Deviations from Gaussian statistics of the cosmological density fluctuations, so-called primordial non-Gaussianities (NG), are one of the most informative fingerprints of the origin of structures in the universe. Indeed, they can probe physics at energy scales inaccessible to laboratory experiments, and are sensitive to the interactions of the field(s) that generated the primordial fluctuations, contrary to the Gaussian linear theory. As a result, they can discriminate between inflationary models that are otherwise almost indistinguishable. In this short review, we explain how to compute the non-Gaussian properties in any inflationary scenario. We review the theoretical predictions of several important classes of models. We then describe the ways NG can be probed observationally, and we highlight the recent constraints from the Planck mission, as well as their implications. We finally identify well motivated theoretical targets for future experiments and discuss observational prospects.
Les déviations à la gaussianité des fluctuations cosmologiques de densité, ou non-gaussianités primordiales, nous fournissent des indices précieux quant à l'origine des grandes structures de l'univers. Elles permettent en effet de sonder la physique à des échelles d'énergie inaccessibles en laboratoire, et sont sensibles aux interactions du (ou des) champ(s) à l'origine des fluctuations primordiales, contrairement à la théorie linéaire gaussienne. Elles nous permettent ainsi de différencier des modèles autrement presque indistinguables. Dans cette courte revue, nous expliquons comment calculer les propriétés non gaussiennes des fluctuations générées pendant tout scénario d'inflation. Nous passons en revue les différentes prédictions théoriques de plusieurs grandes classes de modèles. Nous décrivons ensuite la façon dont les non-gaussianités peuvent être contraintes observationnellement et nous soulignons les contraintes récentes apportées par la mission Planck, ainsi que leurs implications. Nous discutons enfin les perspectives observationnelles en identifiant des objectifs réalistes et motivés théoriquement.
Sébastien Renaux-Petel 1, 2
@article{CRPHYS_2015__16_10_969_0, author = {S\'ebastien Renaux-Petel}, title = {Primordial {non-Gaussianities} after {\protect\emph{Planck} 2015}: {An} introductory review}, journal = {Comptes Rendus. Physique}, pages = {969--985}, publisher = {Elsevier}, volume = {16}, number = {10}, year = {2015}, doi = {10.1016/j.crhy.2015.08.003}, language = {en}, }
Sébastien Renaux-Petel. Primordial non-Gaussianities after Planck 2015: An introductory review. Comptes Rendus. Physique, Cosmic inflation / Inflation cosmique, Volume 16 (2015) no. 10, pp. 969-985. doi : 10.1016/j.crhy.2015.08.003. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2015.08.003/
[1] arXiv
|[2] Adv. Astron., 2010 (2010), p. 980523 | arXiv
[3] Class. Quantum Gravity, 27 (2010), p. 124001 | arXiv
[4] Adv. Astron., 2010 (2010), p. 638979 | arXiv
[5] Adv. Astron., 2010 (2010), p. 724525 | arXiv
[6] Class. Quantum Gravity, 27 (2010), p. 124010 | arXiv
[7] Class. Quantum Gravity, 27 (2010), p. 124002 | arXiv
[8] Adv. Astron., 2010 (2010), p. 565248 | arXiv
[9] Adv. Astron., 2010 (2010), p. 908640 | arXiv
[10] Adv. Astron., 2010 (2010), p. 156180 | arXiv
[11] Commun. Theor. Phys., 62 (2014), p. 109 | arXiv
[12] Prog. Theor. Exp. Phys., 2014 (2014)
[13] Class. Quantum Gravity, 13 (1996), p. 377 | arXiv
[14] arXiv
|[15] Astrophys. J., 430 (1994), p. 447 | arXiv
[16] Nucl. Phys. B, 667 (2003), p. 119 | arXiv
[17] J. High Energy Phys., 0305 (2003) | arXiv
[18] J. Cosmol. Astropart. Phys., 0408 (2004) | arXiv
[19] Gauge invariant cosmological perturbations, Phys. Rev. D, Volume 22 (1980), pp. 1882-1905
[20] Phys. Rep., 475 (2009), p. 1 | arXiv
[21] Phys. Rep., 215 (1992), p. 203
[22] Cosmology, Oxford Univ. Pr., Oxford, UK, 2008
[23] Proc. R. Soc. Lond. A, 360 (1978), p. 117
[24] Phys. Rev. D, 33 (1986), pp. 444-454
[25] Phys. Rev. D, 35 (1987), p. 495
[26] Phys. Rev. D, 72 (2005) | arXiv
[27] J. Cosmol. Astropart. Phys., 1004 (2010) | arXiv
[28] An Introduction to Quantum Field Theory, Addison–Wesley, Reading, USA, 1995 (842 p)
[29] The Quantum Theory of Fields, vol. 1: Foundations, Univ. P., Cambridge, UK, 1995 (609 p)
[30] Prog. Theor. Phys., 95 (1996), p. 71 | arXiv
[31] Prog. Theor. Phys., 99 (1998), p. 763 | arXiv
[32] J. Cosmol. Astropart. Phys., 0505 (2005) | arXiv
[33] Phys. Rev. Lett., 95 (2005) | arXiv
[34] J. Cosmol. Astropart. Phys., 1310 (2013) | arXiv
[35] Phys. Rev. D, 62 (2000) | arXiv
[36] J. Cosmol. Astropart. Phys., 0510 (2005) | arXiv
[37] J. Cosmol. Astropart. Phys., 0601 (2006) | arXiv
[38] Phys. Rev. D, 74 (2006) | arXiv
[39] Phys. Rev. D, 70 (2004) | arXiv
[40] J. Cosmol. Astropart. Phys., 0701 (2007) | arXiv
[41] Phys. Rev. Lett., 101 (2008) | arXiv
[42] Phys. Rev. D, 78 (2008) | arXiv
[43] Phys. Lett. B, 458 (1999), p. 209 | arXiv
[44] Phys. Lett. B, 458 (1999), p. 219 | arXiv
[45] Phys. Rev. D, 70 (2004) | arXiv
[46] Gen. Relativ. Gravit., 40 (2008), p. 1997 | arXiv
[47] J. Cosmol. Astropart. Phys., 0506 (2005) | arXiv
[48] J. Cosmol. Astropart. Phys., 0605 (2006) | arXiv
[49] J. Cosmol. Astropart. Phys., 1202 (2012) | arXiv
[50] J. Cosmol. Astropart. Phys., 1001 (2010) | arXiv
[51] J. Cosmol. Astropart. Phys., 0404 (2004) | arXiv
[52] J. Cosmol. Astropart. Phys., 1101 (2011) | arXiv
[53] Class. Quantum Gravity, 28 (2011), p. 182001 (Erratum) | arXiv
[54] J. Cosmol. Astropart. Phys., 1111 (2011) | arXiv
[55] J. Cosmol. Astropart. Phys., 1112 (2011) | arXiv
[56] J. Cosmol. Astropart. Phys., 1303 (2013) | arXiv
[57] J. Cosmol. Astropart. Phys., 1410 (2014) no. 10 | arXiv
[58] J. Cosmol. Astropart. Phys., 0410 (2004) | arXiv
[59] Europhys. Lett., 102 (2013), p. 59001 | arXiv
[60] arXiv
|[61] J. Cosmol. Astropart. Phys., 1207 (2012) | arXiv
[62] J. Cosmol. Astropart. Phys., 1208 (2012) | arXiv
[63] J. Cosmol. Astropart. Phys., 1208 (2012) | arXiv
[64] J. Cosmol. Astropart. Phys., 1211 (2012) | arXiv
[65] Phys. Rev. D, 87 (2013) no. 10 | arXiv
[66] J. Cosmol. Astropart. Phys., 1401 (2014) | arXiv
[67] J. Cosmol. Astropart. Phys., 1402 (2014) | arXiv
[68] J. High Energy Phys., 1402 (2014), p. 124 | arXiv
[69] Class. Quantum Gravity, 19 (2002), p. 613 | arXiv
[70] J. Cosmol. Astropart. Phys., 0509 (2005) | arXiv
[71] J. Cosmol. Astropart. Phys., 0804 (2008) | arXiv
[72] Density fluctuations in Brans–Dicke inflation (K. Nakao et al., eds.), Proc. 4th Workshop on General Relativity and Gravitation, Kyoto University, 1995, pp. 381-390
[73] Phys. Rev. D, 63 (2001) | arXiv
[74] Phys. Rev. Lett., 95 (2005) | arXiv
[75] J. Cosmol. Astropart. Phys., 0702 (2007) | arXiv
[76] Phys. Rev. D, 80 (2009) | arXiv
[77] Phys. Rev. D, 65 (2002) | arXiv
[78] Phys. Rev. D, 66 (2002) | arXiv
[79] Phys. Rev. D, 67 (2003) | arXiv
[80] Phys. Rev. D, 73 (2006) | arXiv
[81] Phys. Rev. D, 73 (2006) | arXiv
[82] J. Cosmol. Astropart. Phys., 0605 (2006) | arXiv
[83] J. Cosmol. Astropart. Phys., 0901 (2009) | arXiv
[84] Phys. Rev. D, 69 (2004) | arXiv
[85] arXiv
|[86] Phys. Rev. D, 69 (2004) | arXiv
[87] Phys. Rev. D, 70 (2004) | arXiv
[88] Phys. Rev. D, 56 (1997), p. 535 | arXiv
[89] Nucl. Phys. B, 626 (2002), p. 395 | arXiv
[90] Phys. Lett. B, 524 (2002), p. 5 | arXiv
[91] Phys. Lett. B, 522 (2001), p. 215 (Erratum) | arXiv
[92] Phys. Rev. D, 67 (2003) | arXiv
[93] Phys. Rev. D, 63 (2001) | arXiv
[94] Astrophys. J., 430 (1994), pp. 447-457
[95] Mon. Not. R. Astron. Soc., 313 (2000) | arXiv
[96] Phys. Rev. D, 77 (2008) | arXiv
[97] Phys. Rev. D, 63 (2001) | arXiv
[98] Phys. Rev. D, 66 (2002) | arXiv
[99] eConf C, 041213 (2004) | arXiv
[100] J. Cosmol. Astropart. Phys., 0805 (2008) | arXiv
[101] J. Cosmol. Astropart. Phys., 0905 (2009) | arXiv
[102] J. Cosmol. Astropart. Phys., 1006 (2010) | arXiv
[103] J. Cosmol. Astropart. Phys., 1006 (2010) | arXiv
[104] J. Cosmol. Astropart. Phys., 0804 (2008) | arXiv
[105] J. Cosmol. Astropart. Phys., 1012 (2010) | arXiv
[106] J. Cosmol. Astropart. Phys., 0706 (2007) | arXiv
[107] J. Cosmol. Astropart. Phys., 1101 (2011) | arXiv
[108] Phys. Rev. D, 85 (2012) | arXiv
[109] Phys. Rev. D, 87 (2013) no. 12 | arXiv
[110] Phys. Rev. D, 81 (2010) | arXiv
[111] Phys. Rev. D, 85 (2012) | arXiv
[112] J. Cosmol. Astropart. Phys., 1210 (2012) | arXiv
[113] J. Cosmol. Astropart. Phys., 0908 (2009) | arXiv
[114] Phys. Rev. D, 80 (2009) | arXiv
[115] J. Cosmol. Astropart. Phys., 1101 (2011) | arXiv
[116] J. Cosmol. Astropart. Phys., 1009 (2010) | arXiv
[117] J. High Energy Phys., 1204 (2012) | arXiv
[118] J. Cosmol. Astropart. Phys., 1308 (2013) | arXiv
[119] J. Cosmol. Astropart. Phys., 1307 (2013) | arXiv
[120] J. Cosmol. Astropart. Phys., 0910 (2009) | arXiv
[121] Phys. Rev. D, 85 (2012) | arXiv
[122] Phys. Rev. D, 87 (2013) no. 2 | arXiv
[123] J. Cosmol. Astropart. Phys., 1305 (2013) | arXiv
[124] Phys. Rev. Lett., 106 (2011) | arXiv
[125] J. Cosmol. Astropart. Phys., 1104 (2011) | arXiv
[126] Phys. Rev. D, 85 (2012) | arXiv
[127] J. Cosmol. Astropart. Phys., 1302 (2013) | arXiv
[128] Phys. Rev. D, 87 (2013) no. 10 | arXiv
[129] Class. Quantum Gravity, 28 (2011), p. 222001 | arXiv
[130] J. Cosmol. Astropart. Phys., 1207 (2012) | arXiv
[131] Astron. Astrophys., 571 (2014) | arXiv
[132] arXiv
|[133] et al. | arXiv
[134] Astrophys. J., 634 (2005), p. 14 | arXiv
[135] Phys. Rev. D, 82 (2010) | arXiv
[136] J. Cosmol. Astropart. Phys., 1212 (2012) | arXiv
[137] Mon. Not. R. Astron. Soc., 407 (2010), p. 2193 | arXiv
[138] Mon. Not. R. Astron. Soc., 429 (2013), p. 2104 | arXiv
[139] Phys. Rev. D, 77 (2008) | arXiv
[140] Phys. Rev. Lett., 113 (2014) no. 22 | arXiv
[141] J. High Energy Phys., 0803 (2008) | arXiv
[142] J. High Energy Phys., 0612 (2006) | arXiv
[143] J. Cosmol. Astropart. Phys., 1109 (2011) | arXiv
[144] J. Cosmol. Astropart. Phys., 1401 (2014) no. 01 | arXiv
[145] J. Cosmol. Astropart. Phys., 1501 (2015) no. 01 | arXiv
[146] J. Cosmol. Astropart. Phys., 1306 (2013) | arXiv
[147] et al. | arXiv
[148] arXiv
|Cited by Sources:
Comments - Policy