Comptes Rendus
Radio science for connecting humans with information systems / L'homme connecté
A regularised boundary element formulation for contactless SAR evaluations within homogeneous and inhomogeneous head phantoms
Comptes Rendus. Physique, Volume 16 (2015) no. 9, pp. 776-788.

This work presents a Boundary Element Method (BEM) formulation for contactless electromagnetic field assessments. The new scheme is based on a regularised BEM approach that requires the use of electric measurements only. The regularisation is obtained by leveraging on an extension of Calderón techniques to rectangular systems leading to well-conditioned problems independent of the discretisation density. This enables the use of highly discretized Huygens surfaces that can be consequently placed very near to the radiating source. In addition, the new regularised scheme is hybridised with both surfacic homogeneous and volumetric inhomogeneous forward BEM solvers accelerated with fast matrix–vector multiplication schemes. This allows for rapid and effective dosimetric assessments and permits the use of inhomogeneous and realistic head phantoms. Numerical results corroborate the theory and confirms the practical effectiveness of all newly proposed formulations.

Cet article présente une méthode aux éléments de frontière (BEM) adaptée à l'évaluation sans contact du champ électromagnétique. La nouvelle approche est fondée sur une formulation intégrale régularisée, qui nécessite seulement des mesures du champ électrique. La régularisation est obtenue à partir d'une extension des techniques de préconditionnement de type Calderón aux matrices rectangulaires. Cela résulte en des systèmes bien conditionnés indépendamment de la densité de discrétisation et permet l'utilisation de surfaces de Huygens ayant une discrétisation très fine qui, par voie de conséquence, peuvent être placées très près de la source rayonnante. En outre, la nouvelle formulation est hybridée avec deux solveurs d'intégrales de surface (pour des problèmes homogènes) et de volume (pour des problèmes non homogènes) et est accélérée avec des algorithmes rapides de multiplication matrice–vecteur. Ceci permet des évaluations dosimétriques rapides et efficaces et permet aussi l'utilisation de fantômes de tête non homogènes et réalistes. Les résultats numériques corroborent la théorie et confirment l'efficacité pratique de toutes les nouvelles formulations proposées.

Published online:
DOI: 10.1016/j.crhy.2015.10.003
Keywords: Computational dosimetry, SAR assessments, Boundary Element Method, Calderón preconditioning
Mot clés : Dosimétrie computationnelle, Evaluations SAR, Méthode des élements de frontière, Préconditionnement de Calderón

Rajendra Mitharwal 1; Francesco P. Andriulli 1

1 Computational Electromagnetics Research Laboratory, Microwave Department, Télécom Bretagne, Brest, France
     author = {Rajendra Mitharwal and Francesco P. Andriulli},
     title = {A regularised boundary element formulation for contactless {SAR} evaluations within homogeneous and inhomogeneous head phantoms},
     journal = {Comptes Rendus. Physique},
     pages = {776--788},
     publisher = {Elsevier},
     volume = {16},
     number = {9},
     year = {2015},
     doi = {10.1016/j.crhy.2015.10.003},
     language = {en},
AU  - Rajendra Mitharwal
AU  - Francesco P. Andriulli
TI  - A regularised boundary element formulation for contactless SAR evaluations within homogeneous and inhomogeneous head phantoms
JO  - Comptes Rendus. Physique
PY  - 2015
SP  - 776
EP  - 788
VL  - 16
IS  - 9
PB  - Elsevier
DO  - 10.1016/j.crhy.2015.10.003
LA  - en
ID  - CRPHYS_2015__16_9_776_0
ER  - 
%0 Journal Article
%A Rajendra Mitharwal
%A Francesco P. Andriulli
%T A regularised boundary element formulation for contactless SAR evaluations within homogeneous and inhomogeneous head phantoms
%J Comptes Rendus. Physique
%D 2015
%P 776-788
%V 16
%N 9
%I Elsevier
%R 10.1016/j.crhy.2015.10.003
%G en
%F CRPHYS_2015__16_9_776_0
Rajendra Mitharwal; Francesco P. Andriulli. A regularised boundary element formulation for contactless SAR evaluations within homogeneous and inhomogeneous head phantoms. Comptes Rendus. Physique, Volume 16 (2015) no. 9, pp. 776-788. doi : 10.1016/j.crhy.2015.10.003.

[1] Recommendation Council 519/EC of 12 July 1999 on the limitation of exposure of the general public to electromagnetic fields (0 Hz to 300 GHz), Off. J. Eur. Communities, L, Volume 59 (1999), pp. 59-70

[2] M. Grandolfo Worldwide standards on exposure to electromagnetic fields: an overview, The Environmentalist, Volume 29 (2009) no. 2, pp. 109-117

[3] J. Lin; R. Saunders; K. Schulmeister; P. Söderberg; A. Swerdlow; M. Taki; B. Veyret; G. Ziegelberger; M.H. Repacholi; R. Matthes et al. ICNIRP guidelines for limiting exposure to time-varying electric and magnetic fields (1 Hz to 100 kHz), Health Phys., Volume 99 (2010), pp. 818-836

[4] International Commission on Non-Ionizing Radiation Protection and others Guidance on determining compliance of exposure to pulsed and complex non-sinusoidal waveforms below 100 kHz with ICNIRP guidelines, Health Phys., Volume 84 (2003) no. 3, pp. 383-387

[5] International Commission on Non-Ionizing Radiation Protection and others ICNIRP statement on the “guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz)”, Health Phys., Volume 97 (2009) no. 3, pp. 257-258

[6] C. Chou; H. Bässen; J. Osepchuk; G. Balzano; R. Petersen; M. Meitz; R. Cleveland; J. Lin; L. Heynick Radio frequency electromagnetic exposure, J. Bioelectromagn., Volume 17 (1996), pp. 195-208

[7] T. Schmid; O. Egger; N. Kuster Automated E-field scanning system for dosimetric assessments, IEEE Trans. Microw. Theory Tech., Volume 44 (1996) no. 1, pp. 105-113

[8] Q. Balzano; O. Garay; T.J. Manning Electromagnetic energy exposure of simulated users of portable cellular telephones, IEEE Trans. Veh. Technol., Volume 44 (1995) no. 3, pp. 390-403

[9] International Electrotechnical Commission and others, Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices–human models, instrumentation, and procedures, 2009.

[10] IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques IEEE Std 1528-2003 (2003) 1–120 | DOI

[11] CENELEC EN50383, Basic standard for the calculation and measurement of electromagnetic field strength and SAR related to human exposure from radio base stations and fixed terminal stations for wireless telecommunication systems (110 MHz–40 GHz), Technical committee 211.

[12] IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques – Amendment 1: CAD File for Human Head Model (SAM Phantom) IEEE Std 1528a-2005 (Amendment to IEEE Std 1528-2003) (2006) 1–11 | DOI

[13] P. Glover; R. Bowtell Measurement of electric fields due to time-varying magnetic field gradients using dipole probes, Phys. Med. Biol., Volume 52 (2007) no. 17, p. 5119

[14] C. Gottueb; M. Hagmann; T. Babü; A. Abitbol; A. Lewin; P. Houdek; J. Schwade Interstitial microwave hyperthermia applicators having submillimetre diameters, Int. J. Hyperth., Volume 6 (1990) no. 3, pp. 707-714

[15] C. Gabriel; S. Gabriel; E. Corthout The dielectric properties of biological tissues: I. Literature survey, Phys. Med. Biol., Volume 41 (1996) no. 11, p. 2231

[16] S. Gabriel; R. Lau; C. Gabriel The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz, Phys. Med. Biol., Volume 41 (1996) no. 11, p. 2251

[17] B.B. Beard; W. Kainz; T. Onishi; T. Iyama; S. Watanabe; O. Fujiwara; J. Wang; G. Bit-Babik; A. Faraone; J. Wiart et al. Comparisons of computed mobile phone induced SAR in the SAM phantom to that in anatomically correct models of the human head, IEEE Trans. Electromagn. Compat., Volume 48 (2006) no. 2, pp. 397-407

[18] J. Wiart; A. Hadjem; M. Wong; I. Bloch Analysis of RF exposure in the head tissues of children and adults, Phys. Med. Biol., Volume 53 (2008) no. 13, p. 3681

[19] O.M. Bucci; C. Gennarelli; C. Savarese Representation of electromagnetic fields over arbitrary surfaces by a finite and nonredundant number of samples, IEEE Trans. Antennas Propag., Volume 46 (1998) no. 3, pp. 351-359

[20] O.M. Bucci; G. Franceschetti On the spatial bandwidth of scattered fields, IEEE Trans. Antennas Propag., Volume 35 (1987) no. 12, pp. 1445-1455

[21] O. Bucci; T. Isernia Electromagnetic inverse scattering: retrievable information and measurement strategies, Radio Sci., Volume 32 (1997) no. 6, pp. 2123-2137

[22] O.M. Bucci; L. Crocco; T. Isernia; V. Pascazio Subsurface inverse scattering problems: quantifying, qualifying, and achieving the available information, IEEE Trans. Geosci. Remote Sens., Volume 39 (2001) no. 11, pp. 2527-2538

[23] A. Hadjem; D. Lautru; C. Dale; M.F. Wong; V.F. Hanna; J. Wiart Study of specific absorption rate (SAR) induced in two child head models and in adult heads using mobile phones, IEEE Trans. Microw. Theory Tech., Volume 53 (2005) no. 1, pp. 4-11

[24] M.-F. Wong; J. Wiart Modelling of electromagnetic wave interactions with the human body, C. R. Physique, Volume 6 (2005) no. 6, pp. 585-594

[25] E. Conil; A. Hadjem; F. Lacroux; M. Wong; J. Wiart Variability analysis of SAR from 20 MHz to 2.4 GHz for different adult and child models using finite-difference time-domain, Phys. Med. Biol., Volume 53 (2008) no. 6, p. 1511

[26] G. Scarella; O. Clatz; S. Lanteri; G. Beaume; S. Oudot; J.-P. Pons; S. Piperno; P. Joly; J. Wiart Realistic numerical modelling of human head tissue exposure to electromagnetic waves from cellular phones, C. R. Physique, Volume 7 (2006) no. 5, pp. 501-508

[27] M. Mashevich; D. Folkman; A. Kesar; A. Barbul; R. Korenstein; E. Jerby; L. Avivi Exposure of human peripheral blood lymphocytes to electromagnetic fields associated with cellular phones leads to chromosomal instability, Bioelectromagnetics, Volume 24 (2003) no. 2, pp. 82-90

[28] J. Bakker; M. Paulides; E. Neufeld; A. Christ; X. Chen; N. Kuster; G. Van Rhoon Children and adults exposed to low-frequency magnetic fields at the ICNIRP reference levels: theoretical assessment of the induced electric fields, Phys. Med. Biol., Volume 57 (2012) no. 7, p. 1815

[29] G. Lazzi; O.P. Gandhi On modeling and personal dosimetry of cellular telephone helical antennas with the FDTD code, IEEE Trans. Antennas Propag., Volume 46 (1998) no. 4, pp. 525-530

[30] Y. Liu; Z. Liang; Z. Yang Computation of electromagnetic dosimetry for human body using parallel FDTD algorithm combined with interpolation technique, Prog. Electromagn. Res., Volume 82 (2008), pp. 95-107

[31] F.J. Meyer; D.B. Davidson; U. Jakobus; M.A. Stuchly Human exposure assessment in the near field of GSM base-station antennas using a hybrid finite element/method of moments technique, IEEE Trans. Biomed. Eng., Volume 50 (2003) no. 2, pp. 224-233

[32] K.D. Paulsen; X. Jia; J.M. Sullivan Finite element computations of specific absorption rates in anatomically conforming full-body models for hyperthermia treatment analysis, IEEE Trans. Biomed. Eng., Volume 40 (1993) no. 9, pp. 933-945

[33] J. Hand Modelling the interaction of electromagnetic fields (10 MHz–10 GHz) with the human body: methods and applications, Phys. Med. Biol., Volume 53 (2008) no. 16

[34] D. Lautru; J. Wiart; W. Tabbara Calculation of the power deposited in a phantom close to a base station antenna using a hybrid FDTD-MOMTD approach, 2000, IEEE (2000), pp. 1-4

[35] Y. Pinto; A. Ghanmi; A. Hadjem; E. Conil; T. Namur; C. Person; J. Wiart Numerical mobile phone models validated by SAR measurements, EUCAP (2011)

[36] J. Zhu; D. Jiao A theoretically rigorous full-wave finite-element-based solution of Maxwell's equations from DC to high frequencies, IEEE Trans. Adv. Packaging, Volume 33 (2010) no. 4, pp. 1043-1050

[37] O. Bottauscio; M. Chiampi; L. Zilberti A boundary element approach to relate surface fields with the specific absorption rate (SAR) induced in 3-D human phantoms, Eng. Anal. Bound. Elem., Volume 35 (2011) no. 4, pp. 657-666

[38] O. Bottauscio; M. Chiampi; L. Zilberti Boundary element approaches for the evaluation of human exposure to low frequency electromagnetic fields, IEEE Trans. Magn., Volume 45 (2009) no. 3, pp. 1674-1677

[39] D. Giordano; L. Zilberti; M. Borsero; M. Chiampi; O. Bottauscio Experimental validation of MRI dosimetric simulations in phantoms including metallic objects, IEEE Trans. Magn., Volume 50 (2014) no. 11, pp. 1-4

[40] R. Albanese; P.B. Monk The inverse source problem for Maxwell's equations, Inverse Probl., Volume 22 (2006) no. 3, p. 1023

[41] A. Lakhal; A. Louis Locating radiating sources for Maxwell's equations using the approximate inverse, Inverse Probl., Volume 24 (2008) no. 4

[42] E.A. Marengo; A.J. Devaney; R.W. Ziolkowski Inverse source problem and minimum-energy sources, J. Opt. Soc. Am. A, Volume 17 (2000) no. 1, pp. 34-45

[43] A.J. Devaney; E.A. Marengo; M. Li Inverse source problem in nonhomogeneous background media, SIAM J. Appl. Math., Volume 67 (2007) no. 5, pp. 1353-1378

[44] G. Gragnani; M.D. Mendez Improved electromagnetic inverse scattering procedure using non-radiating sources and scattering support reconstruction, IET Microw. Antennas Propag., Volume 5 (2011) no. 15, pp. 1822-1829

[45] J. Sylvester Notions of support for far fields, Inverse Probl., Volume 22 (2006) no. 4, p. 1273

[46] A. Beck; M. Teboulle A fast iterative shrinkage-thresholding algorithm for linear inverse problems, SIAM J. Imaging Sci., Volume 2 (2009) no. 1, pp. 183-202

[47] S.C. Park; M.K. Park; M.G. Kang Super-resolution image reconstruction: a technical overview, IEEE Signal Process. Mag., Volume 20 (2003) no. 3, pp. 21-36

[48] I. Daubechies; M. Defrise; C. De Mol An iterative thresholding algorithm for linear inverse problems with a sparsity constraint | arXiv

[49] A. Abubakar; P. Van den Berg; S. Semenov Two-and three-dimensional algorithms for microwave imaging and inverse scattering, J. Electromagn. Waves Appl., Volume 17 (2003) no. 2, pp. 209-231

[50] T. Rubk; P.M. Meaney; P. Meincke; K.D. Paulsen Nonlinear microwave imaging for breast-cancer screening using Gauss–Newton's method and the CGLS inversion algorithm, IEEE Trans. Antennas Propag., Volume 55 (2007) no. 8, pp. 2320-2331

[51] P.M. Meaney; M.W. Fanning; D. Li; S.P. Poplack; K.D. Paulsen A clinical prototype for active microwave imaging of the breast, IEEE Trans. Microw. Theory Tech., Volume 48 (2000) no. 11, pp. 1841-1853

[52] J. De Zaeytijd; A. Franchois; C. Eyraud; J.-M. Geffrin Full-wave three-dimensional microwave imaging with a regularized Gauss–Newton method—theory and experiment, IEEE Trans. Antennas Propag., Volume 55 (2007) no. 11, pp. 3279-3292

[53] J. De Zaeytijd; A. Franchois Three-dimensional quantitative microwave imaging from measured data with multiplicative smoothing and value picking regularization, Inverse Probl., Volume 25 (2009) no. 2

[54] K. Cools; F.P. Andriulli; E. Michielssen A Calderón multiplicative preconditioner for the PMCHWT integral equation, IEEE Trans. Antennas Propag., Volume 59 (2011) no. 12, pp. 4579-4587

[55] O.D. Kellogg, et al., Foundations of Potential Theory, New York, 1929.

[56] J.L.A. Quijano; G. Vecchi Field and source equivalence in source reconstruction on 3D surfaces, Prog. Electromagn. Res., Volume 103 (2010), pp. 67-100

[57] S.M. Rao; D. Wilton; A.W. Glisson Electromagnetic scattering by surfaces of arbitrary shape, IEEE Trans. Antennas Propag., Volume 30 (1982) no. 3, pp. 409-418

[58] D.H. Schaubert; D.R. Wilton; A.W. Glisson A tetrahedral modeling method for electromagnetic scattering by arbitrarily shaped inhomogeneous dielectric bodies, IEEE Trans. Antennas Propag., Volume 32 (1984) no. 1, pp. 77-85

[59] W.C. Chew; J.-M. Jin; E. Michielssen; J. Song Fast and Efficient Algorithms in Computational Electromagnetics, ARTECH House, 2001

[60] M. Leibfritz; F. Landstorfer; T. Eibert An equivalent source method to determine complex excitation levels of antenna arrays from near-field measurements, 2007, EuCAP 2007, IET (2007), pp. 1-7

[61] F. Andriulli; A. Tabacco; G. Vecchi Solving the EFIE at low frequencies with a conditioning that grows only logarithmically with the number of unknowns, Volume 58 (2010) no. 5, pp. 1614-1624 | DOI

[62] F. Andriulli Loop-star and loop-tree decompositions: analysis and efficient algorithms, Volume 60 (2012) no. 5, pp. 2347-2356 | DOI

[63] F. Andriulli; K. Cools; I. Bogaert; E. Michielssen On a well-conditioned electric field integral operator for multiply connected geometries, IEEE Trans. Antennas Propag., Volume 61 (2013) no. 4, pp. 2077-2087

[64] F.P. Andriulli; K. Cools; H. Bagci; F. Olyslager; A. Buffa; S. Christiansen; E. Michielssen A multiplicative Calderón preconditioner for the electric field integral equation, Volume 56 (2008) no. 8, pp. 2398-2412

[65] J.-C. Nedéléc Acoustic and Electromagnetic Equations, Springer, 2000

[66] A. Buffa; S.H. Christiansen A dual finite element complex on the barycentric refinement, Math. Comput., Volume 76 (2007) no. 260, pp. 1743-1769

Cited by Sources:

Comments - Policy