Recent observations of high-energy photons from blazars suggest that there exist magnetic fields with typical amplitude around ubiquitously even in void regions. This being the case, it is natural to invoke them to explain the processes occurring during inflation in the early universe. We provide a list of models of magnetogenesis during inflation and consider several problems associated with them.
L'observation récente de photons ultra-énergétiques en provenance des blazars suggère l'existence de champs magnétiques cosmologiques, d'amplitude typique , omniprésents, y compris au sein des vides cosmiques. Il est dès lors naturel de les associer à la physique inflationnaire dans l'univers primordial. Nous donnons une liste de modèles de génération d'un champ magnétique pendant l'inflation et discutons un certain nombre de problèmes qu'ils posent.
Mots-clés : Cosmologie, Inflation, Champ magnétique, Effet Schwinger
Jun'ichi Yokoyama 1, 2, 3
@article{CRPHYS_2015__16_10_1018_0, author = {Jun'ichi Yokoyama}, title = {Issues on the inflationary magnetogenesis}, journal = {Comptes Rendus. Physique}, pages = {1018--1026}, publisher = {Elsevier}, volume = {16}, number = {10}, year = {2015}, doi = {10.1016/j.crhy.2015.08.008}, language = {en}, }
Jun'ichi Yokoyama. Issues on the inflationary magnetogenesis. Comptes Rendus. Physique, Cosmic inflation / Inflation cosmique, Volume 16 (2015) no. 10, pp. 1018-1026. doi : 10.1016/j.crhy.2015.08.008. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2015.08.008/
[1] Extragalactic magnetic fields, Rep. Prog. Phys., Volume 57 (1994), p. 325
[2] Origin of galactic and extragalactic magnetic fields, Rev. Mod. Phys., Volume 74 (2002), p. 775 | arXiv
[3] Magnetic field in clusters of galaxies, Int. J. Mod. Phys. D, Volume 13 (2004), p. 1549 | arXiv
[4] The generation of magnetic fields in astrophysical bodies, II: the galactic field, Astrophys. J., Volume 163 (1971), p. 255
[5] Magnetic Fields in Astrophysics, Gordon Breach, New York, 1983
[6] A Low level of extragalactic background light as revealed by gamma-rays from blazars, Nature, Volume 440 (2006), p. 1018 | arXiv
[7] Fermi observations of TeV-selected AGN, Astrophys. J., Volume 707 (2009), p. 1310 | arXiv
[8] Evidence for strong extragalactic magnetic fields from Fermi observations of TeV blazars, Science, Volume 328 (2010), p. 73 | arXiv
[9] Lower limit on the strength and filling factor of extragalactic magnetic fields, Astrophys. J., Volume 727 (2011) | arXiv
[10] The inflationary universe: a possible solution to the horizon and flatness problems, Phys. Rev. D, Volume 23 (1981), p. 347
[11] First order phase transition of a vacuum and expansion of the universe, Mon. Not. Roy. Astron. Soc., Volume 195 (1981), p. 467
[12] A new type of isotropic cosmological models without singularity, Phys. Lett. B, Volume 91 (1980), p. 99
[13] Inflation: 1980–201X, Progr. Theor. Exp. Phys., Volume 2014 (2014) no. 6 (For a review of inflation see, e.g.)
[14] Inflation produced, large scale magnetic fields, Phys. Rev. D, Volume 37 (1988), p. 2743
[15] On gauge invariance and vacuum polarization, Phys. Rev., Volume 82 (1951), p. 664
[16] Astron. Astrophys., 487 (2008), p. 837 | arXiv
[17] Sensitivity of gamma-ray telescopes for detection of magnetic fields in intergalactic medium, Phys. Rev. D, Volume 80 (2009) | arXiv
[18] The intergalactic magnetic field constrained by Fermi/LAT observations of the TeV blazar 1ES , Mon. Not. R. Astron. Soc., Volume 406 (2010) | arXiv
[19] Consistent Lorentz violation in flat and curved space, Phys. Rev. D, Volume 76 (2007) | arXiv
[20] Magnetic fields from inflation?, J. Cosmol. Astropart. Phys., Volume 0908 (2009) | arXiv
[21] Cosmological ‘seed’ magnetic field from inflation, Astrophys. J., Volume 391 (1992)
[22] Large-scale magnetic fields from inflation in dilaton electromagnetism, Phys. Rev. D, Volume 69 (2004) | arXiv
[23] Large-scale magnetic fields from dilaton inflation in noncommutative spacetime, Phys. Rev. D, Volume 70 (2004) | arXiv
[24] Generation of large-scale magnetic fields in single-field inflation, J. Cosmol. Astropart. Phys., Volume 0801 (2008) | arXiv
[25] Primordial magnetic fields from pseudoGoldstone bosons, Phys. Rev. D, Volume 46 (1992), p. 5346 | arXiv
[26] Can slow roll inflation induce relevant helical magnetic fields?, J. Cosmol. Astropart. Phys., Volume 1103 (2011) | arXiv
[27] Adding helicity to inflationary magnetogenesis, J. Cosmol. Astropart. Phys., Volume 1410 (2014) no. 10 | arXiv
[28] A scenario for inflationary magnetogenesis without strong coupling problem | arXiv
[29] Inflationary magnetogenesis without the strong coupling problem, II: constraints from CMB anisotropies and B-modes, J. Cosmol. Astropart. Phys., Volume 1406 (2014) | arXiv
[30] Critical constraint on inflationary magnetogenesis, J. Cosmol. Astropart. Phys., Volume 1403 (2014) (Erratum) | arXiv
[31] Cosmological perturbation theory, Prog. Theor. Phys. Suppl., Volume 78 (1984), p. 1
[32] Large scale curvature and entropy perturbations for multiple interacting fluids, Phys. Rev. D, Volume 67 (2003) | arXiv
[33] Metric perturbation from inflationary magnetic field and generic bound on inflation models, Phys. Rev. D, Volume 86 (2012) | arXiv
[34] Higher order statistics of curvature perturbations in IFF model and its Planck constraints, J. Cosmol. Astropart. Phys., Volume 1309 (2013) | arXiv
[35] Pair production by an electric field in -dimensional de Sitter space, Phys. Rev. D, Volume 49 (1994), p. 6343
[36] Schwinger pair production in dS(2) and AdS(2), Phys. Rev. D, Volume 78 (2008) | arXiv
[37] Schwinger effect in de Sitter space, J. Cosmol. Astropart. Phys., Volume 1404 (2014) | arXiv
[38] Schwinger effect in 4D de sitter space and constraints on magnetogenesis in the early universe, J. High Energy Phys., Volume 1410 (2014) | arXiv
Cited by Sources:
Comments - Policy