After the Higgs boson has been discovered, the Standard Model of particle physics became a confirmed theory, potentially valid up to the Planck scale and allowing one to trace the evolution of the Universe from the inflationary stage till the present days. We discuss the relation between the results from the LHC and the inflationary cosmology. We overview the Higgs inflation, and its relation to the possible metastability of the electroweak vacuum. A short overview of the bounds on the metastability of the electroweak vacuum in the models with inflation not related to the Higgs boson is presented.
Après la découverte du boson de Higgs, le modèle standard de la physique des particules peut être considéree comme une théorie confirmée par l'expérience, potentiellement valable jusquà l'échelle de Planck et permettant de suivre l'évolution de l'univers depuis l'époque inflationnaire jusqu'à aujourdhui. Notre article discute les liens entre les résultats obtenus avec le grand collisionneur de hadrons (LHC) et l'inflation cosmologique. Nous résumons les propriétés des modèles de « Higgs-inflation » et leur relation avec la métastabilité potentielle du vide électrofaible. Une courte revue des limites de cette métastabilité dans les modèles d'inflation ne reposant pas sur le boson de Higgs est aussi présentée.
Fedor Bezrukov 1; Mikhail Shaposhnikov 2
@article{CRPHYS_2015__16_10_994_0, author = {Fedor Bezrukov and Mikhail Shaposhnikov}, title = {Inflation, {LHC} and the {Higgs} boson}, journal = {Comptes Rendus. Physique}, pages = {994--1002}, publisher = {Elsevier}, volume = {16}, number = {10}, year = {2015}, doi = {10.1016/j.crhy.2015.08.005}, language = {en}, }
Fedor Bezrukov; Mikhail Shaposhnikov. Inflation, LHC and the Higgs boson. Comptes Rendus. Physique, Cosmic inflation / Inflation cosmique, Volume 16 (2015) no. 10, pp. 994-1002. doi : 10.1016/j.crhy.2015.08.005. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2015.08.005/
[1] Why should we care about the top quark Yukawa coupling?, J. Exp. Theor. Phys., Volume 120 (2015), pp. 335-343 | arXiv | DOI
[2] The role of sterile neutrinos in cosmology and astrophysics, Annu. Rev. Nucl. Part. Sci., Volume 59 (2009), pp. 191-214 | arXiv | DOI
[3] The inflationary universe: a possible solution to the horizon and flatness problems, Phys. Rev. D, Volume 23 (1981), pp. 347-356
[4] A new inflationary universe scenario: a possible solution of the horizon, flatness, homogeneity, isotropy and primordial monopole problems, Phys. Lett. B, Volume 108 (1982), pp. 389-393
[5] Cosmology for grand unified theories with radiatively induced symmetry breaking, Phys. Rev. Lett., Volume 48 (1982), pp. 1220-1223
[6] Spectrum of relict gravitational radiation and the early state of the universe, JETP Lett., Volume 30 (1979), pp. 682-685 | DOI
[7] A new type of isotropic cosmological models without singularity, Phys. Lett. B, Volume 91 (1980), pp. 99-102 | DOI
[8] Quantum fluctuation and nonsingular universe, JETP Lett., Volume 33 (1981), pp. 532-535 (in Russian)
[9] The Standard Model Higgs boson as the inflaton, Phys. Lett. B, Volume 659 (2008), pp. 703-706 | arXiv | DOI
[10] et al. Planck 2013 results. XXII. Constraints on inflation, Astron. Astrophys., Volume 571 (2014) | arXiv | DOI
[11] On initial conditions for the Hot Big Bang, J. Cosmol. Astropart. Phys., Volume 906 (2009) | arXiv | DOI
[12] Preheating in the Standard Model with the Higgs-inflaton coupled to gravity, Phys. Rev. D, Volume 79 (2009) | arXiv | DOI
[13] Living beyond the edge: Higgs inflation and vacuum metastability | arXiv
[14] Standard Model Higgs boson mass from inflation, Phys. Lett. B, Volume 675 (2009), pp. 88-92 | arXiv | DOI
[15] Running inflation in the Standard Model, Phys. Lett. B, Volume 678 (2009), pp. 1-8 | arXiv | DOI
[16] Standard Model Higgs boson mass from inflation: two loop analysis, J. High Energy Phys., Volume 7 (2009) | arXiv | DOI
[17] Asymptotic freedom in inflationary cosmology with a non-minimally coupled Higgs field, J. Cosmol. Astropart. Phys., Volume 0912 (2009) | arXiv | DOI
[18] CMS Collaboration, Combination of the CMS top-quark mass measurements from Run 1 of the LHC, CMS-PAS-TOP-14-015.
[19] Combined mass and couplings of the Higgs boson at CMS https://indico.cern.ch/event/360238/
[20] Higgs inflation: consistency and generalisations, J. High Energy Phys., Volume 1101 (2011) | arXiv | DOI
[21] Higgs inflation at the critical point, Phys. Lett. B, Volume 734 (2014), p. 249 | arXiv | DOI
[22] Higgs inflation is still alive after the results from BICEP2, Phys. Rev. Lett., Volume 112 (2014) | arXiv | DOI
[23] Chaotic inflation, Phys. Lett. B, Volume 129 (1983), pp. 177-181 | DOI
[24] Cosmology with negative potentials, Phys. Rev. D, Volume 66 (2002) | arXiv | DOI
[25] Cosmological implications of the Higgs mass measurement, J. Cosmol. Astropart. Phys., Volume 805 (2008) | arXiv | DOI
[26] New cosmological constraints on the Higgs boson and top quark masses, Phys. Lett. B, Volume 243 (1990), pp. 265-270 | DOI
[27] Instability of hot electroweak theory: bounds on m(H) and M(t), Phys. Rev. D, Volume 44 (1991), pp. 3620-3627 | DOI
[28] Improved metastability bounds on the standard model Higgs mass, Phys. Lett. B, Volume 353 (1995), pp. 257-266 | arXiv | DOI
[29] Stability, Higgs boson mass and new physics, Phys. Rev. Lett., Volume 111 (2013) | arXiv | DOI
[30] Higgs dynamics during inflation, J. Cosmol. Astropart. Phys., Volume 1407 (2014) | arXiv | DOI
[31] Probable or improbable universe? Correlating electroweak vacuum instability with the scale of inflation, J. High Energy Phys., Volume 1501 (2015) | arXiv | DOI
[32] et al. A joint analysis of BICEP2/Keck array and Planck data, Phys. Rev. Lett., Volume 114 (2015) | arXiv | DOI
[33] On stability of electroweak vacuum during inflation, Phys. Lett. B, Volume 746 (2015), pp. 257-260 | arXiv | DOI
[34] Spacetime curvature and the Higgs stability during inflation, Phys. Rev. Lett., Volume 113 (2014) | arXiv | DOI
[35] -inflation with conformal SM Higgs field, J. Cosmol. Astropart. Phys., Volume 1312 (2012) | arXiv | DOI
[36] Inflationary cosmology and the standard model Higgs with a small Hubble induced mass, Phys. Lett. B, Volume 742 (2015), pp. 126-135 | arXiv | DOI
[37] Metastable electroweak vacuum: implications for inflation, Phys. Lett. B, Volume 719 (2013), pp. 415-418 | arXiv | DOI
[38] The νMSM, inflation, and dark matter, Phys. Lett. B, Volume 639 (2006), pp. 414-417 | arXiv | DOI
[39] Light inflaton Hunter's guide, J. High Energy Phys., Volume 1005 (2010) | arXiv | DOI
[40] The Higgs mass range from Standard Model false vacuum inflation in scalar–tensor gravity, Phys. Rev. D, Volume 85 (2012) | arXiv | DOI
[41] Standard Model false vacuum inflation: correlating the tensor-to-scalar ratio to the top quark and Higgs boson masses, Phys. Rev. Lett., Volume 108 (2012) | arXiv
[42] Inflation from the Higgs field false vacuum with hybrid potential, J. Cosmol. Astropart. Phys., Volume 1211 (2012) | arXiv | DOI
Cited by Sources:
Comments - Policy