Deciphering the mechanisms at play in the formation and evolution of the large-scale structure of the universe is part of the scientific goals of many projects of observational cosmology. In particular, large-scale structure observations can be used to infer mode-coupling effects, whether they come from the physics of the early universe or from its late time evolution. Specificities of such couplings are presented, noting that in principle they can be directly detected through bispectra of the cosmic microwave background temperature anisotropies or density in the local universe. The existence of such couplings have however more far-reaching consequences for the growth of the structure. Those are sketched as well as their possible observational impacts.
La compréhension fine des mécanismes en jeu au cours de la formation des structures à grande échelle de l'univers est l'un des objectifs scientifiques communs à de nombreux projets de cosmologie observationnelle. Les observations des grandes structures permettent de révéler les effets des couplages de modes, qu'ils soient associés à des processus physiques dans l'univers primordial ou à l'évolution plus tardive de ces structures. Les propriétés de ces couplages sont décrites, en soulignant qu'en principe ils peuvent être directement détectés grâce au bispectre des anisotropies de température du fond diffus cosmologique ou du champ de densité dans l'univers local. L'existence de tels couplages a toutefois des conséquences plus profondes pour la croissance des structures. Celles-ci sont esquissées, ainsi que leurs possibles implications observationnelles.
Mots-clés : Cosmologie, Gravitation, Structure à grande échelle, Couplages non linéaires
Francis Bernardeau 1, 2
@article{CRPHYS_2015__16_10_986_0, author = {Francis Bernardeau}, title = {Non-linear couplings, from the early to the late time universe}, journal = {Comptes Rendus. Physique}, pages = {986--993}, publisher = {Elsevier}, volume = {16}, number = {10}, year = {2015}, doi = {10.1016/j.crhy.2015.08.004}, language = {en}, }
Francis Bernardeau. Non-linear couplings, from the early to the late time universe. Comptes Rendus. Physique, Cosmic inflation / Inflation cosmique, Volume 16 (2015) no. 10, pp. 986-993. doi : 10.1016/j.crhy.2015.08.004. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2015.08.004/
[1] et al. Planck 2013 results. XVI. Cosmological parameters, Astron. Astrophys., Volume 571 (2014) | arXiv
[2] The Large-Scale Structure of the Universe, Princeton University Press, Princeton, NJ, 1980
[3] Cosmological Inflation and Large-Scale Structure, Cambridge University Press, Cambridge, UK, 2000
[4] Modern Cosmology, Academic Press, 2003
[5] Cosmologie primordiale, Belin, Paris, 2005
[6] Cosmologie, des fondements théoriques aux observations, Éditions du CNRS et EDP Sciences, Paris, 2007
[7] The Cosmic Microwave Background, Cambridge University Press, Cambridge, UK, 2008
[8] Scaling solution for cosmological sigma models at large N, Phys. Rev. Lett., Volume 66 ( June 1991 ), pp. 3093-3096
[9] Statistics of microwave fluctuations induced by topological defects, Phys. Rev., Volume 48 (1993), pp. 1530-1538 | arXiv
[10] Cosmic structure formation and microwave anisotropies from global field ordering, Phys. Rev. D, Volume 49 ( Jan. 1994 ), pp. 692-729
[11] Cosmic Microwave Background non-Gaussian signatures from analytical texture models, Phys. Rev. D, Volume 54 (1996), pp. 4750-4756 | arXiv
[12] Non-Gaussian features of primordial fluctuations in single field inflationary models, J. High Energy Phys., Volume 5 (2003), p. 13 | arXiv
[13] The effective field theory of inflation, J. High Energy Phys., Volume 3 (2008) | arXiv
[14] DBI in the sky: non-Gaussianity from inflation with a speed limit, Phys. Rev. D, Volume 70 (2004) | arXiv
[15] Non-Gaussian isocurvature perturbations from inflation, Phys. Rev. D, Volume 56 (1997), p. 535 | arXiv
[16] Generating the curvature perturbation without an inflaton, Phys. Lett. B, Volume 524 (2002), pp. 5-14 | arXiv
[17] Non-Gaussianity in multifield inflation, Phys. Rev. D, Volume 66 (2002) | arXiv
[18] Inflationary models inducing non-Gaussian metric fluctuations, Phys. Rev. D, Volume 67 (2003) | arXiv
[19] Non-Gaussianity from inflation: theory and observations, Phys. Rep., Volume 402 (2004), pp. 103-266 | arXiv
[20] Large-scale energy-density perturbations and inflation, Phys. Rev. D, Volume 31 ( Apr. 1985 ), pp. 1792-1798
[21] High order correlation functions for a self-interacting scalar field in de Sitter space, Phys. Rev. D, Volume 69 (2004) | arXiv
[22] Quantum contributions to cosmological correlations, Phys. Rev. D, Volume 72 (2005) | arXiv
[23] Cosmic microwave background bispectrum on small angular scales, Phys. Rev. D, Volume 78 (2008) | arXiv
[24] Covariant cosmic microwave background anisotropies II: nonlinear dynamics, Phys. Rev. D, Volume 59 (1999) | arXiv
[25] Cosmic microwave background anisotropies at second order: I, J. Cosmol. Astropart. Phys., Volume 6 (2006), p. 24 | arXiv
[26] CMB anisotropies at second-order II: analytical approach, J. Cosmol. Astropart. Phys., Volume 1 (2007), p. 19 | arXiv
[27] Gauge invariant Boltzmann equation and the fluid limit, Class. Quantum Gravity, Volume 24 (2007), pp. 6127-6158 | arXiv
[28] The radiative transfer for polarized radiation at second order in cosmological perturbations, Gen. Relativ. Gravit., Volume 41 (2009), pp. 2587-2595 | arXiv
[29] Large-scale structure of the Universe and cosmological perturbation theory, Phys. Rep., Volume 367 (2002), pp. 1-3
[30] Three-point correlation functions of SDSS galaxies: luminosity and color dependence in redshift and projected space, Astrophys. J., Volume 726 (2011), p. 13 | arXiv
[31] The bispectrum of IRAS redshift catalogs, Astrophys. J., Volume 546 (2001), pp. 652-664
[32] Statistical analysis of galaxy surveys – II. The three-point galaxy correlation function measured from the 2dFGRS, Mon. Not. R. Astron. Soc., Volume 364 (2005), pp. 620-634 | arXiv
[33] Three-point correlation functions of SDSS galaxies: constraining galaxy-mass bias, Astrophys. J., Volume 739 (2011), p. 85 | arXiv
[34] Full cosmic microwave background temperature bispectrum from single-field inflation, Phys. Rev. D, Volume 89 (2014)
[35] Boltzmann hierarchy for the cosmic microwave background at second order including photon polarization, Phys. Rev. D, Volume 82 (2010) | arXiv
[36] Sachs–Wolfe at second order: the CMB bispectrum on large angular scales, J. Cosmol. Astropart. Phys., Volume 8 (2009), p. 29 | arXiv
[37] Crinkles in the last scattering surface: non-Gaussianity from inhomogeneous recombination, Phys. Rev. D, Volume 79 (2009) | arXiv
[38] CMB anisotropies at second order III: bispectrum from products of the first-order perturbations, J. Cosmol. Astropart. Phys., Volume 5 (2009), p. 14 | arXiv
[39] The radiative transfer at second order: a full treatment of the Boltzmann equation with polarization, Class. Quantum Gravity, Volume 26 (2009) | arXiv
[40] The cosmic microwave background bispectrum from the non-linear evolution of the cosmological perturbations, J. Cosmol. Astropart. Phys., Volume 7 (2010), p. 3 | arXiv
[41] Cosmological perturbations at second order and recombination perturbed, J. Cosmol. Astropart. Phys., Volume 8 (2009), p. 31 | arXiv
[42] Optimal constraint on from CMB, J. Cosmol. Astropart. Phys., Volume 9 (2013), p. 2 | arXiv
[43] et al. Planck 2013 results. XXIV. Constraints on primordial non-Gaussianity, Astron. Astrophys., Volume 571 (2014) | arXiv
[44] Direct and fast calculation of regularized cosmological power spectrum at two-loop order, Phys. Rev. D, Volume 86 (2012) | arXiv
[45] Renormalized cosmological perturbation theory, Phys. Rev. D, Volume 73 (2006) | arXiv
[46] Imprints of primordial non-Gaussianities on large-scale structure: scale-dependent bias and abundance of virialized objects, Phys. Rev. D, Volume 77 (2008) | arXiv
[47] Constraints on local primordial non-Gaussianity from large-scale structure, J. Cosmol. Astropart. Phys., Volume 8 (2008), p. 31 | arXiv
[48] Power spectrum tomography with weak lensing, Astrophys. J. Lett., Volume 522 (1999), p. L21-L24 | arXiv
[49] 3D weak lensing, Mon. Not. R. Astron. Soc., Volume 343 (2003), pp. 1327-1334 | arXiv
[50] Nulling tomography with weak gravitational lensing, Phys. Rev. D, Volume 72 (2005) | arXiv
[51] The removal of shear-ellipticity correlations from the cosmic shear signal via nulling techniques, Astron. Astrophys., Volume 488 (2008), pp. 829-843 | arXiv
[52] Cosmic shear full nulling: sorting out dynamics, geometry and systematics, Mon. Not. R. Astron. Soc., Volume 445 (2014), pp. 1526-1537 | arXiv
[53] Biasing and hierarchical statistics in large-scale structure, Astrophys. J., Volume 413 (1993), pp. 447-452 | arXiv
[54] Biased tracers and time evolution | arXiv
[55] Gravity and large-scale non-local bias, 2012 (arXiv e-prints) | arXiv
Cited by Sources:
Comments - Policy