Following the 2015 Planck release, we briefly comment on the status and some ongoing opportunities in the interface between inflationary cosmology, string theory, and CMB data. The constraints in the r– plane introduce a new parameter into inflationary cosmology relative to the simplest quadratic inflation model, in a direction which fits well with couplings to heavy fields as occurs in string theory. The precision of the data permits further searches for and constraints on additional model-dependent features, such as oscillatory N-spectra, a program requiring specific theoretically motivated shapes. Since the perturbations can easily be affected by additional sectors and couplings, null results can usefully bound such contributions. We also review the broader lessons string theory has contributed to our understanding of primordial inflation, and close with some approaches to a more complete framework.
À la suite de la publication, en 2015, des résultats du satellite Planck, nous commentons le statut de plusieurs recherches en cours à l'interface entre cosmologie inflationnaire, théorie des cordes et observation du fond diffus cosmologique. Par rapport au modèle le plus simple d'un champ massif, les contraintes dans le plan (r–) font intervenir un nouveau paramètre cosmologique qui donne une bonne description d'un couplage à des champs lourds, comme ceux apparaissant en théorie des cordes. La précision des données permet de rechercher et de contraindre des signatures supplémentaires et spécifiques de certains modèles, comme des oscillations dans les spectres d'ordre N, ce qui nécessite la détermination théorique préalable de la forme de ces spectres. Étant donné que les perturbations sont sensibles à l'introduction de nouveaux secteurs et de nouveaux couplages, des tests nuls sont utiles pour contraindre de telles contributions. Nous résumons les grandes leçons que la théorie des cordes a permis de tirer quant à notre compréhension de l'inflation primordiale, et concluons en décrivant quelques approches dans un cadre plus général.
Mots-clés : Cosmologie, Inflation, Théorie des cordes
Eva Silverstein 1
@article{CRPHYS_2015__16_10_1003_0, author = {Eva Silverstein}, title = {Inflation in string theory confronts data}, journal = {Comptes Rendus. Physique}, pages = {1003--1011}, publisher = {Elsevier}, volume = {16}, number = {10}, year = {2015}, doi = {10.1016/j.crhy.2015.08.006}, language = {en}, }
Eva Silverstein. Inflation in string theory confronts data. Comptes Rendus. Physique, Cosmic inflation / Inflation cosmique, Volume 16 (2015) no. 10, pp. 1003-1011. doi : 10.1016/j.crhy.2015.08.006. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2015.08.006/
[1] Planck 2015 results. XIII. Cosmological parameters | arXiv
[2] Planck 2015 results. XVII. Constraints on primordial non-Gaussianity | arXiv
[3] Joint analysis of BICEP2/Keck array and Planck data, Phys. Rev. Lett., Volume 114 (2015) no. 10 | arXiv
[4] Planck 2015 results. XX. Constraints on inflation | arXiv
[5] Physical Foundations of Cosmology, Cambridge University Press, 2005 (ISBN: 978-0-521-56398-7)
[6] G.H. Hardy, A Mathematician's Apology, Cambridge University Press, Cambridge, ISBN 978-0-521-42706-7.
[7] Inflation and string theory | arXiv
[8] Les Houches lectures on inflationary observables and string theory | arXiv
[9] Review Talk at the Primordial Universe after Planck http://www.iap.fr/col2014/programme.html (Paris, December 2014)
[10] Chaotic inflation, Phys. Lett. B, Volume 129 (1983), p. 177
[11] Natural inflation: particle physics models, power law spectra for large scale structure, and constraints from COBE, Phys. Rev. D, Volume 65 (1990), p. 3233 | arXiv
[12] Simple exercises to flatten your potential, Phys. Rev. D, Volume 84 (2011) | arXiv
[13] Holographic inflation revised | arXiv
[14] Monodromy in the CMB: gravity waves and string inflation, Phys. Rev. D, Volume 78 (2008) | arXiv
[15] Gravity waves and linear inflation from axion monodromy, Phys. Rev. D, Volume 82 (2010) | arXiv
[16] Oscillations in the CMB from axion monodromy inflation, J. Cosmol. Astropart. Phys., Volume 1006 (2010) | arXiv
[17] Natural chaotic inflation and UV sensitivity, J. Cosmol. Astropart. Phys., Volume 102, 2009 | arXiv
[18] Unwinding inflation, J. Cosmol. Astropart. Phys., Volume 1303 (2013) | arXiv
[19] A flux-scaling scenario for high-scale moduli stabilization in string theory, Nucl. Phys. B, Volume 897 (2015), p. 500 | arXiv
[20] The powers of monodromy | arXiv
[21] Tilt and tensor-to-scalar ratio in multifield monodromy inflation | arXiv
[22] The Lyth bound revisited, J. Cosmol. Astropart. Phys., Volume 48 (1993), p. 5539 | arXiv
[23] Work in progress with X. Dong, G. Gur-Ari, G. Torroba, H. Wang.
[24] Brane inflation and moduli stabilization on twisted tori, J. High Energy Phys., Volume 1401 (2014) | arXiv
[25] N-flation, J. Cosmol. Astropart. Phys., Volume 0501 (2005) | arXiv
[26] The string landscape, black holes and gravity as the weakest force, J. High Energy Phys., Volume 0706 (2007) | arXiv
[27] Planckian axions and the weak gravity conjecture | arXiv
[28] Natural inflation and quantum gravity | arXiv
[29] Weak gravity strongly constrains large-field axion inflation | arXiv
[30] De Sitter vacua in string theory, Phys. Rev. D, Volume 0310 (2003) | arXiv
[31] Systematics of moduli stabilisation in Calabi–Yau flux compactifications, J. High Energy Phys., Volume 0903 (2009) | arXiv
[32] Roulette inflation with Kahler moduli and their axions, Phys. Rev. D, Volume 75 (2007) | arXiv
[33] Planck, LHC, and α-attractors | arXiv
[34] String-theoretic breakdown of effective field theory near black hole horizons, Phys. Rev. D, Volume 49, 1994, p. 6606 | arXiv
[35] Cosmological collider physics | arXiv
[36] Drifting oscillations in axion monodromy, Phys. Rev. D, Volume 1309, 2013 | arXiv
[37] Combining power spectrum and bispectrum measurements to detect oscillatory features, Phys. Rev. D, Volume 91 (2015) no. 4 | arXiv
[38] Collective symmetry breaking and resonant non-Gaussianity, J. Cosmol. Astropart. Phys., Volume 1101 (2011) | arXiv
[39] Anomalous dimensions and non-Gaussianity, J. High Energy Phys., Volume 1401 (2014) no. 01 | arXiv
[40] Observational signatures and non-Gaussianities of general single field inflation, J. Cosmol. Astropart. Phys., Volume 0701 (2007) | arXiv
[41] The effective field theory of inflation, J. High Energy Phys., Volume 0803 (2008) | arXiv
[42] Scalar speed limits and cosmology: acceleration from D-cceleration, Phys. Rev. D, Volume 70 (2004) | arXiv
[43] Trapped inflation, Phys. Rev. D, Volume 80 (2009) | arXiv
[44] R. Flauger, M. Mirbabayi, L. Senatore, E. Silverstein, in progress.
[45] Disorder in the early universe | arXiv
[46] et al. Testing inflation with large scale structure: connecting hopes with reality | arXiv
[47] A statistical approach to multifield inflation: many-field perturbations beyond slow roll, J. Cosmol. Astropart. Phys., Volume 0605 (2006) no. 3 | arXiv
[48] Universality in D-brane inflation, J. Cosmol. Astropart. Phys., Volume 1109 (2011) | arXiv
[49] Cosmic bubble and domain wall instabilities III: the role of oscillons in three-dimensional bubble collisions, Phys. Rev. D, Volume 0904, 2009 no. 8 | arXiv
[50] How well can we really determine the scale of inflation?, Phys. Rev. D, Volume 91 (2015) no. 10 | arXiv
[51] Cosmic F and D strings, J. High Energy Phys., Volume 5 (2004), p. 1021 | arXiv
[52] Nonperturbative dynamics of reheating after inflation: a review, Int. J. Mod. Phys. D, Volume 24 (2014) no. 01, p. 1530003 | arXiv
[53] Large N field theories, string theory and gravity, Phys. Rep., Volume 323 (2000), p. 183 | arXiv
[54] FRW solutions and holography from uplifted AdS/CFT, Phys. Rev. D, Volume 743 (2005), p. 393 | arXiv
[55] The dS/CFT correspondence, J. High Energy Phys., Volume 0110 (2001) | arXiv
[56] Higher spin realization of the dS/CFT correspondence | arXiv
[57] De Sitter musings, Int. J. Mod. Phys. A, Volume 27 (2012), p. 1230013 | arXiv
Cited by Sources:
Comments - Policy