On-body communication technology development requires a better knowledge of antenna radiation and wave propagation along the body, in both near and far fields. Therefore, Green's functions associated with penetrable cylinders are briefly reviewed, considering frequencies at which the body is not much larger than the wavelength and with a particular attention given to the near fields. A unified approach based on current sheets is provided and an acceleration technique is proposed. This is validated with the help of an FDTD software, which also allows the analysis of non-canonical cross-sections. The properties of creeping waves launched by sources parallel and perpendicular to the body are studied, in particular from the point of view of their phase velocity, and a very simple fitting model is proposed. It is also explained how the Green function can be exploited to analyze antennas very efficiently with the help of an integral-equation approach.
La technologie de communication corporelle nécessite une meilleure connaissance du rayonnement des antennes et de la propagation le long du corps humain, tant en champs proches qu'en champs lointains. Par conséquent, les fonctions de Green associées aux cylindres pénétrables sont brièvement revues pour des fréquences où le corps n'est pas beaucoup plus grand que la longueur d'onde, avec une attention particulière portée aux champs proches. Une approche unifiée, fondée sur des nappes de courant, est adoptée, et une technique d'accélération est proposée. Ceci est validé à l'aide d'un logiciel FDTD, qui permet aussi l'analyse de sections non canoniques. Les propriétés des ondes rampantes excitées par des sources parallèles et perpendiculaires au corps sont étudiées : en particulier, leur vitesse de phase. Un modèle d'interpolation très simple est proposé. Nous expliquons également comment les antennes en présence du corps peuvent être analysées en exploitant les fonctions de Green via la résolution d'équations intégrales.
Mots-clés : Réseaux corporels, Ondes rampantes, Antennes
Khaleda Ali 1; Farshad Keshmiri 2; Alessio Brizzi 1; Yang Hao 1; Christophe Craeye 3
@article{CRPHYS_2015__16_9_789_0, author = {Khaleda Ali and Farshad Keshmiri and Alessio Brizzi and Yang Hao and Christophe Craeye}, title = {Body area networks at radio frequencies: {Creeping} waves and antenna analysis}, journal = {Comptes Rendus. Physique}, pages = {789--801}, publisher = {Elsevier}, volume = {16}, number = {9}, year = {2015}, doi = {10.1016/j.crhy.2015.10.005}, language = {en}, }
TY - JOUR AU - Khaleda Ali AU - Farshad Keshmiri AU - Alessio Brizzi AU - Yang Hao AU - Christophe Craeye TI - Body area networks at radio frequencies: Creeping waves and antenna analysis JO - Comptes Rendus. Physique PY - 2015 SP - 789 EP - 801 VL - 16 IS - 9 PB - Elsevier DO - 10.1016/j.crhy.2015.10.005 LA - en ID - CRPHYS_2015__16_9_789_0 ER -
%0 Journal Article %A Khaleda Ali %A Farshad Keshmiri %A Alessio Brizzi %A Yang Hao %A Christophe Craeye %T Body area networks at radio frequencies: Creeping waves and antenna analysis %J Comptes Rendus. Physique %D 2015 %P 789-801 %V 16 %N 9 %I Elsevier %R 10.1016/j.crhy.2015.10.005 %G en %F CRPHYS_2015__16_9_789_0
Khaleda Ali; Farshad Keshmiri; Alessio Brizzi; Yang Hao; Christophe Craeye. Body area networks at radio frequencies: Creeping waves and antenna analysis. Comptes Rendus. Physique, Radio science for connecting humans with information systems / L’homme connecté, Volume 16 (2015) no. 9, pp. 789-801. doi : 10.1016/j.crhy.2015.10.005. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2015.10.005/
[1] Propagation between on-body antennas, IEEE Trans. Antennas Propag., Volume 57 (2009), pp. 3619-3627
[2] et al. An analytical path-loss model for on-body radio propagation, URSI International Symposium, 2010, pp. 332-335
[3] et al. Analytical creeping wave model and measurements for 60 GHz body area networks, IEEE Trans. Antennas Propag., Volume 62 (2014), pp. 4352-4356
[4] Channel model for wireless communication around human body, Electron. Lett., Volume 40 (2004), pp. 543-544
[5] A review of radio channel models for body centric communications, Radio Sci., Volume 49 (2014), pp. 371-388
[6] Numerical analysis of bodyworn UHF antenna systems, Electron. Commun. Eng. J., Volume 13 (2001), pp. 53-64
[7] Antennas and Propagation for Body-Centric Wireless Communications, Artech House, Norwood, MA, USA, 2006
[8] et al. Antennas and propagation for on-body communication systems, IEEE Trans. Antennas Propag., Volume 49 (2007), pp. 41-58
[9] et al. Antenna design and channel modeling in the BAN context – part I: antennas, Ann. Telecommun. (2011), pp. 139-155
[10] et al. Polymeric ferrite-loaded antennas for on-body communications, Microw. Opt. Technol. Lett., Volume 11 (2009), pp. 2530-2533
[11] et al. A body area propagation model derived from fundamental principles: analytical analysis and comparison with measurements, IEEE Trans. Antennas Propag., Volume 58 (2010), pp. 503-514
[12] Green's function models and measurements for body area network (BAN) channels, IEEE Int. Conf. Wireless Inf. Tech. Sys., 2010
[13] Analytical propagation modeling of BAN channels based on the creeping-wave theory, IEEE Trans. Antennas Propag., Volume 59 (2011), pp. 1269-1274
[14] et al. An analytical modeling of polarized time-variant on-body propagation channels with dynamic body scattering, EURASIP J. Wirel. Commun. Netw. (2011), pp. 1-15
[15] et al. The utilization of body skeleton model for modeling the dynamic BAN channels, EuCAP (2012), pp. 540-543
[16] Dyadic Green's Functions in Electromagnetic Theory, IEEE Press, New York, 1994
[17] Computational Electrodynamics: The Finite-Difference Time-Domain Method, Artech House, Norwood, MA, 2000
[18] Waves and Fields in Inhomogeneous Media, IEEE Press, New York, 1995
[19] Multilayered media Green's functions in integral equation formulations, IEEE Trans. Antennas Propag., Volume 45 (1997), pp. 508-519
[20] Methods of Theoretical Physics, McGraw-Hill, New York, 1953
[21] Multiple scattering by a planar array of parallel dielectric cylinders, Appl. Opt., Volume 31 (1992), pp. 3524-3531
[22] G. Roqueta, A. Fort, C. Craeye, C. Oestges, Analytical propagation models for body area networks, in: Proc. IET Seminar on Antennas and Propagation for Body-Centric Wireless Communications, 24 April 2007, pp. 90–96.
[23] Wave propagation from sources with arbitrary polarization next to the human body, Toronto (2010)
[24] Moment-method analysis of normal-to-body antennas using a Green's function approach, IEEE Trans. Antennas Propag., Volume 60 (2012), pp. 4259-4270
[25] Green's function for layered media with special application to microstrip antennas, IEEE Trans. Microw. Theory Tech., Volume 36 (1988), pp. 875-881
[26] Non-line-of-sight on-body ultra wideband (1–6 GHz) channel characterisation using different antenna polarisations, IET Microw. Antennas Propag., Volume 3 (2009), pp. 1019-1027
[27] Polarisation diversity performance for on-body communication applications, IET Microw. Antennas Propag., Volume 5 (2011), pp. 232-236
[28] Accurate modeling of body area network channels using surface-based method of moments, IEEE Trans. Antennas Propag., Volume 59 (2011), pp. 3022-3030
[29] The ancient and modern history of EM ground-wave propagation, IEEE Antennas Propag. Mag., Volume 40 (1998) no. 5, pp. 7-24
[30] Electromagnetic Waves and Antennas, Rutgers Univ. Ed., 2008
[31] The propagation of radio waves over the surface of the earth and in the upper atmosphere, Proc. Inst. Radio Eng., Volume 24 (1937), pp. 1203-1236
[32] On-body propagation at 60 GHz, IEEE Trans. Antennas Propag., Volume 61 (2013), pp. 1876-1888
[33] A compact UWB antenna for on-body applications, IEEE Trans. Antennas Propag., Volume 59 (2011), pp. 1123-1131
[34] High-frequency surface field excited by a magnetic line source on an impedance cylinder, IEEE Trans. Antennas Propag., Volume 35 (1987), pp. 293-298
[35] The diffraction of electric waves by the Earth, Proc. R. Soc. Lond. A, Volume 95 (1918), pp. 83-99
[36] Antenna Theory: Analysis and Design, Wiley, New York, 2005
[37] Analytic propagation model for wireless body-area networks, IEEE Trans. Antennas Propag., Volume 59 (2011), pp. 4749-4756
[38] Analysis of coupled tilted slot antennas in FDTD using a novel time domain Huygens method with application to body area networks, IEEE Trans. Antennas Propag., Volume 60 (2012), pp. 1987-1994
[39] A reduced-size wide slot antenna for enhancing along-body radio propagation in UWB on-body communications, IEEE Trans. Antennas Propag., Volume 62 (2014), pp. 1194-1203
[40] Multi-slot antenna with a screening backplane for UWB BAN applications, Int. J. Antennas Propag., Volume 2012 (2012)
[41] A perfectly matched layer for the absorption of electromagnetic waves, J. Comput. Phys., Volume 114 (1994), pp. 185-200
[42] Currents induced in an anatomically based model of a human for exposure to vertically polarized electromagnetic pulses, IEEE Trans. Microw. Theory Tech., Volume 39 (1991), pp. 31-39
[43] et al. The visible human male: a technical report, J. Am. Med. Inform. Assoc., Volume 3 (1996), pp. 118-130
[44] FDTD calculations of the whole-body averaged SAR in an anatomically realistic voxel model of the human body from 1 MHz to 1 GHz, Phys. Med. Biol., Volume 42 (1997), pp. 479-490
[45] et al. A whole body statistical shape model for radio frequency simulation, EMBC (2011), pp. 7143-7146
[46] et al. An efficient FDTD algorithm based on the equivalence principle for analyzing on-body antenna performance, IEEE Trans. Antennas Propag., Volume 57 (2009), pp. 1006-1014
[47] et al. Quantitative estimation of subject specific on-body propagation channel, Antennas Wirel. Propag. Lett., Volume 14 (2014), pp. 398-401
[48] et al. Numerical characterization and modelling of subject-specific ultra wide band body-centric radio channels and systems for healthcare applications, IEEE Trans. Inf. Technol. Biomed., Volume 16 (2012), pp. 221-227
[49] Dielectric properties of body tissues in the frequency range 10 Hz–100 GHz http://niremf.ifac.cnr.it/tissprop/ (INRC, 2012 [online]. Available:)
[50] http://www.cs.princeton.edu/~min/binvox/
[51] IEEE Standard definitions of terms for radio wave propagation, 1997.
[52] et al. On-body propagation velocity estimation using ultra-wideband frequency-domain spatial correlation analyses, Electron. Lett., Volume 43 (2007), pp. 1405-1406
[53] Antennas and Radiowave Propagation, McGraw-Hill, New York, 1985
[54] et al. Antenna radiation characteristics for on-body communication channel using creeping-wave theory, EuCAP (2015)
[55] Parasitic array antenna with enhanced surface wave launching for on-body communications, IEEE Trans. Antennas Propag., Volume 61 (2013), pp. 1976-1985
[56] A compact planar inverted-F antenna for 2.45 GHz on-body communication, IEEE Trans. Antennas Propag., Volume 60 (2012), pp. 4422-4426
[57] Body-Area-Network antennas: Green's functions, numerical analysis and design, Université catholique de Louvain, Belgium, February 2012 (Ph.D. thesis)
[58] Field Computation by Moment Methods, Wiley–IEEE Press, New York, 1993
[59] A Green's function approach for analysis of body-area-network antennas, Loughborough, UK (2009)
[60] Time-Harmonic Electromagnetic Fields, McGraw-Hill, New York, 1961
[61] E-field, H-field, and combined field solution for arbitrarily shaped three-dimensional dielectric bodies, Electromagnetics, Volume 10 (1990), pp. 407-421
[62] Field Mathematics for Electromagnetics, Photonics and Materials Science, SPIE Library, Washington D.C., 2007
Cited by Sources:
Comments - Policy