Comptes Rendus
Influence of the electronic structure on the transport properties of some iron pnictides
[Influence de la structure électronique sur les propriétés de transport de quelques pnictures à base de fer]
Comptes Rendus. Physique, Volume 17 (2016) no. 1-2, pp. 164-187.

Une caractéristique importante des pnictures à base de fer est leur structure électronique « multi-bandes » présentant à la fois des bandes d'électrons et de trous au niveau de Fermi. La taille de ces poches peut être changée par différents types de substitution, ce qui entraine une grande diversité de propriétés magnétiques et électroniques originales. On s'attend également à ce que la contribution des deux types de porteurs ait une importance considérable sur les propriétés de transport en fonction de la température et du dopage. Il a été également souligné que l'interaction de Hund joue un rôle prépondérant dans la physique de ces composés en permettant une forte différenciation entre les orbitales 3d du Fe. En conséquence, une description en termes d'électrons plus ou moins corrélés a été proposée, ce qui pourrait avoir d'importantes conséquences sur les temps de diffusion des différents porteurs de charge. Enfin la présence de bandes très plates au niveau de Fermi est susceptible d'induire un comportement de type « semiconducteur », avec un changement de la concentration des porteurs de charge avec la température. Dans ce papier, nous allons passer en revue l'évolution des propriétés de transport avec la substitution ou le dopage chimique dans les pnictures de fer. Nous allons plus particulièrement nous intéresser à la famille des composés 122 (Ba(Sr,Ca)Fe2As2) et du composé 111 LiFeAs pour lesquels des monocristaux de taille adaptée à la mesure des propriétés de transport sont disponibles. Les données combinées de résistivité, effet Hall et magnétorésistance seront analysées en association avec les calculs de structure électronique, les mesures de photoémission résolues en angle et oscillations quantiques. En dépit de la forte interaction entre antiferromagnétisme et supraconductivité dans la plus grande partie de leurs diagrammes de phase, la signature des fluctuations de spin n'apparait pas directement dans les propriétés de transport des pnictures de fer. Nous montrerons que la mesure de la magnétorésistance longitudinale fournit une sonde intéressante pour étudier le couplage entre les porteurs de charge et les degrés de liberté de spin.

An important feature of the iron-based pnictides is their multi-band electronic structure with both electron and hole bands at the Fermi level. The size of these pockets can be changed by different types of substitution, resulting in a variety of original magnetic and electronic properties. The contributions of both types of carriers will thus have important consequences on the evolution of the transport properties versus temperature and doping. It has been pointed out that Hund's rule interaction plays a prominent role in the physics of these compounds by allowing a strong orbital differentiation between the 3d Fe orbitals. As a result, a description in terms of more or less correlated electrons was proposed and may have important consequences on the scattering lifetimes of the different carriers. Finally, the presence of very flat bands at the Fermi level may induce a semiconductor-like behavior, with a change in carrier concentration with temperature. In this paper, we will review the evolution of transport properties with chemical doping/substitution in iron pnictides. We will more particularly focus on the 122 family (Ba(Sr,Ca)Fe2As2) and the 111 LiFeAs compound for which sizeable single crystals required for transport measurements are available. The combined resistivity, Hall effect and magnetoresistance data will be analyzed in association with electronic structure calculations, angle-resolved photoemission measurements and quantum oscillations. In spite of the strong interplay between antiferromagnetism and superconductivity in most part of their phase diagram, direct signatures of spin fluctuations are difficult to identify in the transport properties of iron pnictides. We will show that measurements of the longitudinal magnetoresistance provide a powerful tool for studying the coupling between the charge carriers and the spin degrees of freedom.

Publié le :
DOI : 10.1016/j.crhy.2015.10.007
Keywords: Iron pnictides, Transport properties, 122 family, 111 LiFeAs compound
Mot clés : Pnictures de fer, Propriétés de transport, Famille des 122, Compose 111 LiFeAs
Florence Rullier-Albenque 1

1 Service de l'État Condensé, IRAMIS, CEA, CNRS UMR 2464, Université Paris-Saclay, Orme des Merisiers, CEA Saclay, 91191 Gif-sur-Yvette cedex, France
@article{CRPHYS_2016__17_1-2_164_0,
     author = {Florence Rullier-Albenque},
     title = {Influence of the electronic structure on the transport properties of some iron pnictides},
     journal = {Comptes Rendus. Physique},
     pages = {164--187},
     publisher = {Elsevier},
     volume = {17},
     number = {1-2},
     year = {2016},
     doi = {10.1016/j.crhy.2015.10.007},
     language = {en},
}
TY  - JOUR
AU  - Florence Rullier-Albenque
TI  - Influence of the electronic structure on the transport properties of some iron pnictides
JO  - Comptes Rendus. Physique
PY  - 2016
SP  - 164
EP  - 187
VL  - 17
IS  - 1-2
PB  - Elsevier
DO  - 10.1016/j.crhy.2015.10.007
LA  - en
ID  - CRPHYS_2016__17_1-2_164_0
ER  - 
%0 Journal Article
%A Florence Rullier-Albenque
%T Influence of the electronic structure on the transport properties of some iron pnictides
%J Comptes Rendus. Physique
%D 2016
%P 164-187
%V 17
%N 1-2
%I Elsevier
%R 10.1016/j.crhy.2015.10.007
%G en
%F CRPHYS_2016__17_1-2_164_0
Florence Rullier-Albenque. Influence of the electronic structure on the transport properties of some iron pnictides. Comptes Rendus. Physique, Volume 17 (2016) no. 1-2, pp. 164-187. doi : 10.1016/j.crhy.2015.10.007. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2015.10.007/

[1] J. Paglione; R.L. Greene Nat. Phys., 6 (2010), p. 645

[2] D.C. Johnston Adv. Phys., 59 (2010), p. 803

[3] A. van Roekeghem; P. Richard; H. Ding; S. Biermann Spectral properties of transition metal pnictides and chalcogenides: angle-resolved photoemission spectroscopy and dynamical mean-field theory, C. R. Physique, Volume 17 (2016) no. 1–2, pp. 140-163 ( this issue )

[4] I.I. Mazin; D.J. Singh; M.D. Johannes; M.H. Du Phys. Rev. Lett., 101 (2008)

[5] P. Hirschfeld Using gap symmetry and structure to reveal the pairing mechanism in Fe-based superconductors, C. R. Physique, Volume 17 (2016) no. 1–2, pp. 197-231 ( this issue )

[6] F. Rullier-Albenque; D. Colson; A. Forget; H. Alloul Phys. Rev. Lett., 103 (2009)

[7] A. Lankau; K. Koepernik; S. Borisenko; V. Zabolotnyy; B. Büchner; J. van den Brink; H. Eschrig Phys. Rev. B, 82 (2010)

[8] A. Leithe-Jasper; W. Schnelle; C. Geibel; H. Rosner Phys. Rev. Lett., 101 (2008)

[9] A.S. Sefat; R. Jin; M.A. McGuire; B.C. Sales; D.J. Singh; D. Mandrus Phys. Rev. Lett., 101 (2008)

[10] N. Ni; M.E. Tillman; J.-Q. Yan; A. Kracher; S.T. Hannahs; S.L. Bud'ko; P.C. Canfield Phys. Rev. B, 78 (2008)

[11] S. Sharma; A. Bharathi; S. Chandra; R. Reddy; S. Paulraj; A. Satya; V. Sastry; A. Gupta; C. Sundar Phys. Rev. B, 81 (2010)

[12] W. Schnelle; A. Leithe-Jasper; R. Gumeniuk; U. Burkhardt; D. Kasinathan; H. Rosner Phys. Rev. B, 79 (2009)

[13] M. Rotter; M. Tegel; D. Johrendt Phys. Rev. Lett., 101 (2008)

[14] Zhi Ren; Qian Tao; Shuai Jiang; Chunmu Feng; Cao Wang; Jianhui Dai; Guanghan Cao; Zhu'an Xu Phys. Rev. Lett., 102 (2009)

[15] Shuai Jiang; Hui Xing; Guofang Xuan; Cao Wang; Zhi Ren; Chunmu Feng; Jianhui Dai; Zhu'an Xu; Guanghan Cao J. Phys. Condens. Matter, 21 (2009), p. 382203

[16] S. Kasahara; T. Shibauchi; K. Hashimoto; K. Ikada; S. Tonegawa; R. Okazaki; H. Shishido; H. Ikeda; H. Takeya; K. Hirata; T. Terashima; Y. Matsuda Phys. Rev. B, 81 (2010)

[17] S.R. Saha; N.P. Butch; K. Kirshenbaum; Johnpierre Paglione; P.Y. Zavali Phys. Rev. Lett., 103 (2009)

[18] A. Martinelli; F. Bernardini; S. Massida The phase diagrams of iron-based superconductors: theory and experiments, C. R. Physique, Volume 17 (2016) no. 1–2, pp. 5-35 ( this issue )

[19] Krzysztof Gofryk; Minghu Pan; Claudia Cantoni; Bayrammurad Saparov; Jonathan E. Mitchell; Athena S. Sefat Phys. Rev. Lett., 112 (2014)

[20] A. Olariu; F. Rullier-Albenque; D. Colson; A. Forget Phys. Rev. B, 83 (2011)

[21] Fanlong Ning; Kanagasingham Ahilan; Takashi Imai; Athena S. Sefat; Ronying Jin; Michael A. McGuire; Brian C. Sales; David Mandrus J. Phys. Soc. Jpn., 78 (2009)

[22] V. Brouet; M. Marsi; B. Mansart; A. Nicolaou; A. Taleb-Ibrahimi; P. Le Fèvre; F. Bertran; F. Rullier-Albenque; A. Forget; D. Colson Phys. Rev. B, 80 (2009)

[23] Y. Sekiba; T. Sato; K. Nakayama; K. Terashima; P. Richard; J.H. Bowen; H. Ding; Y.-M. Xu; L.J. Li; G.H. Cao; Z.-A. Xu; T. Takahashi New J. Phys., 11 (2009)

[24] S. Ideta; T. Yoshida; I. Nishi; A. Fujimori; Y. Kotani; K. Ono; Y. Nakashima; S. Yamaichi; T. Sasagawa; M. Nakajima; K. Kihou; Y. Tomioka; C.H. Lee; A. Iyo; H. Eisaki; T. Ito; S. Uchida; R. Arita Phys. Rev. Lett., 110 (2013)

[25] H. Wadati; I. Elfimov; G.A. Sawatzky Phys. Rev. Lett., 105 (2010)

[26] P.C. Canfield; S.L. Bud'ko Annu. Rev. Condens. Matter Phys., 1 (2010), pp. 27-50

[27] Qimiao Si; Elihu Abrahams Phys. Rev. Lett., 101 (2008)

[28] K. Haule; G. Kottliar New J. Phys., 11 (2009)

[29] V. Brouet; P.-H. Lin; Y. Texier; J. Bobroff; A. Taleb-Ibrahimi; P. Le Févre; F. Bertran; M. Casula; P. Werner; S. Biermann; F. Rullier-Albenque; A. Forget; D. Colson Phys. Rev. Lett., 110 (2013)

[30] Y. Wang; Maria N. Gastiasoro; Brian M. Andersen; M. Tomić; Harald O. Jeschke; Roser Valentí; Indranil Paul; P.J. Hirschfeld Phys. Rev. Lett., 114 (2015)

[31] F. Rullier-Albenque, D. Colson, A. Forget, unpublished results.

[32] Lei Fang; Huiqian Luo; Peng Cheng; Zhaosheng Wang; Ying Jia; Gang Mu; Bing Shen; I.I. Mazin; Lei Shan; Cong Ren; Hai-Hu Wen Phys. Rev. B, 80 (2009)

[33] R.S. Dhaka; S.E. Hahn; E. Razzoli; R. Jiang; M. Shi; B.N. Harmon; A. Thaler; S.L. Bud'ko; P.C. Canfield; A. Kaminski Phys. Rev. Lett., 110 (2013)

[34] B. Muschler; W. Prestel; R. Hackl; T.P. Devereaux; J.G. Analytis; J.-H. Chu; I.R. Fisher Phys. Rev. B, 80 (2009)

[35] E.G. Maksimov; A.E. Karakozov; B.P. Gorshunov; A.S. Prokhorov; A.A. Voronkov; E.S. Zhukova; V.S. Nozdrin; S.S. Zhukov; D. Wu; M. Dressel; S. Haindl; K. Iida; B. Holzapfel Phys. Rev. B, 83 (2011)

[36] A.F. Kemper; M.M. Korshunov; T.P. Devereaux; J.N. Fry; H.-P. Cheng; P.J. Hirschfeld Phys. Rev. B, 83 (2011)

[37] Maxim Breitkreiz; P.M.R. Brydon; Carsten Timm Phys. Rev. B, 89 (2014)

[38] L. Benfatto; E. Cappelluti Phys. Rev. B, 83 (2011)

[39] Melissa Gooch; Bing Lv; Bernd Lorenz; Arnold M. Guloy; Ching-Wu Chu Phys. Rev. B, 79 (2009)

[40] Nicolas Doiron-Leyraud; Pascale Auban-Senzier; Samuel René de Cotret; Claude Bourbonnais; Denis Jérome; Klaus Bechgaard; Louis Taillefer Phys. Rev. B, 80 (2009)

[41] N.W. Ashcroft; N.D. Mermin Solid State Physics, Saunders College Publishing, Philadelphia, 1976

[42] L. Fanfarillo; E. Cappelluti; C. Castellani; L. Benfatto Phys. Rev. Lett., 109 (2012)

[43] F.L. Ning; K. Ahilan; T. Imai; A.S. Sefat; M.A. McGuire; B.C. Sales; D. Mandrus; P. Cheng; B. Shen; H.H. Wen Phys. Rev. Lett., 104 (2010)

[44] R. Zhou; Z. Li; J. Yang; D.L. Sun; C.T. Lin; Guo-qing Zheng Nat. Commun., 4 (2013), p. 2265

[45] N. Barišić; D. Wu; M. Dressel; L.J. Li; G.H. Cao; Z.A. Xu Phys. Rev. B, 82 (2010)

[46] F. Rullier-Albenque; D. Colson; A. Forget Phys. Rev. B, 88 (2013)

[47] T. Moriya Spin Fluctuations in Itinerant Electron Magnetism, Springer Series in Solid State Sciences, vol. 56, Springer-Verlag, 1985

[48] K. Usami; T. Moriya J. Phys. Soc. Jpn., 44 (1978), p. 122

[49] D.S. Inosov; J.T. Park; P. Bourges; D.L. Sun; Y. Sidis; A. Schneidewind; K. Hradil; D. Haug; C.T. Lin; B. Keimer; V. Hinkov Nat. Phys., 6 (2010), p. 178

[50] L. de'Medici; S.R. Hassan; M. Capone J. Supercond. Nov. Magn., 22 (2009), p. 535

[51] Z.P. Yin; K. Haule; G. Kotliar Nat. Mater., 10 (2011), pp. 932-935

[52] L. de'Medici; G. Giovannetti; M. Capone (unpublished) | arXiv

[53] I. Paul; G. Kottliar Phys. Rev. B, 64 (2001)

[54] S. Arsenijević; H. Hodovanets; R. Gaál; L. Forró; S.L. Bud'ko; P.C. Canfield Phys. Rev. B, 87 (2013)

[55] D. Hsieh; Y. Xia; L. Wray; D. Qian; K.K. Gomes; A. Yazdani; G.F. Chen; J.L. Luo; N.L. Wang; M.Z. Hasan, 2008 (unpublished) | arXiv

[56] Chang Liu; Takeshi Kondo; Rafael M. Fernandes; Ari D. Palczewski; Eun Deok Mun; Ni Ni; Alexander N. Thaler; Aaron Bostwick; Eli Rotenberg; Jörg Schmalian; Sergey L. Bud'ko; Paul C. Canfield; Adam Kaminski Nat. Phys., 6 (2010), p. 419

[57] P. Richard; K. Nakayama; T. Sato; M. Neupane; Y.-M. Xu; J.H. Bowen; G.F. Chen; J.L. Luo; N.L. Wang; X. Dai; Z. Fang; H. Ding; T. Takahashi Phys. Rev. Lett., 104 (2010)

[58] Yeongkwan Kim; Hyungju Oh; Chul Kim; Dongjoon Song; Wonsig Jung; Beomyoung Kim; Hyoung Joon Choi; Changyoung Kim; Bumsung Lee; Seunghyun Khim; Hyungjoon Kim; Keehoon Kim; Jongbeom Hong; Yongseung Kwon Phys. Rev. B, 83 (2011)

[59] M. Fuglsang Jensen; V. Brouet; E. Papalazarou; A. Nicolaou; A. Taleb-Ibrahimi; P. Le Fèvre; F. Bertran; A. Forget; D. Colson Phys. Rev. B, 84 (2011)

[60] Suchitra E. Sebastian; J. Gillett; N. Harrison; P.H.C. Lau; D.J. Singh; C.H. Mielke; G.G. Lonzarich J. Phys. Condens. Matter, 20 (2008), p. 422203

[61] James G. Analytis; Ross D. McDonald; Jiun-Haw Chu; Scott C. Riggs; Alimamy F. Bangura; Chris Kucharczyk; Michelle Johannes; I.R. Fisher Phys. Rev. B, 80 (2009)

[62] Taichi Terashima; Nobuyuki Kurita; Megumi Tomita; Kunihiro Kihou; Chul-Ho Lee; Yasuhide Tomioka; Toshimitsu Ito; Akira Iyo; Hiroshi Eisaki; Tian Liang; Masamichi Nakajima; Shigeyuki Ishida; Shin-ichi Uchida; Hisatomo Harima; Shinya Uji Phys. Rev. Lett., 107 (2011)

[63] K.K. Huynh; Y. Tanabe; K. Tanigaki Phys. Rev. Lett., 106 (2011)

[64] H.H. Kuo; J.H. Chu; S.C. Riggs; L. Yu; P.L. McMahon; K. De Greve; Y. Yamamoto; J.G. Analytis; I.R. Fisher Phys. Rev. B, 84 (2011)

[65] S. Ishida; T. Liang; M. Nakajima; K. Kihou; C.H. Lee; A. Iyo; H. Eisaki; T. Kakeshita; T. Kida; M. Hagiwara; Y. Tomioka; T. Ito; S. Uchida Phys. Rev. B, 84 (2011)

[66] C.R. Rotundu; B. Freelon; T.R. Forrest; S.D. Wilson; P.N. Valdivia; G. Pinuellas; A. Kim; J.-W. Kim; Z. Islam; E. Bourret-Courchesne; N.E. Phillips; R.J. Birgeneau Phys. Rev. B, 82 (2010)

[67] H.Q. Yuan; L. Jiao; F.F. Balakirev; J. Singleton; C. Setty; J.P. Hu; T. Shang; L.J. Li; G.H. Cao; Z.A. Xu; B. Shen; H.H. Wen, 2011 (unpublished) | arXiv

[68] Y.-X. Yang; Y. Gallais; F. Rullier-Albenque; M.-A. Méasson; M. Cazayous; A. Sacuto; J. Shi; D. Colson; A. Forget Phys. Rev. B, 89 (2014)

[69] E.D. Mun; S.L. Bud'ko; N. Ni; A.N. Thaler; P.C. Canfield Phys. Rev. B, 80 (2009)

[70] H. Hodovanets; A. Thaler; E. Mun; N. Ni; S.L. Bud'ko; P.C. Canfield Philos. Mag., 93 (2012) no. 6, p. 661

[71] Jiun-Haw Chu; James G. Analytis; Kristiaan De Greve; Peter L. McMahon; Zahirul Islam; Yoshihisa Yamamoto; Ian R. Fisher Science, 329 (2010), p. 824

[72] Hsueh-Hui Kuo; Ian R. Fisher Phys. Rev. Lett., 112 (2014)

[73] S. Ishida; M. Nakajima; T. Liang; K. Kihou; C.H. Lee; A. Iyo; H. Eisaki; T. Kakeshita; Y. Tomioka; T. Ito; S. Uchida Phys. Rev. Lett., 110 (2013)

[74] V. Brouet; F. Rullier-Albenque; M. Marsi; B. Mansart; M. Aichhorn; S. Biermann; J. Faure; L. Perfetti; A. Taleb-Ibrahimi; P. Le Fèvre; F. Bertran; A. Forget; D. Colson Phys. Rev. Lett., 105 (2010)

[75] N. Xu; T. Qian; P. Richard; Y.-B. Shi; X.-P. Wang; P. Zhang; Y.-B. Huang; Y.-M. Xu; H. Miao; G. Xu; G.-F. Xuan; W.-H. Jiao; Z.-A. Xu; G.-H. Cao; H. Ding Phys. Rev. B, 86 (2012)

[76] F. Rullier-Albenque; D. Colson; A. Forget; P. Thuéry; S. Poissonnet Phys. Rev. B, 81 (2010)

[77] A. Thaler; N. Ni; A. Kracher; J.Q. Yan; S.L. Bud'ko; P.C. Canfield Phys. Rev. B, 82 (2010)

[78] Y. Laplace; J. Bobroff; V. Brouet; G. Collin; F. Rullier-Albenque; D. Colson; A. Forget Phys. Rev. B, 86 (2012)

[79] Y. Laplace; J. Bobroff; F. Rullier-Albenque; D. Colson; A. Forget Phys. Rev. B, 80 (2009)

[80] M.J. Eom; S.W. Na; C. Hoch; R.K. Kremer; J.S. Kim Phys. Rev. B, 85 (2012)

[81] H. Hodovanets; E.D. Mun; A. Thaler; S.L. Bud'ko; P.C. Canfield Phys. Rev. B, 83 (2011)

[82] F. Rullier-Albenque, D. Colson, A. Forget, unpublished results.

[83] Limin Wang; Tom Berlijn; Yan Wang; Chia-Hui Lin; P.J. Hirschfeld; Wei Ku Phys. Rev. Lett., 110 (2013)

[84] H. Shishido; A.F. Bangura; A.I. Coldea; S. Tonegawa; K. Hashimoto; S. Kasahara; P.M.C. Rourke; H. Ikeda; T. Terashima; R. Settai; Y. Ōnuki; D. Vignolles; C. Proust; B. Vignolle; A. McCollam; Y. Matsuda; T. Shibauchi; A. Carrington Phys. Rev. Lett., 104 (2010)

[85] T. Shibauchi; A. Carrington; Y. Matsuda Annu. Rev. Condens. Matter Phys., 5 (2014), pp. 113-135

[86] T. Yoshida; I. Nishi; S. Ideta; A. Fujimori; M. Kubota; K. Ono; S. Kasahara; T. Shibauchi; T. Terashima; Y. Matsuda; H. Ikeda; R. Arita Phys. Rev. Lett., 106 (2011)

[87] James G. Analytis; H.-H. Kuo; Ross D. McDonald; Mark Wartenbe; P.M.C. Rourke; N.E. Hussey; I.R. Fisher Nat. Phys., 10 (2014), p. 194

[88] Y. Nakai; T. Iye; S. Kitagawa; K. Ishida; H. Ikeda; S. Kasahara; H. Shishido; T. Shibauchi; Y. Matsuda; T. Terashima Phys. Rev. Lett., 105 (2010)

[89] K. Hashimoto; K. Cho; T. Shibauchi; S. Kasahara; Y. Mizukami; R. Katsumata; Y. Tsuruhara; T. Terashima; H. Ikeda; M.A. Tanatar; H. Kitano; N. Salovich; R.W. Giannetta; P. Walmsley; A. Carrington; R. Prozorov; Y. Matsuda Science, 336 (2012), p. 1554

[90] P. Walmsley; C. Putzke; L. Malone; I. Guillamón; D. Vignolles; C. Proust; S. Badoux; A.I. Coldea; M.D. Watson; S. Kasahara; Y. Mizukami; T. Shibauchi; Y. Matsuda; A. Carrington Phys. Rev. Lett., 110 (2013)

[91] H.S. Jeevan; Deepa Kasinathan; Helge Rosner; Philipp Gegenwart Phys. Rev. B, 83 (2011)

[92] I. Nowik; I. Felner; Z. Ren; G.H. Cao; Z.A. Xu J. Phys. Condens. Matter, 23 (2011)

[93] S. Zapf; H.S. Jeevan; T. Ivek; F. Pfister; F. Klingert; S. Jiang; D. Wu; P. Gegenwart; R.K. Kremer; M. Dressel Phys. Rev. Lett., 110 (2013)

[94] S. Zapf; D. Neubauer; K.W. Post; A. Kadau; J. Merz; C. Clauss; A. Löhle; H.S. Jeevan; P. Gegenwart; D.N. Basov; M. Dressel Electronic scattering effects in europium-based iron pnictides, C. R. Physique, Volume 17 (2016) no. 1–2, pp. 188-196 ( this issue )

[95] J.P. Clancy; B.D. Gaulin; A.S. Sefat Phys. Rev. B, 85 (2012)

[96] A. Thaler; H. Hodovanets; M.S. Torikachvili; S. Ran; A. Kracher; W. Straszheim; J.Q. Yan; E. Mun; P.C. Canfield Phys. Rev. B, 84 (2011)

[97] Y. Texier; Y. Laplace; P. Mendels; J.T. Park; G. Friemel; D.L. Sun; D.S. Inosov; C.T. Lin; J. Bobroff Europhys. Lett., 99 (2012), p. 17002

[98] H. Suzuki; T. Yoshida; S. Ideta; G. Shibata; K. Ishigami; T. Kadono; A. Fujimori; M. Hashimoto; D.H. Lu; Z.-X. Shen; K. Ono; E. Sakai; H. Kumigashira; M. Matsuo; T. Sasagawa Phys. Rev. B, 88 (2013)

[99] T. Urata; Y. Tanabe; K.K. Huynh; H. Oguro; K. Watanabe; S. Heguri; K. Tanigaki Phys. Rev. B, 89 (2014)

[100] T. Urata; Y. Tanabe; K.K. Huynh; S. Heguri; H. Oguro; K. Watanabe; K. Tanigaki Phys. Rev. B, 91 (2015)

[101] B. Shen; H. Yang; Z.-S. Wang; F. Han; B. Zeng; L. Shan; C. Ren; H.-H. Wen Phys. Rev. B, 84 (2011)

[102] H. Chen; Y. Ren; Y. Qiu; W. Bao; R.H. Liu; G. Wu; T. Wu; Y.L. Xie; X.F. Wang; Q. Huang; X.H. Chen Europhys. Lett., 85 (2009), p. 17006

[103] Kenya Ohgushi; Yoko Kiuchi Phys. Rev. B, 85 (2012)

[104] Y. Liu; M.A. Tanatar; W.E. Straszheim; B. Jensen; K.W. Dennis; R.W. McCallum; V.G. Kogan; R. Prozorov; T.A. Lograsso Phys. Rev. B, 89 (2014)

[105] D. Wu; N. Barǐsíc; P. Kallina; A. Faridian; B. Gorshunov; N. Drichko; L.J. Li; X. Lin; G.H. Cao; Z.A. Xu; N.L. Wang; M. Dressel Phys. Rev. B, 81 (2010)

[106] A.A. Golubov; O.V. Dolgov; A.V. Boris; A. Charnukha; D.L. Sun; C.T. Lin; A.F. Shevchun; A.V. Korobenko; M.R. Trunin; V.N. Zverev JETP Lett., 94 (2011), p. 333

[107] Y.M. Dai; B. Xu; B. Shen; H. Xiao; H.H. Wen; X.G. Qiu; C.C. Homes; R.P.S.M. Lobo Phys. Rev. Lett., 111 (2013)

[108] Kevin Kirshenbaum; S.R. Saha; S. Ziemak; T. Drye; J. Paglione Phys. Rev. B, 86 (2012)

[109] Veronika Zinth; Til Dellmann; Hans-Henning Klauss; Dirk Johrendt Angew. Chem., Int. Ed. Engl., 50 (2011), p. 7919

[110] Takayoshi Katase; Soshi Iimura; Hidenori Hiramatsu; Toshio Kamiya; Hideo Hosono Phys. Rev. B, 85 (2012)

[111] E.C. Blomberg; M.A. Tanatar; R.M. Fernandes; I.I. Mazin; Bing Shen; Hai-Hu Wen; M.D. Johannes; J. Schmalian; R. Prozorov Nat. Commun., 4 (2013), p. 1914

[112] Tatsuya Kobayashi; Kiyohisa Tanaka; Shigeki Miyasaka; Setsuko Tajima J. Phys. Soc. Jpn., 84 (2015)

[113] M.P. Allan; T.-M. Chuang; F. Massee; Yang Xie; Ni Ni; S.L. Bud'ko; G.S. Boebinger; Q. Wang; D.S. Dessau; P.C. Canfield; M.S. Golden; J.C. Davis Nat. Phys., 9 (2013), p. 220

[114] Maria N. Gastiasoro; I. Paul; Y. Wang; P.J. Hirschfeld; Brian M. Andersen Phys. Rev. Lett., 113 (2014)

[115] Rafael M. Fernandes; Elihu Abrahams; Jörg Schmalian Phys. Rev. Lett., 107 (2011)

[116] Anna E. Böhmer; Christoph Meingast Electronic nematic susceptibility of iron-based superconductors, C. R. Physique, Volume 17 (2016) no. 1–2, pp. 90-112 ( this issue )

[117] Y. Gallais; I. Paul Charge nematicity and electronic Raman scattering in iron-based superconductors, C. R. Physique, Volume 17 (2016) no. 1–2, pp. 113-139 ( this issue )

[118] M.A. Tanatar; N. Ni; A. Thaler; S.L. Bud'ko; P.C. Canfield; R. Prozorov Phys. Rev. B, 82 (2010)

[119] M.A. Tanatar; N. Ni; A. Thaler; S.L. Bud'ko; P.C. Canfield; R. Prozorov Phys. Rev. B, 84 (2011)

[120] M.A. Tanatar; W.E. Straszheim; Hyunsoo Kim; J. Murphy; N. Spyrison; E.C. Blomberg; K. Cho; J.-Ph. Reid; Bing Shen; Louis Taillefer; Hai-Hu Wen; R. Prozorov Phys. Rev. B, 89 (2014)

[121] M.A. Tanatar; K. Hashimoto; S. Kasahara; T. Shibauchi; Y. Matsuda; R. Prozorov Phys. Rev. B, 87 (2013)

[122] M.A. Tanatar; M.S. Torikachvili; A. Thaler; S.L. Bud'ko; P.C. Canfield; R. Prozorov Phys. Rev. B, 90 (2014)

[123] S.J. Moon; A.A. Schafgans; S. Kasahara; T. Shibauchi; T. Terashima; Y. Matsuda; M.A. Tanatar; R. Prozorov; A. Thaler; P.C. Canfield; A.S. Sefat; D. Mandrus; D.N. Basov Phys. Rev. Lett., 109 (2012)

[124] S.J. Moon; A.A. Schafgans; M.A. Tanatar; R. Prozorov; A. Thaler; P.C. Canfield; A.S. Sefat; D. Mandrus; D.N. Basov Phys. Rev. Lett., 110 (2013)

[125] Y.M. Dai; B. Xu; B. Shen; H.H. Wen; J.P. Hu; X.G. Qiu; R.P.S.M. Lobo Phys. Rev. B, 86 (2012)

[126] A.W. Tyler; A.P. Mackenzie; S. NishiZaki; Y. Maeno Phys. Rev. B, 58 (1998), p. 10107(R)

[127] S.V. Borisenko; V.B. Zabolotnyy; D.V. Evtushinsky; T.K. Kim; I.V. Morozov; A.N. Yaresko; A.A. Kordyuk; G. Behr; A. Vasiliev; R. Follath; B. Büchner Phys. Rev. Lett., 105 (2010)

[128] K. Umezawa; Y. Li; H. Miao; K. Nakayama; Z.-H. Liu; P. Richard; T. Sato; J.B. He; D.-M. Wang; G.F. Chen; H. Ding; T. Takahashi; S.-C. Wang Phys. Rev. Lett., 108 (2012)

[129] O. Heyer; T. Lorenz; V.B. Zabolotnyy; D.V. Evtushinsky; S.V. Borisenko; I. Morozov; L. Harnagea; S. Wurmehl; C. Hess; B. Büchner Phys. Rev. B, 84 (2011)

[130] S. Kasahara; K. Hashimoto; H. Ikeda; T. Terashima; Y. Matsuda; T. Shibauchi Phys. Rev. B, 85 (2012)

[131] F. Rullier-Albenque; D. Colson; A. Forget; H. Alloul Phys. Rev. Lett., 109 (2012) ( ibid. Phys. Rev. Lett., 113, 2014, 209901)

[132] J. Ferber; K. Foyevtsova; R. Valenti; H.O. Jeschke Phys. Rev. B, 85 (2012)

[133] S.V. Borisenko; D.V. Evtushinsky; I. Morozov; S. Wurmehl; B. Büchner; A.N. Yaresko; T.K. Kim; M. Hoesch; T. Wolf; N.D. Zhigadlo, 2014 (unpublished) | arXiv

[134] C. Putzke; A.I. Coldea; I. Guillamon; D. Vignolles; A. McCollam; D. LeBoeuf; M.D. Watson; I.I. Mazin; S. Kasahara; T. Terashima; T. Shibauchi; Y. Matsuda; A. Carrington Phys. Rev. Lett., 108 (2012)

[135] A.A. Kordyuk; V.B. Zabolotnyy; D.V. Evtushinshky; T.K. Kim; L.V. Morozov; M.L. Kulić; R. Follath; G. Behr; B. Büchner; S.V. Borisenko Phys. Rev. B, 83 (2011)

[136] L. Ma; J. Zhang; G.F. Chen; W. Yu Phys. Rev. B, 82 (2010)

[137] N. Qureshi; P. Steffens; Y. Drees; A.C. Komarek; D. Lamago; Y. Sidis; L. Harnagea; H.-J. Grafe; S. Wurmehl; B. Büchner; M. Braden Phys. Rev. Lett., 108 (2012)

[138] Byeong Hun Min; Jong Beom Hong; Jae Hyun Yun; Takuya Iizuka; Shin-ichi Kimura; Yunkyu Bang; Yong Seung Kwon New J. Phys., 15 (2013)

[139] R.P.S.M. Lobo; G. Chanda; A.V. Pronin; J. Wosnitza; S. Kasahara; T. Shibauchi; Y. Matsuda Phys. Rev. B, 91 (2015)

[140] Y.M. Dai; H. Miao; L.Y. Xing; X.C. Wang; P.S. Wang; H. Xiao; T. Qian; P. Richard; X.G. Qiu; W. Yu; C.Q. Jin; Z. Wang; P.D. Johnson; C.C. Homes; H. Ding Phys. Rev. X, 5 (2015)

[141] M.J. Pitcher; T. Lancaster; J.D. Wright; I. Franke; A.J. Steele; P.J. Baker; F.L. Pratt; W.T. Thomas; D.R. Parker; S.J. Blundell; S.J. Clarke J. Am. Chem. Soc., 132 (2010), p. 10467

[142] Z.R. Ye; Y. Zhang; M. Xu; Q.Q. Ge; Q. Fan; F. Chen; J. Jiang; P.S. Wang; J. Dai; W. Yu; B.P. Xie; D.L. Feng, 2013 (unpublished) | arXiv

[143] Dinah R. Parker; Michael J. Pitcher; Peter J. Baker; Isabel Franke; Tom Lancaster; Stephen J. Blundell; Simon J. Clarke Chem. Commun. (2009), p. 2189

[144] Dinah R. Parker; Matthew J.P. Smith; Tom Lancaster; Andrew J. Steele; Isabel Franke; Peter J. Baker; Francis L. Pratt; Michael J. Pitcher; Stephen J. Blundell; Simon J. Clarke Phys. Rev. Lett., 104 (2010)

[145] Frank Steckel; Maria Roslova; Robert Beck; Igor Morozov; Saicharan Aswartham; Daniil Evtushinsky; Christian G.F. Blum; Mahmoud Abdel-Hafiez; Dirk Bombor; Janek Maletz; Sergey Borisenko; Andrei V. Shevelkov; Anja U.B. Wolter; Christian Hess; Sabine Wurmehl; Bernd Büchner Phys. Rev. B, 91 (2015)

[146] A.F. Wang; X.G. Luo; Y.J. Yan; J.J. Ying; Z.J. Xiang; G.J. Ye; P. Cheng; Z.Y. Li; W.J. Hu; X.H. Chen Phys. Rev. B, 85 (2012)

[147] S.T. Cui; S.Y. Zhu; A.F. Wang; S. Kong; S.L. Ju; X.G. Luo; X.H. Chen; G.B. Zhang; Z. Sun Phys. Rev. B, 86 (2012)

[148] K.K. Huynh; Y. Tanabe; T. Urata; H. Oguro; S. Heguri; K. Watanabe; K. Tanigaki Phys. Rev. B, 90 (2014)

[149] V.L. Bezusyy; D.J. Gawryluk; A. Malinowski; Marta Z. Cieplak Phys. Rev. B, 91 (2015)

[150] M.D. Watson; T. Yamashita; S. Kasahara; W. Knafo; M. Nardone; J. Beard; F. Hardy; A. McCollam; A. Narayanan; S.F. Blake; T. Wolf; A.A. Haghighirad; C. Meingast; A.J. Schofield; H. von Lohneysen; Y. Matsuda; A.I. Coldea; T. Shibauchi, 2015 (unpublished) | arXiv

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Iron-based superconductors in high magnetic fields

Amalia I. Coldea; Daniel Braithwaite; Antony Carrington

C. R. Phys (2013)


Magnetic interactions in iron superconductors: A review

Elena Bascones; Belén Valenzuela; Maria José Calderón

C. R. Phys (2016)


Spectral properties of transition metal pnictides and chalcogenides: Angle-resolved photoemission spectroscopy and dynamical mean-field theory

Ambroise van Roekeghem; Pierre Richard; Hong Ding; ...

C. R. Phys (2016)