The cosmic microwave background is the most precise and the most simple cosmological dataset. This makes it our most prominent window to the physics of the very early Universe. In this article I give an introduction to the physics of the cosmic microwave background and show in some detail how primordial fluctuations from inflation are imprinted in the temperature anisotropy and polarisation spectrum of the CMB. I discuss the main signatures that are suggesting an inflationary phase for the generation of initial fluctuations.
Le fond fossile micro-onde est l'ensemble de données cosmologiques les plus précises et les plus simples à interpréter. Ceci en fait notre fenêtre la plus directe sur la physique de l'univers primordial. Dans cet article, je présente une introduction à la physique du fond fossile micro-onde et je démontre comment les fluctuations primordiales de l'inflation se manifestent dans les anisotropies de la température et dans la polarisation du fond fossile. Je discute les principales observables qui présentent des indices importants vers une attribution des fluctuations initiales à une phase inflationnaire.
Ruth Durrer 1
@article{CRPHYS_2015__16_10_948_0, author = {Ruth Durrer}, title = {The imprint of inflation on the cosmic microwave background}, journal = {Comptes Rendus. Physique}, pages = {948--959}, publisher = {Elsevier}, volume = {16}, number = {10}, year = {2015}, doi = {10.1016/j.crhy.2015.07.006}, language = {en}, }
Ruth Durrer. The imprint of inflation on the cosmic microwave background. Comptes Rendus. Physique, Cosmic inflation / Inflation cosmique, Volume 16 (2015) no. 10, pp. 948-959. doi : 10.1016/j.crhy.2015.07.006. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2015.07.006/
[1] The inflationary universe: a possible solution to the horizon and flatness problems, Phys. Rev. D, Volume 23 (1981), p. 347
[2] Spectrum of relict gravitational radiation and the early state of the universe, JETP Lett., Volume 30 (1979), pp. 682-685
[3] Quantum fluctuation and nonsingular universe, JETP Lett., Volume 33 (1981), p. 532 (in Russian)
[4] The vacuum energy and large scale structure of the universe, JETP Lett., Volume 56 (1982), p. 258
[5] et al. Structure in the COBE differential microwave radiometer first-year maps, Astrophys. J., Volume 396 (1992), p. L1-L4
[6] The Cosmic Microwave Background, Cambridge University Press, 2008
[7] Gauge invariant scalar perturbations in the new inflationary universe, Prog. Theor. Phys., Volume 70 (1983), p. 394
[8] Physical Foundations of Cosmology, Cambridge University Press, 2005
[9] Non-Gaussian features of primordial fluctuations in single field inflationary models, J. High Energy Phys., Volume 0305 (2003)
[10] Gauge invariant cosmological perturbation theory with seeds, Phys. Rev. D, Volume 42 (1990), p. 2533
[11] Perturbations of a cosmological model and angular variations of the microwave background, Astrophys. J., Volume 147 (1967), p. 73
[12] Quantum to classical transition for fluctuations in the early universe, Int. J. Mod. Phys. D, Volume 7 (1998), p. 455 | arXiv
[13] Handbook of Mathematical Functions, Dover Publications, New York, 1972
[14] Cosmicstructure formation with topological defects, Phys. Rep., Volume 364 (2002) no. 1
[15] Cosmic black-body radiation and galaxy formation, Astrophys. J., Volume 151 (1968), p. 459
[16] Classical Electrodynamics, Wiley and Sons, New York, 1962
[17] An all-sky analysis of polarization in the microwave background, Phys. Rev. D, Volume 55 (1997), pp. 1830-1840
[18] Statistics of the cosmic microwave background polarisation, Phys. Rev. Lett., Volume 78 (1997), pp. 2058-2061
[19] A line of sight integration approach to cosmic microwave background anisotropies, Astrophys. J., Volume 469 (1997), p. 437
[20] Efficient computation of CMB anisotropies in closed FRW models, Astrophys. J., Volume 538 (2000), p. 473
[21] The Cosmic Linear Anisotropy Solving System (CLASS) II: Approximation schemes, J. Cosmol. Astropart. Phys., Volume 1107 (2011) | arXiv
[22] A measurement of excess antenna temperature at 4080-Mc/s, Astrophys. J., Volume 142 (1965), pp. 419-421
[23] Planck 2015 results. XIII. Cosmological parameters, 2015 | arXiv
[24] CMB polarization as a direct test of inflation, Phys. Rev. Lett., Volume 79 (1997), pp. 2180-2183
[25] CMB anisotropies from acausal scaling seeds, Phys. Rev. D, Volume 79 (2009)
[26] Planck 2015 results. XVII. Constraints on primordial non-Gaussianity, 2015 | arXiv
[27] Cosmological parameters from CMB and other data: a Monte Carlo approach, Phys. Rev. D, Volume 66 (2002)
[28] Weak gravitational lensing of the CMB, Phys. Rep., Volume 429 (2006) no. 1
[29] Planck 2015 results. XV. Gravitational lensing, 2015 | arXiv
[30] A measurement of the cosmic microwave background B-mode polarization power spectrum at sub-degree scales with POLARBEAR, Astrophys. J. (2015) | arXiv
[31] A joint analysis of BICEP2/Keck array and Planck data, 2015 (BICEP2/Keck) | arXiv
[32] Bouncing alternatives to inflation, 2015 | arXiv
[33] Cosmic microwave background anisotropies and extra dimensions in string cosmology, Phys. Rev. Lett., Volume 83 (1999), pp. 4464-4467 | arXiv
[34] CMB anisotropies from pre-big bang cosmology, Phys. Rev. D, Volume 63 (2001) | arXiv
[35] Adiabatic CMB perturbations in pre-big bang string cosmology, Nucl. Phys. B, Volume 626 (2002), pp. 395-409 | arXiv
Cited by Sources:
Comments - Policy