Comptes Rendus
The imprint of inflation on the cosmic microwave background
[Découvrir l'inflation dans le fond fossile micro-onde]
Comptes Rendus. Physique, Volume 16 (2015) no. 10, pp. 948-959.

Le fond fossile micro-onde est l'ensemble de données cosmologiques les plus précises et les plus simples à interpréter. Ceci en fait notre fenêtre la plus directe sur la physique de l'univers primordial. Dans cet article, je présente une introduction à la physique du fond fossile micro-onde et je démontre comment les fluctuations primordiales de l'inflation se manifestent dans les anisotropies de la température et dans la polarisation du fond fossile. Je discute les principales observables qui présentent des indices importants vers une attribution des fluctuations initiales à une phase inflationnaire.

The cosmic microwave background is the most precise and the most simple cosmological dataset. This makes it our most prominent window to the physics of the very early Universe. In this article I give an introduction to the physics of the cosmic microwave background and show in some detail how primordial fluctuations from inflation are imprinted in the temperature anisotropy and polarisation spectrum of the CMB. I discuss the main signatures that are suggesting an inflationary phase for the generation of initial fluctuations.

Publié le :
DOI : 10.1016/j.crhy.2015.07.006
Mots clés : Cosmology, Inflation, Cosmic microwave background
Ruth Durrer 1

1 Université de Genève, Département de physique théorique, 24, quai Ernest-Ansermet, CH-1213 Genève, Switzerland
@article{CRPHYS_2015__16_10_948_0,
     author = {Ruth Durrer},
     title = {The imprint of inflation on the cosmic microwave background},
     journal = {Comptes Rendus. Physique},
     pages = {948--959},
     publisher = {Elsevier},
     volume = {16},
     number = {10},
     year = {2015},
     doi = {10.1016/j.crhy.2015.07.006},
     language = {en},
}
TY  - JOUR
AU  - Ruth Durrer
TI  - The imprint of inflation on the cosmic microwave background
JO  - Comptes Rendus. Physique
PY  - 2015
SP  - 948
EP  - 959
VL  - 16
IS  - 10
PB  - Elsevier
DO  - 10.1016/j.crhy.2015.07.006
LA  - en
ID  - CRPHYS_2015__16_10_948_0
ER  - 
%0 Journal Article
%A Ruth Durrer
%T The imprint of inflation on the cosmic microwave background
%J Comptes Rendus. Physique
%D 2015
%P 948-959
%V 16
%N 10
%I Elsevier
%R 10.1016/j.crhy.2015.07.006
%G en
%F CRPHYS_2015__16_10_948_0
Ruth Durrer. The imprint of inflation on the cosmic microwave background. Comptes Rendus. Physique, Volume 16 (2015) no. 10, pp. 948-959. doi : 10.1016/j.crhy.2015.07.006. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2015.07.006/

[1] A.H. Guth The inflationary universe: a possible solution to the horizon and flatness problems, Phys. Rev. D, Volume 23 (1981), p. 347

[2] A. Starobinsky Spectrum of relict gravitational radiation and the early state of the universe, JETP Lett., Volume 30 (1979), pp. 682-685

[3] V.F. Mukhanov; G.V. Chibisov Quantum fluctuation and nonsingular universe, JETP Lett., Volume 33 (1981), p. 532 (in Russian)

[4] V.F. Mukhanov; G.V. Chibisov The vacuum energy and large scale structure of the universe, JETP Lett., Volume 56 (1982), p. 258

[5] G.F. Smoot et al. Structure in the COBE differential microwave radiometer first-year maps, Astrophys. J., Volume 396 (1992), p. L1-L4

[6] R. Durrer The Cosmic Microwave Background, Cambridge University Press, 2008

[7] M. Sasaki Gauge invariant scalar perturbations in the new inflationary universe, Prog. Theor. Phys., Volume 70 (1983), p. 394

[8] V. Mukhanov Physical Foundations of Cosmology, Cambridge University Press, 2005

[9] J. Maldacena Non-Gaussian features of primordial fluctuations in single field inflationary models, J. High Energy Phys., Volume 0305 (2003)

[10] R. Durrer Gauge invariant cosmological perturbation theory with seeds, Phys. Rev. D, Volume 42 (1990), p. 2533

[11] R. Sachs; A. Wolfe Perturbations of a cosmological model and angular variations of the microwave background, Astrophys. J., Volume 147 (1967), p. 73

[12] C. Kiefer; D. Polarski; A. Starobinsky Quantum to classical transition for fluctuations in the early universe, Int. J. Mod. Phys. D, Volume 7 (1998), p. 455 | arXiv

[13] M. Abramowitz; I. Stegun Handbook of Mathematical Functions, Dover Publications, New York, 1972

[14] R. Durrer; M. Kunz; A. Melchiorri Cosmicstructure formation with topological defects, Phys. Rep., Volume 364 (2002) no. 1

[15] J. Silk Cosmic black-body radiation and galaxy formation, Astrophys. J., Volume 151 (1968), p. 459

[16] J.D. Jackson Classical Electrodynamics, Wiley and Sons, New York, 1962

[17] M. Zaldarriaga; U. Seljak An all-sky analysis of polarization in the microwave background, Phys. Rev. D, Volume 55 (1997), pp. 1830-1840

[18] M. Kamionkowski; M. Kosowsky; A. Stebbins Statistics of the cosmic microwave background polarisation, Phys. Rev. Lett., Volume 78 (1997), pp. 2058-2061

[19] U. Seljak; M. Zaldarriaga A line of sight integration approach to cosmic microwave background anisotropies, Astrophys. J., Volume 469 (1997), p. 437

[20] A. Lewis; A. Challinor; A. Lasenby Efficient computation of CMB anisotropies in closed FRW models, Astrophys. J., Volume 538 (2000), p. 473

[21] D. Blas; J. Lesgourgues; T. Tram The Cosmic Linear Anisotropy Solving System (CLASS) II: Approximation schemes, J. Cosmol. Astropart. Phys., Volume 1107 (2011) | arXiv

[22] A. Penzias; R. Wilson A measurement of excess antenna temperature at 4080-Mc/s, Astrophys. J., Volume 142 (1965), pp. 419-421

[23] Planck Collaboration Planck 2015 results. XIII. Cosmological parameters, 2015 | arXiv

[24] M. Zaldarriaga; D. Spergel CMB polarization as a direct test of inflation, Phys. Rev. Lett., Volume 79 (1997), pp. 2180-2183

[25] S. Scodeller; M. Kunz; R. Durrer CMB anisotropies from acausal scaling seeds, Phys. Rev. D, Volume 79 (2009)

[26] Planck Collaboration Planck 2015 results. XVII. Constraints on primordial non-Gaussianity, 2015 | arXiv

[27] A. Lewis; S. Bridle Cosmological parameters from CMB and other data: a Monte Carlo approach, Phys. Rev. D, Volume 66 (2002)

[28] A. Lewis; A. Challinor Weak gravitational lensing of the CMB, Phys. Rep., Volume 429 (2006) no. 1

[29] Planck Collaboration Planck 2015 results. XV. Gravitational lensing, 2015 | arXiv

[30] P.A.R. Ade; et al.; Polarbear Collaboration A measurement of the cosmic microwave background B-mode polarization power spectrum at sub-degree scales with POLARBEAR, Astrophys. J. (2015) | arXiv

[31] P.A.R. Ade; et al.; Planck Collaborations A joint analysis of BICEP2/Keck array and Planck data, 2015 (BICEP2/Keck) | arXiv

[32] M. Lilley; P. Peter Bouncing alternatives to inflation, 2015 | arXiv

[33] A. Melchiorri; F. Vernizzi; R. Durrer; G. Veneziano Cosmic microwave background anisotropies and extra dimensions in string cosmology, Phys. Rev. Lett., Volume 83 (1999), pp. 4464-4467 | arXiv

[34] F. Vernizzi; A. Melchiorri; R. Durrer CMB anisotropies from pre-big bang cosmology, Phys. Rev. D, Volume 63 (2001) | arXiv

[35] K. Enqvist; M. Sloth Adiabatic CMB perturbations in pre-big bang string cosmology, Nucl. Phys. B, Volume 626 (2002), pp. 395-409 | arXiv

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

The inflationary paradigm: predictions for CMB

Renaud Parentani

C. R. Phys (2003)


Primordial non-Gaussianities after Planck 2015: An introductory review

Sébastien Renaux-Petel

C. R. Phys (2015)


Inflation in the standard cosmological model

Jean-Philippe Uzan

C. R. Phys (2015)