Comptes Rendus
Inflation, LHC and the Higgs boson
[L'inflation, le LHC et le boson de Higgs]
Comptes Rendus. Physique, Volume 16 (2015) no. 10, pp. 994-1002.

Après la découverte du boson de Higgs, le modèle standard de la physique des particules peut être considéree comme une théorie confirmée par l'expérience, potentiellement valable jusquà l'échelle de Planck et permettant de suivre l'évolution de l'univers depuis l'époque inflationnaire jusqu'à aujourdhui. Notre article discute les liens entre les résultats obtenus avec le grand collisionneur de hadrons (LHC) et l'inflation cosmologique. Nous résumons les propriétés des modèles de « Higgs-inflation » et leur relation avec la métastabilité potentielle du vide électrofaible. Une courte revue des limites de cette métastabilité dans les modèles d'inflation ne reposant pas sur le boson de Higgs est aussi présentée.

After the Higgs boson has been discovered, the Standard Model of particle physics became a confirmed theory, potentially valid up to the Planck scale and allowing one to trace the evolution of the Universe from the inflationary stage till the present days. We discuss the relation between the results from the LHC and the inflationary cosmology. We overview the Higgs inflation, and its relation to the possible metastability of the electroweak vacuum. A short overview of the bounds on the metastability of the electroweak vacuum in the models with inflation not related to the Higgs boson is presented.

Publié le :
DOI : 10.1016/j.crhy.2015.08.005
Mots clés : Cosmology, Inflation, LHC, Higgs boson
Fedor Bezrukov 1 ; Mikhail Shaposhnikov 2

1 University of Connecticut, 2152 Hillside Road, U-3046 Storrs, CT 06269-3046, USA
2 École polytechnique fédérale de Lausanne (EPFL), route Cantonale, CH-1015 Lausanne, Switzerland
@article{CRPHYS_2015__16_10_994_0,
     author = {Fedor Bezrukov and Mikhail Shaposhnikov},
     title = {Inflation, {LHC} and the {Higgs} boson},
     journal = {Comptes Rendus. Physique},
     pages = {994--1002},
     publisher = {Elsevier},
     volume = {16},
     number = {10},
     year = {2015},
     doi = {10.1016/j.crhy.2015.08.005},
     language = {en},
}
TY  - JOUR
AU  - Fedor Bezrukov
AU  - Mikhail Shaposhnikov
TI  - Inflation, LHC and the Higgs boson
JO  - Comptes Rendus. Physique
PY  - 2015
SP  - 994
EP  - 1002
VL  - 16
IS  - 10
PB  - Elsevier
DO  - 10.1016/j.crhy.2015.08.005
LA  - en
ID  - CRPHYS_2015__16_10_994_0
ER  - 
%0 Journal Article
%A Fedor Bezrukov
%A Mikhail Shaposhnikov
%T Inflation, LHC and the Higgs boson
%J Comptes Rendus. Physique
%D 2015
%P 994-1002
%V 16
%N 10
%I Elsevier
%R 10.1016/j.crhy.2015.08.005
%G en
%F CRPHYS_2015__16_10_994_0
Fedor Bezrukov; Mikhail Shaposhnikov. Inflation, LHC and the Higgs boson. Comptes Rendus. Physique, Volume 16 (2015) no. 10, pp. 994-1002. doi : 10.1016/j.crhy.2015.08.005. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2015.08.005/

[1] F. Bezrukov; M. Shaposhnikov Why should we care about the top quark Yukawa coupling?, J. Exp. Theor. Phys., Volume 120 (2015), pp. 335-343 | arXiv | DOI

[2] A. Boyarsky; O. Ruchayskiy; M. Shaposhnikov The role of sterile neutrinos in cosmology and astrophysics, Annu. Rev. Nucl. Part. Sci., Volume 59 (2009), pp. 191-214 | arXiv | DOI

[3] A.H. Guth The inflationary universe: a possible solution to the horizon and flatness problems, Phys. Rev. D, Volume 23 (1981), pp. 347-356

[4] A.D. Linde A new inflationary universe scenario: a possible solution of the horizon, flatness, homogeneity, isotropy and primordial monopole problems, Phys. Lett. B, Volume 108 (1982), pp. 389-393

[5] A. Albrecht; P.J. Steinhardt Cosmology for grand unified theories with radiatively induced symmetry breaking, Phys. Rev. Lett., Volume 48 (1982), pp. 1220-1223

[6] A.A. Starobinsky Spectrum of relict gravitational radiation and the early state of the universe, JETP Lett., Volume 30 (1979), pp. 682-685 | DOI

[7] A.A. Starobinsky A new type of isotropic cosmological models without singularity, Phys. Lett. B, Volume 91 (1980), pp. 99-102 | DOI

[8] V.F. Mukhanov; G.V. Chibisov Quantum fluctuation and nonsingular universe, JETP Lett., Volume 33 (1981), pp. 532-535 (in Russian)

[9] F.L. Bezrukov; M. Shaposhnikov The Standard Model Higgs boson as the inflaton, Phys. Lett. B, Volume 659 (2008), pp. 703-706 | arXiv | DOI

[10] P. Ade et al. Planck 2013 results. XXII. Constraints on inflation, Astron. Astrophys., Volume 571 (2014) | arXiv | DOI

[11] F. Bezrukov; D. Gorbunov; M. Shaposhnikov On initial conditions for the Hot Big Bang, J. Cosmol. Astropart. Phys., Volume 906 (2009) | arXiv | DOI

[12] J. Garcia-Bellido; D.G. Figueroa; J. Rubio Preheating in the Standard Model with the Higgs-inflaton coupled to gravity, Phys. Rev. D, Volume 79 (2009) | arXiv | DOI

[13] F. Bezrukov; J. Rubio; M. Shaposhnikov Living beyond the edge: Higgs inflation and vacuum metastability | arXiv

[14] F.L. Bezrukov; A. Magnin; M. Shaposhnikov Standard Model Higgs boson mass from inflation, Phys. Lett. B, Volume 675 (2009), pp. 88-92 | arXiv | DOI

[15] A. De Simone; M.P. Hertzberg; F. Wilczek Running inflation in the Standard Model, Phys. Lett. B, Volume 678 (2009), pp. 1-8 | arXiv | DOI

[16] F. Bezrukov; M. Shaposhnikov Standard Model Higgs boson mass from inflation: two loop analysis, J. High Energy Phys., Volume 7 (2009) | arXiv | DOI

[17] A. Barvinsky; A. Kamenshchik; C. Kiefer; A. Starobinsky; C. Steinwachs Asymptotic freedom in inflationary cosmology with a non-minimally coupled Higgs field, J. Cosmol. Astropart. Phys., Volume 0912 (2009) | arXiv | DOI

[18] CMS Collaboration, Combination of the CMS top-quark mass measurements from Run 1 of the LHC, CMS-PAS-TOP-14-015.

[19] CMS Collaboration Combined mass and couplings of the Higgs boson at CMS https://indico.cern.ch/event/360238/

[20] F. Bezrukov; A. Magnin; M. Shaposhnikov; S. Sibiryakov Higgs inflation: consistency and generalisations, J. High Energy Phys., Volume 1101 (2011) | arXiv | DOI

[21] F. Bezrukov; M. Shaposhnikov Higgs inflation at the critical point, Phys. Lett. B, Volume 734 (2014), p. 249 | arXiv | DOI

[22] Y. Hamada; H. Kawai; K.-y. Oda; S.C. Park Higgs inflation is still alive after the results from BICEP2, Phys. Rev. Lett., Volume 112 (2014) | arXiv | DOI

[23] A.D. Linde Chaotic inflation, Phys. Lett. B, Volume 129 (1983), pp. 177-181 | DOI

[24] G.N. Felder; A.V. Frolov; L. Kofman; A.D. Linde Cosmology with negative potentials, Phys. Rev. D, Volume 66 (2002) | arXiv | DOI

[25] J.R. Espinosa; G.F. Giudice; A. Riotto Cosmological implications of the Higgs mass measurement, J. Cosmol. Astropart. Phys., Volume 805 (2008) | arXiv | DOI

[26] G.W. Anderson New cosmological constraints on the Higgs boson and top quark masses, Phys. Lett. B, Volume 243 (1990), pp. 265-270 | DOI

[27] P.B. Arnold; S. Vokos Instability of hot electroweak theory: bounds on m(H) and M(t), Phys. Rev. D, Volume 44 (1991), pp. 3620-3627 | DOI

[28] J. Espinosa; M. Quiros Improved metastability bounds on the standard model Higgs mass, Phys. Lett. B, Volume 353 (1995), pp. 257-266 | arXiv | DOI

[29] V. Branchina; E. Messina Stability, Higgs boson mass and new physics, Phys. Rev. Lett., Volume 111 (2013) | arXiv | DOI

[30] K. Enqvist; T. Meriniemi; S. Nurmi Higgs dynamics during inflation, J. Cosmol. Astropart. Phys., Volume 1407 (2014) | arXiv | DOI

[31] A. Hook; J. Kearney; B. Shakya; K.M. Zurek Probable or improbable universe? Correlating electroweak vacuum instability with the scale of inflation, J. High Energy Phys., Volume 1501 (2015) | arXiv | DOI

[32] P. Ade et al. A joint analysis of BICEP2/Keck array and Planck data, Phys. Rev. Lett., Volume 114 (2015) | arXiv | DOI

[33] S. Sibiryakov; A. Shkerin On stability of electroweak vacuum during inflation, Phys. Lett. B, Volume 746 (2015), pp. 257-260 | arXiv | DOI

[34] M. Herranen; T. Markkanen; S. Nurmi; A. Rajantie Spacetime curvature and the Higgs stability during inflation, Phys. Rev. Lett., Volume 113 (2014) | arXiv | DOI

[35] D. Gorbunov; A. Tokareva R2-inflation with conformal SM Higgs field, J. Cosmol. Astropart. Phys., Volume 1312 (2012) | arXiv | DOI

[36] K. Kamada Inflationary cosmology and the standard model Higgs with a small Hubble induced mass, Phys. Lett. B, Volume 742 (2015), pp. 126-135 | arXiv | DOI

[37] O. Lebedev; A. Westphal Metastable electroweak vacuum: implications for inflation, Phys. Lett. B, Volume 719 (2013), pp. 415-418 | arXiv | DOI

[38] M. Shaposhnikov; I. Tkachev The νMSM, inflation, and dark matter, Phys. Lett. B, Volume 639 (2006), pp. 414-417 | arXiv | DOI

[39] F. Bezrukov; D. Gorbunov Light inflaton Hunter's guide, J. High Energy Phys., Volume 1005 (2010) | arXiv | DOI

[40] I. Masina; A. Notari The Higgs mass range from Standard Model false vacuum inflation in scalar–tensor gravity, Phys. Rev. D, Volume 85 (2012) | arXiv | DOI

[41] I. Masina; A. Notari Standard Model false vacuum inflation: correlating the tensor-to-scalar ratio to the top quark and Higgs boson masses, Phys. Rev. Lett., Volume 108 (2012) | arXiv

[42] I. Masina; A. Notari Inflation from the Higgs field false vacuum with hybrid potential, J. Cosmol. Astropart. Phys., Volume 1211 (2012) | arXiv | DOI

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Inflation in the standard cosmological model

Jean-Philippe Uzan

C. R. Phys (2015)


Cosmic inflation and model comparison

Vincent Vennin; Jérôme Martin; Christophe Ringeval

C. R. Phys (2015)


Spectral action gravity and cosmological models

Matilde Marcolli

C. R. Phys (2017)