune fields, Earth Surf. Process. Landf., Volume 35 (2010), pp. 1591-1600 | DOI

[50] X. Gao; D. Zhang; O. Rozier; C. Narteau Transport capacity and saturation mechanism in a real-space cellular automaton dune model, Adv. Geosci., Volume 37 (2014), pp. 47-55 | DOI

[51] P. Hersen; K.H. Andersen; H. Elbelrhiti; B. Andreotti; P. Claudin; S. Douady Corridors of barchan dunes: stability and size selection, Phys. Rev. E, Volume 69 (2004), p. 011304 | DOI

[52] B. Andreotti; A. Fourrière; F. Ould-Kaddour; B. Murray; P. Claudin Giant aeolian dune size determined by the average depth of the atmospheric boundary layer, Nature, Volume 457 (2009), pp. 1120-1123 | DOI

[53] E. Parteli; V. Swāmmle; H. Herrmann; L. Monteiro; L. Maia Profile measurement and simulation of transverse dune field in the Lençóis Maranhenses, Geomorphology, Volume 81 (2006), pp. 29-42

[54] O. Rozier; C. Narteau A real space cellular automaton laboratory, Earth Surf. Process. Landf., Volume 39 (2014), pp. 98-109

[55] C. Groh; A. Wierschem; N. Aksel; I. Rehberg; C. Kruelle Barchan dunes in two dimensions: experimental tests for minimal models, Phys. Rev. E, Volume 78 (2008), p. 021304

[56] D. Zhang; C. Narteau; O. Rozier Morphodynamics of barchan and transverse dunes using a cellular automaton model, J. Geophys. Res., Volume 115 (2010) no. F03, p. 41

[57] M. Baddock; I. Livingstone; G. Wiggs The geomorphological significance of airflow patterns in transverse dune interdunes, Geomorphology, Volume 87 (2007), pp. 332-336

[58] D. Dee et al. The era-interim reanalysis: configuration and performance of the data assimilation system, Q. J. R. Meteorol. Soc., Volume 137 (2001), pp. 553-597 | DOI

[59] N. Lancaster The development of large aeolian bedforms, Sediment. Geol., Volume 55 (1988), pp. 69-89

[60] S. Courrech du Pont; C. Narteau; X. Gao Two modes for dune orientation, Geology, Volume 42 (2014), pp. 743-746 | DOI

[61] S. Coleman Wave generation and development on a sandy river bed – discussion, Issues and Directions in Hydraulics, Proc. of Iowa Hydraulics Colloquium, 1996, pp. 145-155

[62] K. Koaukou; P.-Y. Lagrée Stability of an erodible bed in various shear flows, Eur. Phys. J. B, Volume 47 (2005), pp. 115-125

[63] X. Gao Development, stability and orientation of dune fields, 2014 (PhD thesis)

[64] A. Valance Nonlinear sand bedform dynamics in a viscous flow, Phys. Rev. E, Volume 83 (2011), p. 036304

[65] D. Parsons; I. Walker; G. Wiggs Numerical modelling of flow structures over idealized transverse aeolian dunes of varying geometry, Geomorphology, Volume 59 (2004) no. 1, pp. 149-164

[66] D. Jerolmack; D. Mohrig Interactions between bed forms: topography, turbulence and transport, J. Geophys. Res., Earth Surf., Volume 110 (2005) no. F2

[67] E. Reffet; S. Courrech du Pont; P. Hersen; S. Douady Formation and stability of transverse and longitudinal sand dunes, Geology, Volume 39 (2010) no. 6, pp. 491-494 | DOI

[68] E. Parteli; J. Andrade; H. Herrmann Transverse instability of dunes, Phys. Rev. Lett., Volume 107 (2011), p. 188001 | DOI

[69] L. Guignier; H. Niiya; H. Nishimori; D. Lague; A. Valance Sand dunes as migrating strings, Phys. Rev. E, Volume 87 (2013), p. 052206 | DOI

[70] D.M. Rubin; R.E. Hunter Bedform alignment in directionally varying flows, Science, Volume 237 (1987), pp. 276-278 | DOI

[71] D.M. Rubin; H. Ikeda Flume experiments on the alignment of transverse, oblique, and longitudinal dunes in directionally varying flows, Sedimentology, Volume 37 (1990), pp. 673-684

[72] E. Parteli; O. Durán; H. Tsoar; V. Schwämmle; H. Herrmann Dune formation under bimodal winds, Proc. Natl. Acad. Sci. USA, Volume 1106 (2009) no. 52, pp. 22085-22089 | DOI

[73] D. Rubin A unifying model for planform straightness of ripples and dunes in air and water, Earth-Sci. Rev., Volume 113 (2012), pp. 176-185 | DOI

[74] H. Tsoar Dynamic processes acting on a longitudinal (seif) sand dune, Sedimentology, Volume 30 (1983) no. 4, pp. 567-578 | DOI

[75] I. Livingstone New models for the formation of linear sand dunes, Geography, Volume 73 (1988), pp. 105-115

[76] M. Telfer; P. Hesse Palaeoenvironmental reconstructions from linear dune fields: recent progress, current challenges and future directions, Quat. Sci. Rev., Volume 78 (2013), pp. 1-21

[77] N. Lancaster Linear dunes, Prog. Phys. Geogr., Volume 6 (1982), pp. 475-504

[78] H. Tsoar The formation of seif dunes from barchans – a discussion, Z. Geomorphol., Volume 28 (1984), pp. 99-103

[79] M. Bourke; N. Lancaster; L. Fenton; E. Parteli; J. Zimbelman; J. Radebaugh Extraterrestrial dunes: an introduction to the special issue on planetary dune systems, Geomorphology, Volume 121 (2010), pp. 1-14 | DOI

[80] K. Taniguchi; N. Endo; H. Sekiguchi The effect of periodic changes in wind direction on the deformation and morphology of isolated sand dunes based on flume experiments and field data from the Western Sahara, Geomorphology, Volume 179 (2012), pp. 286-299 | DOI

[81] E. Parteli; O. Durán; M. Bourke; H. Tsoar; T. Pöschel; H. Herrmann Origins of barchan dune asymmetry: insights from numerical simulations, Aeolian Res., Volume 12 (2014), pp. 121-133

[82] C. Breed; M. Grolier; J. McCauley Morphology and distribution of common ‘sand’ dunes on Mars: comparison with the Earth, J. Geophys. Res., Solid Earth, Volume 84 (1979) no. B14, pp. 8183-8204 | DOI

[83] N. Lancaster Star dunes, Prog. Phys. Geogr., Volume 13 (1989), pp. 67-91

[84] D. Zhang; C. Narteau; O. Rozier; S. Courrech du Pont Morphology and dynamics of star dunes from numerical modelling, Nat. Geosci., Volume 5 (2012), pp. 463-467 | DOI

[85] S. Worman; A. Brad Murray; R. Littlewood; B. Andreotti; P. Claudin Modeling emergent large-scale structures of barchan dune fields, Geology, Volume 41 (2013), pp. 1059-1062 | DOI

[86] M. Génois Dynamiques d'un système non conservatif: Cas d'un modèle de champ de barkhanes, 2013 https://tel.archives-ouvertes.fr/ (PhD thesis)

[87] H. Elbelrhiti; B. Andreotti; P. Claudin Barchan dune corridors: field characterization and investigation of control parameter, J. Geophys. Res., Volume 113 (2008), p. F02S15 | DOI

[88] N. Endo; K. Taniguchi; A. Katsuki Observation of the whole process of interaction between barchans by flume experiments, Geophys. Res. Lett., Volume 31 (2004), p. L12503

[89] P. Hersen; S. Douady Collision of barchan dunes as a mechanism of size regulation, Geophys. Res. Lett., Volume 32 (2005), p. L21403

[90] O. Durán; V. Schwämmle; P.G. Lind The dune size distribution and scaling relations of barchan dune fields, Granul. Matter, Volume 11 (2009) no. 1, pp. 7-11 | DOI

[91] P. Vermeesch Solitary wave behavior in sand dunes observed from space, Geophys. Res. Lett., Volume 38 (2011) no. L22 | DOI

[92] M. Génois; S. Courrech du Pont; P. Hersen; G. Grégoire An agent-based model of dune interactions produces the emergence of patterns in deserts, Geophys. Res. Lett., Volume 40 (2013), pp. 1-6 | DOI

[93] A. Lima; H. Sauermann; H. Herrmann; K. Kroy Modelling a dune field, Phys. A, Stat. Mech. Appl., Volume 310 (2002), pp. 487-500

[94] M. Génois; P. Hersen; S. Courrech du Pont; G. Grégoire Spatial structuring and size selection as collective behaviours in an agent-based model for barchan fields, Eur. Phys. J. B, Volume 86 (2013), p. 447

[95] N. Lancaster; G. Kocurek; A. Singhvi; V. Pandey; M. Deynoux; J.-F. Ghienne; K. Lô Late Pleistocene and Holocene dune activity and wind regimes in the Western Sahara desert of Mauritania, Geology, Volume 30 (2002) no. 11, pp. 991-994

[96] R. Lorenz et al. The sand seas of Titan: Cassini radar observations of longitudinal dunes, Science, Volume 312 (2006) no. 5774, pp. 724-727

[97] P. Claudin; B. Andreotti A scaling law for aeolian dunes on Mars, Venus, Earth, and for subaqueous ripples, Earth Planet. Sci. Lett., Volume 252 (2006), pp. 30-44

[98] E. Parteli; O. Durán; H. Herrmann Minimal size of a barchan dune, Phys. Rev. E, Volume 75 (2007), p. 011301

[99] B. Andreotti; P. Claudin Comment on “Minimal size of a barchan dune”, Phys. Rev. E, Volume 76 (2007), p. 063301

[100] R. Lorenz; P. Claudin; B. Andreotti; J. Radebaugh; T. Tokano A 3 km atmospheric boundary layer on Titan indicated by dune spacing and Huygens data, Icarus, Volume 205 (2010) no. 2, pp. 719-721 | DOI

[101] D. Rubin; P. Hesp Multiple origins of linear dunes on Earth and Titan, Nat. Geosci., Volume 2 (2009), pp. 653-659

[102] J. Radebaugh; R. Lorenz; T. Farr; P. Paillou; C. Savage; C. Spencer Linear dunes on Titan and Earth: initial remote sensing comparisons, Geomorphology, Volume 121 (2010) no. 1–2, pp. 122-132 | DOI

[103] R. Ewing; A. Peyret; G. Kocurek; M. Bourke Dune field pattern formation and recent transporting winds in the Olympia Undae Dune Field, north polar region of Mars, J. Geophys. Res., Volume 115 (2010), pp. 1-25

[104] T. Tokano Relevance of fast westerlies at equinox for the eastward elongation of Titan's dunes, Aeolian Res., Volume 2 (2010), pp. 113-127

[105] L. Fenton; T. Michaels; R. Beyer Inverse maximum gross bedform-normal transport 1: how to determine a dune-constructing wind regime using only imagery, J. Geophys. Res., Volume 117 (2012), p. F03035 | DOI

[106] N. Bridges; P. Geissler; S. Sivestro; M. Banks Bedform migration on Mars: current results and future plans, Aeolian Res., Volume 9 (2013), pp. 133-151 | DOI

[107] A. Lucas et al. Growth mechanisms and dune orientation on Titan, Geophys. Res. Lett., Volume 41 (2014) no. 17, pp. 6093-6100 | DOI

[108] B. Werner Eolian dunes: computer simulations and attractor interpretation, Geology, Volume 23 (1995), pp. 1107-1110

[109] G. Kocurek; R. Ewing Aeolian dune-field self-organization – implications for the formation of simple versus complex dune-field patterns, Geomorphology, Volume 72 (2005), pp. 94-105

[110] E. Eastwood; J. Nield; A. Baas; G. Kocurek Modelling controls on aeolian dune-field pattern evolution, Sedimentology, Volume 58 (2011), pp. 1391-1406 | DOI

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Evolution and shapes of dunes

Hans J. Herrmann

C. R. Phys (2002)


“Barchan” dunes in the lab

Olivier Dauchot; Frédéric Lechénault; Cécile Gasquet; ...

C. R. Méca (2002)


Effet dispersif de la loi d'Exner menant à l'équation de Benjamin–Ono : ondulations d'un sol meuble

Pierre-Yves Lagrée; Kouamé Kan Jacques Kouakou; Émile Danho

C. R. Méca (2003)