Although the inflationary paradigm is the most widely accepted explanation for the current cosmological observations, it does not necessarily correspond to what actually happened in the early stages of our Universe. To decide on this issue, two paths can be followed: first, all the possible predictions it makes must be derived thoroughly and compared with available data, and second, all the imaginable alternatives must be ruled out. Leaving the first task to all other contributors of this volume, we concentrate here on the second option, focusing on the bouncing alternatives and their consequences.
Quoique le paradigme inflationaire soit maintenant communément accepté comme représentant la meilleure explication des données cosmologiques, il n'est pas pour autant possible de dire qu'une telle phase soit avérée. Pour s'approcher d'une telle conclusion, on peut suivre deux chemins différents : on peut explorer les conséquences de l'inflation pour la pousser dans ses derniers retranchements, ou bien, au contraire, étudier en détail les alternatives possibles. La première option faisant l'objet de la plupart des contributions de ce volume, nous nous concentrons ici sur la seconde, et présentons les modèles dans lesquels une phase de contraction est suivie d'un rebond conduisant à notre époque d'expansion.
Mots-clés : Cosmologie, Inflation, Alternatives à l'inflation, Cosmologie du rebond
Marc Lilley 1, 2; Patrick Peter 1, 2
@article{CRPHYS_2015__16_10_1038_0, author = {Marc Lilley and Patrick Peter}, title = {Bouncing alternatives to inflation}, journal = {Comptes Rendus. Physique}, pages = {1038--1047}, publisher = {Elsevier}, volume = {16}, number = {10}, year = {2015}, doi = {10.1016/j.crhy.2015.08.009}, language = {en}, }
Marc Lilley; Patrick Peter. Bouncing alternatives to inflation. Comptes Rendus. Physique, Cosmic inflation / Inflation cosmique, Volume 16 (2015) no. 10, pp. 1038-1047. doi : 10.1016/j.crhy.2015.08.009. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2015.08.009/
[1] Physical Foundations of Cosmology, Cambridge University Press, Cambridge, UK, 2005
[2] Primordial Cosmology, Oxford Graduate Texts, Oxford University Press, Oxford, UK, 2009
[3] Inflationary Cosmology, Lect. Notes Phys., vol. 738, 2008
[4] Encyclopædia inflationaris, Phys. Dark Universe, Volume 5–6 (2014), p. 75
[5] et al. Planck 2013 results. XXII. Constraints on inflation, Astron. Astrophys., Volume 571 (2014)
[6] et al. Planck 2013 results. XVI. Cosmological parameters, Astron. Astrophys., Volume 571 (2014)
[7] A critical review of classical bouncing cosmologies, Phys. Rep., Volume 571 (2014), pp. 1-66
[8] The Large Scale Structure of Space-Time, Cambridge University Press, Cambridge, UK, 1973
[9] Inflationary space-times are incomplete in past directions, Phys. Rev. Lett., Volume 90 (2003)
[10] Parametric amplification of metric fluctuations through a bouncing phase, Phys. Rev. D, Volume 68 (2003)
[11] A classical bounce: constraints and consequences, Phys. Rev. D, Volume 77 (2008)
[12] Observational signatures of a non-singular bouncing cosmology, J. Cosmol. Astropart. Phys., Volume 1106 (2011) | arXiv
[13] Cosmology without inflation, Phys. Rev. D, Volume 78 (2008)
[14] Inflation and precision cosmology, Braz. J. Phys., Volume 34 (2004), pp. 1307-1321
[15] Large adiabatic scalar perturbations in a regular bouncing universe, Phys. Rev. D, Volume 85 (2012)
[16] Comments on “Growth of covariant perturbations in the contracting phase of a bouncing Universe” by A. Kumar, Phys. Rev. D, Volume 89 (2014)
[17] Oscillatory approach to a singular point in the relativistic cosmology, Adv. Phys., Volume 19 (1970), pp. 525-573
[18] The ekpyrotic universe: colliding branes and the origin of the hot Big Bang, Phys. Rev. D, Volume 64 (2001)
[19] Has the Universe always expanded?, Phys. Rev. D, Volume 65 ( Jan. 2002 )
[20] Adiabatic and entropy perturbations propagation in a bouncing universe, J. Cosmol. Astropart. Phys., Volume 0312 (2003)
[21] Non-gaussianity excess problem in classical bouncing cosmologies, Phys. Rev. D, Volume 91 (2015)
[22] Primordial perturbations in a nonsingular bouncing universe model, Phys. Rev. D, Volume 66 ( Sept. 2002 )
[23] Ghost condensation and a consistent infrared modification of gravity, J. High Energy Phys., Volume 0405 (2004)
[24] K-bounce, J. Cosmol. Astropart. Phys., Volume 009 ( Sept. 2007 )
[25] On the initial conditions in new ekpyrotic cosmology, J. High Energy Phys., Volume 0711 (2007)
[26] A matter bounce by means of ghost condensation, J. Cosmol. Astropart. Phys., Volume 1104 (2011)
[27] The new ekpyrotic ghost, J. Cosmol. Astropart. Phys., Volume 0804 (2008)
[28] Unstable growth of curvature perturbation in non-singular bouncing cosmologies, Phys. Rev. Lett., Volume 105 (2010)
[29] Evolution of curvature and anisotropy near a nonsingular bounce, Phys. Rev. D, Volume 84 (2011)
[30] A formal introduction to Horndeski and Galileon theories and their generalizations, Class. Quantum Gravity, Volume 30 (2013), p. 214006
[31] Subluminal Galilean genesis, J. High Energy Phys., Volume 1302 (2013)
[32] When matter matters, J. Cosmol. Astropart. Phys., Volume 1307 (2013)
[33] The pre-Big Bang scenario in string cosmology, Phys. Rep., Volume 373 ( Jan. 2003 ), pp. 1-2
[34] Regular cosmological bouncing solutions in low energy effective action from string theories, Phys. Rev. D, Volume 67 ( June 2003 )
[35] Construction of nonsingular cosmological solutions in string theories, Class. Quantum Gravity, Volume 20 (2003), pp. 1991-2014
[36] Ekpyrotic universe: colliding branes and the origin of the hot Big Bang, Phys. Rev. D, Volume 64 ( Dec. 2001 )
[37] Bouncing brane cosmologies from warped string compactifications, J. High Energy Phys., Volume 03 (2003)
[38] Cycling in the throat, J. High Energy Phys., Volume 04 (2007)
[39] Noninflationary model with scale invariant cosmological perturbations, Phys. Rev. D, Volume 75 ( Jan. 2007 )
Cited by Sources:
Comments - Policy