Comptes Rendus
Non-linear couplings, from the early to the late time universe
[Couplages non linéaires, de l'univers primordial à l'univers récent]
Comptes Rendus. Physique, Volume 16 (2015) no. 10, pp. 986-993.

La compréhension fine des mécanismes en jeu au cours de la formation des structures à grande échelle de l'univers est l'un des objectifs scientifiques communs à de nombreux projets de cosmologie observationnelle. Les observations des grandes structures permettent de révéler les effets des couplages de modes, qu'ils soient associés à des processus physiques dans l'univers primordial ou à l'évolution plus tardive de ces structures. Les propriétés de ces couplages sont décrites, en soulignant qu'en principe ils peuvent être directement détectés grâce au bispectre des anisotropies de température du fond diffus cosmologique ou du champ de densité dans l'univers local. L'existence de tels couplages a toutefois des conséquences plus profondes pour la croissance des structures. Celles-ci sont esquissées, ainsi que leurs possibles implications observationnelles.

Deciphering the mechanisms at play in the formation and evolution of the large-scale structure of the universe is part of the scientific goals of many projects of observational cosmology. In particular, large-scale structure observations can be used to infer mode-coupling effects, whether they come from the physics of the early universe or from its late time evolution. Specificities of such couplings are presented, noting that in principle they can be directly detected through bispectra of the cosmic microwave background temperature anisotropies or density in the local universe. The existence of such couplings have however more far-reaching consequences for the growth of the structure. Those are sketched as well as their possible observational impacts.

Publié le :
DOI : 10.1016/j.crhy.2015.08.004
Keywords: Cosmology, Gravitation, Large-scale structure, Non-linear couplings
Mot clés : Cosmologie, Gravitation, Structure à grande échelle, Couplages non linéaires
Francis Bernardeau 1, 2

1 CEA & CNRS, UMR 3681, Institut de physique théorique, 91191 Gif-sur-Yvette, France
2 Sorbonne Universités, UPMC Université Paris-6 & CNRS, UMR 7095, Institut d'astrophysique de Paris, 98 bis bd Arago, 75014 Paris, France
@article{CRPHYS_2015__16_10_986_0,
     author = {Francis Bernardeau},
     title = {Non-linear couplings, from the early to the late time universe},
     journal = {Comptes Rendus. Physique},
     pages = {986--993},
     publisher = {Elsevier},
     volume = {16},
     number = {10},
     year = {2015},
     doi = {10.1016/j.crhy.2015.08.004},
     language = {en},
}
TY  - JOUR
AU  - Francis Bernardeau
TI  - Non-linear couplings, from the early to the late time universe
JO  - Comptes Rendus. Physique
PY  - 2015
SP  - 986
EP  - 993
VL  - 16
IS  - 10
PB  - Elsevier
DO  - 10.1016/j.crhy.2015.08.004
LA  - en
ID  - CRPHYS_2015__16_10_986_0
ER  - 
%0 Journal Article
%A Francis Bernardeau
%T Non-linear couplings, from the early to the late time universe
%J Comptes Rendus. Physique
%D 2015
%P 986-993
%V 16
%N 10
%I Elsevier
%R 10.1016/j.crhy.2015.08.004
%G en
%F CRPHYS_2015__16_10_986_0
Francis Bernardeau. Non-linear couplings, from the early to the late time universe. Comptes Rendus. Physique, Volume 16 (2015) no. 10, pp. 986-993. doi : 10.1016/j.crhy.2015.08.004. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2015.08.004/

[1] Planck Collaboration; P.A.R. Ade; N. Aghanim; C. Armitage-Caplan; M. Arnaud; M. Ashdown; F. Atrio-Barandela; J. Aumont; C. Baccigalupi; A.J. Banday et al. Planck 2013 results. XVI. Cosmological parameters, Astron. Astrophys., Volume 571 (2014) | arXiv

[2] P.J.E. Peebles The Large-Scale Structure of the Universe, Princeton University Press, Princeton, NJ, 1980

[3] A.R. Liddle; D.H. Lyth Cosmological Inflation and Large-Scale Structure, Cambridge University Press, Cambridge, UK, 2000

[4] S. Dodelson Modern Cosmology, Academic Press, 2003

[5] J.-P. Uzan; P. Peter Cosmologie primordiale, Belin, Paris, 2005

[6] F. Bernardeau Cosmologie, des fondements théoriques aux observations, Éditions du CNRS et EDP Sciences, Paris, 2007

[7] R. Durrer The Cosmic Microwave Background, Cambridge University Press, Cambridge, UK, 2008

[8] N. Turok; D.N. Spergel Scaling solution for cosmological sigma models at large N, Phys. Rev. Lett., Volume 66 ( June 1991 ), pp. 3093-3096

[9] L. Perivolaropoulos Statistics of microwave fluctuations induced by topological defects, Phys. Rev., Volume 48 (1993), pp. 1530-1538 | arXiv

[10] U.-L. Pen; D.N. Spergel; N. Turok Cosmic structure formation and microwave anisotropies from global field ordering, Phys. Rev. D, Volume 49 ( Jan. 1994 ), pp. 692-729

[11] A. Gangui; S. Mollerach Cosmic Microwave Background non-Gaussian signatures from analytical texture models, Phys. Rev. D, Volume 54 (1996), pp. 4750-4756 | arXiv

[12] J. Maldacena Non-Gaussian features of primordial fluctuations in single field inflationary models, J. High Energy Phys., Volume 5 (2003), p. 13 | arXiv

[13] C. Cheung; A.L. Fitzpatrick; J. Kaplan; L. Senatore; P. Creminelli The effective field theory of inflation, J. High Energy Phys., Volume 3 (2008) | arXiv

[14] M. Alishahiha; E. Silverstein; D. Tong DBI in the sky: non-Gaussianity from inflation with a speed limit, Phys. Rev. D, Volume 70 (2004) | arXiv

[15] A. Linde; V. Mukhanov Non-Gaussian isocurvature perturbations from inflation, Phys. Rev. D, Volume 56 (1997), p. 535 | arXiv

[16] D.H. Lyth; D. Wands Generating the curvature perturbation without an inflaton, Phys. Lett. B, Volume 524 (2002), pp. 5-14 | arXiv

[17] F. Bernardeau; J.-P. Uzan Non-Gaussianity in multifield inflation, Phys. Rev. D, Volume 66 (2002) | arXiv

[18] F. Bernardeau; J.-P. Uzan Inflationary models inducing non-Gaussian metric fluctuations, Phys. Rev. D, Volume 67 (2003) | arXiv

[19] N. Bartolo; E. Komatsu; S. Matarrese; A. Riotto Non-Gaussianity from inflation: theory and observations, Phys. Rep., Volume 402 (2004), pp. 103-266 | arXiv

[20] D.H. Lyth Large-scale energy-density perturbations and inflation, Phys. Rev. D, Volume 31 ( Apr. 1985 ), pp. 1792-1798

[21] F. Bernardeau; T. Brunier; J.-P. Uzan High order correlation functions for a self-interacting scalar field in de Sitter space, Phys. Rev. D, Volume 69 (2004) | arXiv

[22] S. Weinberg Quantum contributions to cosmological correlations, Phys. Rev. D, Volume 72 (2005) | arXiv

[23] C. Pitrou; J.-P. Uzan; F. Bernardeau Cosmic microwave background bispectrum on small angular scales, Phys. Rev. D, Volume 78 (2008) | arXiv

[24] R. Maartens; T. Gebbie; G.F.R. Ellis Covariant cosmic microwave background anisotropies II: nonlinear dynamics, Phys. Rev. D, Volume 59 (1999) | arXiv

[25] N. Bartolo; S. Matarrese; A. Riotto Cosmic microwave background anisotropies at second order: I, J. Cosmol. Astropart. Phys., Volume 6 (2006), p. 24 | arXiv

[26] N. Bartolo; S. Matarrese; A. Riotto CMB anisotropies at second-order II: analytical approach, J. Cosmol. Astropart. Phys., Volume 1 (2007), p. 19 | arXiv

[27] C. Pitrou Gauge invariant Boltzmann equation and the fluid limit, Class. Quantum Gravity, Volume 24 (2007), pp. 6127-6158 | arXiv

[28] C. Pitrou The radiative transfer for polarized radiation at second order in cosmological perturbations, Gen. Relativ. Gravit., Volume 41 (2009), pp. 2587-2595 | arXiv

[29] F. Bernardeau; S. Colombi; E. Gaztañaga; R. Scoccimarro Large-scale structure of the Universe and cosmological perturbation theory, Phys. Rep., Volume 367 (2002), pp. 1-3

[30] C.K. McBride; A.J. Connolly; J.P. Gardner; R. Scranton; J.A. Newman; R. Scoccimarro; I. Zehavi; D.P. Schneider Three-point correlation functions of SDSS galaxies: luminosity and color dependence in redshift and projected space, Astrophys. J., Volume 726 (2011), p. 13 | arXiv

[31] R. Scoccimarro; H.A. Feldman; J.N. Fry; J.A. Frieman The bispectrum of IRAS redshift catalogs, Astrophys. J., Volume 546 (2001), pp. 652-664

[32] E. Gaztañaga; P. Norberg; C.M. Baugh; D.J. Croton Statistical analysis of galaxy surveys – II. The three-point galaxy correlation function measured from the 2dFGRS, Mon. Not. R. Astron. Soc., Volume 364 (2005), pp. 620-634 | arXiv

[33] C.K. McBride; A.J. Connolly; J.P. Gardner; R. Scranton; R. Scoccimarro; A.A. Berlind; F. Marín; D.P. Schneider Three-point correlation functions of SDSS galaxies: constraining galaxy-mass bias, Astrophys. J., Volume 739 (2011), p. 85 | arXiv

[34] Z. Huang; F. Vernizzi Full cosmic microwave background temperature bispectrum from single-field inflation, Phys. Rev. D, Volume 89 (2014)

[35] M. Beneke; C. Fidler Boltzmann hierarchy for the cosmic microwave background at second order including photon polarization, Phys. Rev. D, Volume 82 (2010) | arXiv

[36] L. Boubekeur; P. Creminelli; G. D'Amico; J. Noreña; F. Vernizzi Sachs–Wolfe at second order: the CMB bispectrum on large angular scales, J. Cosmol. Astropart. Phys., Volume 8 (2009), p. 29 | arXiv

[37] R. Khatri; B.D. Wandelt Crinkles in the last scattering surface: non-Gaussianity from inhomogeneous recombination, Phys. Rev. D, Volume 79 (2009) | arXiv

[38] D. Nitta; E. Komatsu; N. Bartolo; S. Matarrese; A. Riotto CMB anisotropies at second order III: bispectrum from products of the first-order perturbations, J. Cosmol. Astropart. Phys., Volume 5 (2009), p. 14 | arXiv

[39] C. Pitrou The radiative transfer at second order: a full treatment of the Boltzmann equation with polarization, Class. Quantum Gravity, Volume 26 (2009) | arXiv

[40] C. Pitrou; J.-P. Uzan; F. Bernardeau The cosmic microwave background bispectrum from the non-linear evolution of the cosmological perturbations, J. Cosmol. Astropart. Phys., Volume 7 (2010), p. 3 | arXiv

[41] L. Senatore; S. Tassev; M. Zaldarriaga Cosmological perturbations at second order and recombination perturbed, J. Cosmol. Astropart. Phys., Volume 8 (2009), p. 31 | arXiv

[42] T. Sekiguchi; N. Sugiyama Optimal constraint on gNL from CMB, J. Cosmol. Astropart. Phys., Volume 9 (2013), p. 2 | arXiv

[43] Planck Collaboration; P.A.R. Ade; N. Aghanim; C. Armitage-Caplan; M. Arnaud; M. Ashdown; F. Atrio-Barandela; J. Aumont; C. Baccigalupi; A.J. Banday et al. Planck 2013 results. XXIV. Constraints on primordial non-Gaussianity, Astron. Astrophys., Volume 571 (2014) | arXiv

[44] A. Taruya; F. Bernardeau; T. Nishimichi; S. Codis Direct and fast calculation of regularized cosmological power spectrum at two-loop order, Phys. Rev. D, Volume 86 (2012) | arXiv

[45] M. Crocce; R. Scoccimarro Renormalized cosmological perturbation theory, Phys. Rev. D, Volume 73 (2006) | arXiv

[46] N. Dalal; O. Doré; D. Huterer; A. Shirokov Imprints of primordial non-Gaussianities on large-scale structure: scale-dependent bias and abundance of virialized objects, Phys. Rev. D, Volume 77 (2008) | arXiv

[47] A. Slosar; C. Hirata; U. Seljak; S. Ho; N. Padmanabhan Constraints on local primordial non-Gaussianity from large-scale structure, J. Cosmol. Astropart. Phys., Volume 8 (2008), p. 31 | arXiv

[48] W. Hu Power spectrum tomography with weak lensing, Astrophys. J. Lett., Volume 522 (1999), p. L21-L24 | arXiv

[49] A. Heavens 3D weak lensing, Mon. Not. R. Astron. Soc., Volume 343 (2003), pp. 1327-1334 | arXiv

[50] D. Huterer; M. White Nulling tomography with weak gravitational lensing, Phys. Rev. D, Volume 72 (2005) | arXiv

[51] B. Joachimi; P. Schneider The removal of shear-ellipticity correlations from the cosmic shear signal via nulling techniques, Astron. Astrophys., Volume 488 (2008), pp. 829-843 | arXiv

[52] F. Bernardeau; T. Nishimichi; A. Taruya Cosmic shear full nulling: sorting out dynamics, geometry and systematics, Mon. Not. R. Astron. Soc., Volume 445 (2014), pp. 1526-1537 | arXiv

[53] J.N. Fry; E. Gaztanaga Biasing and hierarchical statistics in large-scale structure, Astrophys. J., Volume 413 (1993), pp. 447-452 | arXiv

[54] M. Mirbabayi; F. Schmidt; M. Zaldarriaga Biased tracers and time evolution | arXiv

[55] K. Chuen Chan; R. Scoccimarro; R.K. Sheth Gravity and large-scale non-local bias, 2012 (arXiv e-prints) | arXiv

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Primordial non-Gaussianities after Planck 2015: An introductory review

Sébastien Renaux-Petel

C. R. Phys (2015)


The inflationary paradigm: predictions for CMB

Renaud Parentani

C. R. Phys (2003)


Inflation in string theory confronts data

Eva Silverstein

C. R. Phys (2015)