Electronic Coulomb correlations lead to characteristic signatures in the spectroscopy of transition metal pnictides and chalcogenides: quasi-particle renormalizations, lifetime effects or incoherent badly metallic behavior above relatively low coherence temperatures are measures of many-body effects due to local Hubbard and Hund's couplings. We review and compare the results of angle-resolved photoemission spectroscopy experiments (ARPES) and of combined density functional/dynamical mean-field theory (DFT+DMFT) calculations. We emphasize the doping-dependence of the quasi-particle mass renormalization and coherence properties.
Les corrélations électroniques de Coulomb sont la cause d'empreintes caractéristiques dans les spectres des pnictures et chalcogénures de métaux de transition : la renormalisation de la masse des quasi-particules, la diminution de leur temps de vie ou le comportement de type mauvais métal au-dessus de températures de cohérence relativement basses permettent ainsi d'évaluer les effets des interactions à plusieurs corps dues aux couplages locaux de Hubbard et de Hund. Nous effectuons une revue et une comparaison des résultats expérimentaux de photoémission résolue en angle (ARPES) et des calculs théoriques combinant la théorie de la fonctionnelle de la densité avec la théorie du champ moyen dynamique (DFT+DMFT). Nous insistons en particulier sur la dépendance de la renormalisation de la masse des quasi-particules et des propriétés de cohérence en fonction du dopage.
Mot clés : Corrélations électroniques de Coulomb, Spectroscopie par photoémission résolue en angle, Théorie du champ moyen dynamique, Pnictures et chalcogénures de métaux de transition, Gel de spin induit par le couplage de Hund, Cohérence dépendant du dopage
Ambroise van Roekeghem 1, 2; Pierre Richard 2, 3; Hong Ding 2, 3; Silke Biermann 1, 4, 5
@article{CRPHYS_2016__17_1-2_140_0, author = {Ambroise van Roekeghem and Pierre Richard and Hong Ding and Silke Biermann}, title = {Spectral properties of transition metal pnictides and chalcogenides: {Angle-resolved} photoemission spectroscopy and dynamical mean-field theory}, journal = {Comptes Rendus. Physique}, pages = {140--163}, publisher = {Elsevier}, volume = {17}, number = {1-2}, year = {2016}, doi = {10.1016/j.crhy.2015.11.003}, language = {en}, }
TY - JOUR AU - Ambroise van Roekeghem AU - Pierre Richard AU - Hong Ding AU - Silke Biermann TI - Spectral properties of transition metal pnictides and chalcogenides: Angle-resolved photoemission spectroscopy and dynamical mean-field theory JO - Comptes Rendus. Physique PY - 2016 SP - 140 EP - 163 VL - 17 IS - 1-2 PB - Elsevier DO - 10.1016/j.crhy.2015.11.003 LA - en ID - CRPHYS_2016__17_1-2_140_0 ER -
%0 Journal Article %A Ambroise van Roekeghem %A Pierre Richard %A Hong Ding %A Silke Biermann %T Spectral properties of transition metal pnictides and chalcogenides: Angle-resolved photoemission spectroscopy and dynamical mean-field theory %J Comptes Rendus. Physique %D 2016 %P 140-163 %V 17 %N 1-2 %I Elsevier %R 10.1016/j.crhy.2015.11.003 %G en %F CRPHYS_2016__17_1-2_140_0
Ambroise van Roekeghem; Pierre Richard; Hong Ding; Silke Biermann. Spectral properties of transition metal pnictides and chalcogenides: Angle-resolved photoemission spectroscopy and dynamical mean-field theory. Comptes Rendus. Physique, Volume 17 (2016) no. 1-2, pp. 140-163. doi : 10.1016/j.crhy.2015.11.003. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2015.11.003/
[1] Über einen Einfluss des ultravioletten Lichtes auf die electrische Entladung, Ann. Phys., Volume 267 (1887) no. 8, pp. 983-1000
[2] Photoelectron Spectroscopy: Principles and Applications, Springer, 2003
[3] Probing the electronic structure of complex systems by ARPES, Phys. Scr., Volume 2004 (2004) no. T109, p. 61
[4] ARPES measurements of the superconducting gap of Fe-based superconductors and their implications to the pairing mechanism, J. Phys. Condens. Matter, Volume 27 (2015), p. 293203
[5] Fe-based superconductors: an angle-resolved photoemission spectroscopy perspective, Rep. Prog. Phys., Volume 74 (2011) no. 12, p. 124512
[6] Transition from the adiabatic to the sudden limit in core-level photoemission: a model study of a localized system, Phys. Rev. B, Volume 60 (1999), pp. 8034-8049
[7] On correlation effects in electron spectroscopies and the GW approximation, J. Phys. Condens. Matter, Volume 11 (1999) no. 42
[8] Many-Body Formalism in Condensed Matter Physics, Lecture Notes, University of Geneva, 2014
[9] Spectral function of ferromagnetic 3d metals: a self-consistent LSDA+DMFT approach combined with the one-step model of photoemission, Phys. Rev. Lett., Volume 97 (2006)
[10] Momentum-resolved spectroscopy of correlated metals: a view from dynamical mean field theory, C. R. Physique, Volume 10 (2009) no. 6, pp. 537-547
[11] Quantitative electron spectroscopy of surfaces: a standard data base for electron inelastic mean free paths in solids, Surf. Interface Anal., Volume 1 (1979) no. 1, pp. 2-11
[12] Time evolution of the electronic structure of 1t- through the insulator-metal transition, Phys. Rev. Lett., Volume 97 (2006)
[13] Femtosecond dynamics of electronic states in the Mott insulator 1t- by time resolved photoelectron spectroscopy, New J. Phys., Volume 10 (2008) no. 5
[14] Coherent excitations and electron–phonon coupling in Ba/EuFe2As2 compounds investigated by femtosecond time- and angle-resolved photoemission spectroscopy, J. Phys. Condens. Matter, Volume 25 (2013) no. 9
[15] Electron–phonon coupling in 122 Fe pnictides analyzed by femtosecond time-resolved photoemission, New J. Phys., Volume 15 (2013) no. 8
[16] Band-dependent quasiparticle dynamics in single crystals of the Ba0.6K0.4Fe2As2 superconductor revealed by pump-probe spectroscopy, Phys. Rev. Lett., Volume 105 (2010)
[17] Ultrafast quasiparticle relaxation dynamics in superconducting iron pnictide Ca(Fe0.944Co0.056)2As2, Solid State Commun., Volume 160 (2013), pp. 8-12
[18] On the multi-orbital band structure and itinerant magnetism of iron-based superconductors, Ann. Phys., Volume 523 (2011) no. 1–2, pp. 8-50
[19] Impact of the two Fe unit cell on the electronic structure measured by ARPES in iron pnictides, Phys. Rev. B, Volume 86 (2012)
[20] One-fe versus two-Fe Brillouin zone of Fe-based superconductors: creation of the electron pockets by translational symmetry breaking, Phys. Rev. Lett., Volume 107 (2011)
[21] Nobel lecture: electronic structure of matter—wave functions and density functionals, Rev. Mod. Phys., Volume 71 (1999) no. 5, pp. 1253-1266
[22] Electron correlations in narrow energy bands, Proc. R. Soc. Lond. A, Volume 276 (1963) no. 1, p. 238
[23] Electron correlations in narrow energy bands. ii. the degenerate band case, Proc. R. Soc. Lond. A, Volume 277 (1964) no. 1369, p. 237
[24] Frequency-dependent local interactions and low-energy effective models from electronic structure calculations, Phys. Rev. B, Volume 70 (2004) no. 19
[25] Electronic structure of correlated materials from first principles: Hubbard interaction and Hund's exchange, Ecole Polytechnique, France, 2011 (Ph.D. thesis)
[26] Hubbard U and Hund exchange J in transition metal oxides: screening versus localization trends from constrained random phase approximation, Phys. Rev. B, Volume 86 (2012) no. 16
[27] A. van Roekeghem, L. Vaugier, H. Jiang, S. Biermann, Hubbard interactions in iron-based pnictides and chalcogenides: Slater parametrization, screening channels and frequency dependence, in preparation.
[28] First-principles electronic structure of solid picene, J. Phys. Soc. Jpn., Volume 78 (2009) no. 11, p. 113704
[29] New J. Phys., 11 (2009)
[30] Satellites and large doping- and temperature-dependence of electronic properties in hole-doped BaFe2As2, Nat. Phys., Volume 8 (2012), pp. 331-337
[31] Selective Mott physics as a key to iron superconductors, Phys. Rev. Lett., Volume 112 (2014)
[32] Electronic structure of transition metal compounds: DFT–DMFT approach, Encyclopedia of Materials: Science and Technology, Elsevier, Oxford, 2006, pp. 1-9 in: K.H.J. Buschow, R.W. Cahn, M.C. Flemings, B. Ilschner (print), E.J. Kramer, S. Mahajan, P. Veyssière (updates) (Eds.)
[33] S. Biermann, LDA+DMFT – A tool for investigating the electronic structure of materials with strong electronic coulomb correlations, Encyclopedia of materials: Science and Technology.
[34] Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions, Rev. Mod. Phys., Volume 68 (1996) no. 1, p. 13
[35] Strongly correlated electron materials: dynamical mean field theory and electronic structure, Lectures on the Physics of Highly Correlated Electron Systems VIII, vol. 715, 2004, p. 3
[36] Electronic structure calculations with dynamical mean-field theory, Rev. Mod. Phys., Volume 78 (2006) no. 3, pp. 865-951
[37] Dynamical mean-field theory – from quantum impurity physics to lattice problems, Philos. Mag., Volume 86 (2006), p. 1877
[38] First-principles calculations of the electronic structure and spectra of strongly correlated systems: dynamical mean-field theory, J. Phys. Condens. Matter, Volume 9 (1997), p. 943
[39] Ab initio calculations of quasiparticle band structure in correlated systems: LDA++ approach, Phys. Rev. B, Volume 57 (1998) no. 12, pp. 6884-6895
[40] Dynamical mean-field theory within an augmented plane-wave framework: assessing electronic correlations in the iron pnictide LaFeAsO, Phys. Rev. B, Volume 80 (2009) no. 8
[41] Dynamical mean-field theory using wannier functions: a flexible route to electronic structure calculations of strongly correlated materials, Phys. Rev. B, Volume 74 (2006) no. 12
[42] TRIQS: a toolbox for research on interacting quantum systems, 2011 http://ipht.cea.fr/triqs
[43] Many-Particle Physics, Plenum Press, New York and London, 1990
[44] Optical properties of correlated materials: generalized Peierls approach and its application to VO2, Phys. Rev. B, Volume 80 (2009)
[45] Phys. Rev. B, 81 (2010)
[46] Electronic band structure of BaCo2As2: a fully doped ferropnictide analog with reduced electronic correlations, Phys. Rev. X, Volume 3 (2013)
[47] Dynamical correlations and screened exchange on the experimental bench: spectral properties of the cobalt pnictide BaCo2As2, Phys. Rev. Lett., Volume 113 (2014)
[48] Camelback-shaped band reconciles heavy-electron behavior with weak electronic Coulomb correlations in superconducting TlNi2Se2, Phys. Rev. B, Volume 92 (2015) | DOI
[49] Correlated electronic structure of , Phys. Rev. Lett., Volume 100 (2008)
[50] Theoretical evidence for strong correlations and incoherent metallic state in FeSe, Phys. Rev. B, Volume 82 (2010) no. 6
[51] LDA+DMFT study of the effects of correlation in LiFeAs, Phys. Rev. B, Volume 85 (2012)
[52] Dichotomy between large local and small ordered magnetic moments in iron-based superconductors, Phys. Rev. Lett., Volume 104 (2010)
[53] Coulomb repulsion and correlation strength in LaFeAsO from density functional and dynamical mean-field theories, J. Phys. Condens. Matter, Volume 21 (2009)
[54] Gutzwiller density functional studies of FeAs-based superconductors: structure optimization and evidence for a three-dimensional Fermi surface, Phys. Rev. Lett., Volume 104 (2010)
[55] Coherence and incoherence crossover in the normal state of iron oxypnictides and importance of Hund's rule coupling, New J. Phys., Volume 11 (2009)
[56] Hund's coupling and its key role in tuning multiorbital correlations, Phys. Rev. B, Volume 83 (2011)
[57] Correlation-induced spin freezing transition in FeSe: a dynamical mean field study, Phys. Rev. B, Volume 82 (2010) no. 15
[58] Coulomb correlation effects in LaFeAsO: an LDA+DMFT(QMC) study, J. Exp. Theor. Phys., Volume 108 (2009), p. 121
[59] Density-functional calculation of the Coulomb repulsion and correlation strength in superconducting LaFeAsO, JETP Lett., Volume 88 (2008), p. 729
[60] d- and f-orbital correlations in the REFeAsO compounds, J. Phys. Soc. Jpn., Suppl., Volume 77 (2008), p. 99
[61] Calculated cleavage behavior and surface states of LaOFeAs, Phys. Rev. B, Volume 81 (2010)
[62] Surface and bulk electronic structures of LaFeAsO studied by angle-resolved photoemission spectroscopy, Phys. Rev. B, Volume 82 (2010)
[63] Phys. Rev. B, 82 (2010)
[64] Experimental determination of the microscopic origin of magnetism in parent iron pnictides | arXiv
[65] ARPES studies of the electronic structure of LaOFe(P,As), Physica C, Volume 469 (2009) no. 9–12, pp. 452-458
[66] Phys. Rev. Lett., 106 (2011)
[67] Direct spectroscopic evidence for completely filled Cu 3d shell in BaCu2As2 and α-BaCu2Sb2, Phys. Rev. B, Volume 91 (2015)
[68] Electron correlation in the FeSe superconductor studied by bulk-sensitive photoemission spectroscopy, Phys. Rev. B, Volume 82 (2010)
[69] Electronic structure of the iron-based superconductor LaOFeP, Nature, Volume 455 (2008) no. 7209, pp. 81-84
[70] Electronic structure of superconducting FeSe studied by high-resolution photoemission spectroscopy, J. Phys. Soc. Jpn., Volume 78 (2009)
[71] Superconductivity without nesting in LiFeAs, Phys. Rev. Lett., Volume 105 (2010)
[72] Many-body effects in iron pnictides and chalcogenides: nonlocal versus dynamic origin of effective masses, Phys. Rev. Lett., Volume 109 (2012)
[73] Observation of Fermi-surface–dependent nodeless superconducting gaps in Ba0.6K0.4Fe2As2, Europhys. Lett., Volume 83 (2008) no. 4, p. 47001
[74] K-doping dependence of the Fermi surface of the iron-arsenic superconductor using angle-resolved photoemission spectroscopy, Phys. Rev. Lett., Volume 101 (2008)
[75] Nesting between hole and electron pockets in Ba()2As2 () observed with angle-resolved photoemission, Phys. Rev. B, Volume 80 (2009)
[76] Orbital-dependent modifications of electronic structure across the magnetostructural transition in BaFe2As2, Phys. Rev. Lett., Volume 104 (2010)
[77] High-resolution, hard x-ray photoemission investigation of BaFe2As2: moderate influence of the surface and evidence for a low degree of fe 3d-as 4p hybridization of electronic states near the Fermi energy, Phys. Rev. B, Volume 79 (2009)
[78] Electronic structure studies of BaFe2As2 by angle-resolved photoemission spectroscopy, Phys. Rev. B, Volume 79 (2009)
[79] Three-dimensional electronic structure of superconducting iron pnictides observed by angle-resolved photoemission spectroscopy, J. Phys. Soc. Jpn., Volume 78 (2009) no. 12, p. 123706
[80] Electronic structure of fe-based superconductors, Physica C, Volume 469 (2009) no. 9, pp. 418-424
[81] Bandwidth and Fermi surface of iron oxypnictides: covalency and sensitivity to structural changes, Phys. Rev. B, Volume 78 (2008)
[82] Unconventional superconductivity with a sign reversal in the order parameter of , Phys. Rev. Lett., Volume 101 (2008)
[83] Large temperature dependence of the number of carriers in Co-doped BaFe2As2, Phys. Rev. Lett., Volume 110 (2013)
[84] Electronic properties of iron arsenic high temperature superconductors revealed by angle resolved photoemission spectroscopy (ARPES), Physica C, Volume 469 (2009) no. 9–12, pp. 491-497
[85] Evidence for three-dimensional Fermi-surface topology of the layered electron-doped iron superconductor Ba()2As2, Phys. Rev. B, Volume 79 (2009)
[86] Problems with reconciling density functional theory calculations with experiment in ferropnictides, Phys. Rev. B, Volume 78 (2008)
[87] Importance of electronic correlations for structural and magnetic properties of the iron pnictide superconductor LaFeAsO, Phys. Rev. B, Volume 84 (2011)
[88] Orbital selective Fermi surface shifts and mechanism of high superconductivity in correlated AFeAs (A=Li,Na), Phys. Rev. Lett., Volume 109 (2012)
[89] Electronic structure of optimally doped pnictide Ba0.6K0.4Fe2As2: a comprehensive angle-resolved photoemission spectroscopy investigation, J. Phys. Condens. Matter, Volume 23 (2011) no. 13, p. 135701
[90] Nat. Phys., 8 (2012), p. 309
[91] Unusual band renormalization in the simplest iron-based superconductor , Phys. Rev. B, Volume 89 (2014)
[92] Reconstruction of band structure induced by electronic nematicity in an FeSe superconductor, Phys. Rev. Lett., Volume 113 (2014)
[93] Lifting of xz/yz orbital degeneracy at the structural transition in detwinned FeSe, Phys. Rev. B, Volume 90 (2014)
[94] K. Okazaki, Y. Ito, Y. Ota, Y. Kotani, T. Shimojima, T. Kiss, S. Watanabe, C.-T. Chen, S. Niitaka, T. Hanaguri, H. Takagi, A. Chainani, S. Shin, Superconductivity in an electron band just above the fermi level: possible route to BCS-BEC superconductivity, Scientific reports 4.
[95] et al. Field-induced superconducting phase of FeSe in the BCS-BEC cross-over, Proc. Natl. Acad. Sci., Volume 111 (2014) no. 46, pp. 16309-16313
[96] Emergence of the nematic electronic state in FeSe, Phys. Rev. B, Volume 91 (2015)
[97] Observation of two distinct band splittings in FeSe, Phys. Rev. B, Volume 91 (2015)
[98] Momentum-dependent sign-inversion of orbital polarization in superconducting FeSe, Phys. Rev. B, Volume 92 (2015) | DOI
[99] Distinctive momentum dependence of the band reconstruction in the nematic state of FeSe thin film | arXiv
[100] Phys. Rev. Lett., 108 (2012)
[101] Symmetry, 4 (2012), p. 251
[102] Sign inversion in the superconducting order parameter of LiFeAs inferred from Bogoliubov quasiparticle interference, Phys. Rev. B, Volume 89 (2014)
[103] Quasiparticle self-consistent GW theory, Phys. Rev. Lett., Volume 96 (2006) no. 22
[104] Electronic structure and doping in BaFe2As2 and LiFeAs: density functional calculations, Phys. Rev. B, Volume 78 (2008)
[105] Direct observation of spin-orbit coupling in iron-based superconductors | arXiv
[106] Electronic structure of the BaFe2As2 family of iron-pnictide superconductors, Phys. Rev. B, Volume 80 (2009)
[107] Strong electron correlations in the normal state of the iron-based FeSe0.42Te0.58 superconductor observed by angle-resolved photoemission spectroscopy, Phys. Rev. Lett., Volume 104 (2010)
[108] Electronic-structure-driven magnetic and structure transitions in superconducting NaFeAs single crystals measured by angle-resolved photoemission spectroscopy, Phys. Rev. Lett., Volume 105 (2010)
[109] Evolution of the band structure of superconducting NaFeAs from optimally doped to heavily overdoped Co substitution using angle-resolved photoemission spectroscopy, Phys. Rev. B, Volume 86 (2012)
[110] Significant reduction of electronic correlations upon isovalent Ru substitution of BaFe2As2, Phys. Rev. Lett., Volume 105 (2010)
[111] Effects of Ru substitution on electron correlations and Fermi-surface dimensionality in Ba()2As2, Phys. Rev. B, Volume 86 (2012)
[112] Band structure and Fermi surface of an extremely overdoped iron-based superconductor KFe2As2, Phys. Rev. Lett., Volume 103 (2009)
[113] et al. Orbital character and electron correlation effects on two-and three-dimensional Fermi surfaces in KFe2As2 revealed by angle-resolved photoemission spectroscopy, Front. Phys., Volume 2 (2014), p. 17
[114] Electronic band structure of ferro-pnictide superconductors from ARPES experiment, J. Supercond. Nov. Magn., Volume 26 (2013) no. 9, pp. 2837-2841
[115] Tuning electronic correlations in transition metal pnictides: chemistry beyond the valence count, Phys. Rev. B, Volume 91 (2015)
[116] Proc. Natl. Acad. Sci. USA, 106 (2009), p. 7330
[117] Orbitally resolved lifetimes in Ba(Fe0.92Co0.08)2As2 measured by ARPES, Phys. Rev. B, Volume 85 (2012)
[118] Electronic structure of Fe1.04Te0.66Se0.34, Phys. Rev. B, Volume 81 (2010)
[119] Angle-resolved photoemission spectroscopy of the iron-chalcogenide superconductor Fe1.03Te0.7Se0.3: strong coupling behavior and the universality of interband scattering, Phys. Rev. Lett., Volume 105 (2010)
[120] Three-dimensional electronic structure and interband nesting in the stoichiometric superconductor LiFeAs, Phys. Rev. B, Volume 85 (2012)
[121] New J. Phys., 14 (2012)
[122] Extraordinary doping effects on quasiparticle scattering and bandwidth in iron-based superconductors, Phys. Rev. X, Volume 4 (2014)
[123] et al. Electronic structure and electron correlation in and , J. Phys. Soc. Jpn., Volume 77 (2008) no. 9
[124] Phys. Rev. B, 84 (2011)
[125] Three-dimensional electronic structure of superconducting iron pnictides observed by angle-resolved photoemission spectroscopy, J. Phys. Soc. Jpn., Volume 78 (2008), p. 123706
[126] Orbital characters of bands in the iron-based superconductor BaFe1.85Co0.15As2, Phys. Rev. B, Volume 83 (2011)
[127] Angle-resolved photoemission spectroscopy study of BaCo2As2, Phys. Rev. B, Volume 87 (2013)
[128] Orbital character variation of the Fermi surface and doping dependent changes of the dimensionality in from angle-resolved photoemission spectroscopy, Phys. Rev. B, Volume 81 (2010)
[129] Observation of temperature-induced crossover to an orbital-selective Mott phase in (A=K, Rb) superconductors, Phys. Rev. Lett., Volume 110 (2013)
[130] Orbital-selective Mott transition out of band degeneracy lifting, Phys. Rev. Lett., Volume 102 (2009)
[131] Orbital selectivity in hund's metals: the iron chalcogenides, Phys. Rev. B, Volume 87 (2013)
[132] Evolution from incoherent to coherent electronic states and its implications for superconductivity in , Phys. Rev. B, Volume 89 (2014)
[133] Superconductivity close to magnetic instability in , Phys. Rev. B, Volume 78 (2008)
[134] From (π, 0) magnetic order to superconductivity with (π, π) magnetic resonance in , Nat. Mater., Volume 9 (2010) no. 9, pp. 718-720
[135] Review of Fe chalcogenides as the simplest Fe-based superconductor, J. Phys. Soc. Jpn., Volume 79 (2010) no. 10, p. 102001
[136] Spin freezing transition and non-Fermi-liquid self-energy in a three-orbital model, Phys. Rev. Lett., Volume 101 (2008) no. 16
[137] Nonlocal correlations induced by hund's coupling: a cluster dmft study, Phys. Rev. B, Volume 91 (2015)
[138] Analytic theory of hund's metals: a renormalization group perspective, Phys. Rev. B, Volume 91 (2015)
[139] Nature of the bad metallic behavior of Fe1.06Te inferred from its evolution in the magnetic state, Phys. Rev. Lett., Volume 111 (2013)
[140] Fermi surface dichotomy of the superconducting gap and pseudogap in underdoped pnictides, Nat. Commun., Volume 2 (2011), p. 394
[141] Ab Initio evidence for strong correlation associated with Mott proximity in iron-based superconductors, Phys. Rev. Lett., Volume 108 (2012)
[142] Janus-faced influence of Hund's rule coupling in strongly correlated materials, Phys. Rev. Lett., Volume 107 (2011)
[143] Tetragonal and collapsed-tetragonal phases of CaFe2As2 – a view from angle-resolved photoemission and dynamical mean field theory | arXiv
[144] Europhys. Lett., 83 (2008), p. 47001
[145] Chin. Phys. Lett., 25 (2008), p. 4402
[146] Momentum dependence of the superconducting gap in NdFeAsO0.9F0.1 single crystals measured by angle resolved photoemission spectroscopy, Phys. Rev. Lett., Volume 101 (2008)
[147] Unconventional superconducting gap in NaFe0.95Co0.05As observed by angle-resolved photoemission spectroscopy, Phys. Rev. B, Volume 84 (2011)
[148] Unconventional superconductivity with a sign reversal in the order parameter of , Phys. Rev. Lett., Volume 101 (2008)
[149] Physica C, 469 (2009), p. 614
[150] Unconventional pairing originating from the disconnected Fermi surfaces of superconducting , Phys. Rev. Lett., Volume 101 (2008)
[151] New J. Phys., 11 (2009)
[152] Europhys. Lett., 85 (2009), p. 37002
[153] Europhys. Lett., 85 (2009), p. 67002
[154] Phys. Rev. B, 82 (2010)
[155] Europhys. Lett., 94 (2011), p. 27009
[156] Phys. Rev. Lett., 106 (2011)
[157] Europhys. Lett., 93 (2011), p. 57001
[158] Phys. Rev. Lett., 106 (2011)
[159] Nat. Mater., 10 (2011), p. 273
[160] Europhys. Lett., 99 (2012), p. 67001
[161] Phys. Rev. Lett., 103 (2009)
[162] J. Phys. Chem. Solids, 72 (2011), p. 465
[163] Sci. Rep., 2 (2012), p. 381
[164] Interplay between magnetic properties and Fermi surface nesting in iron pnictides, Phys. Rev. B, Volume 79 (2009)
[165] Phys. Rev. B, 85 (2012)
[166] Nat. Phys., 10 (2014), p. 845
[167] Phys. Rev. B, 85 (2012)
[168] Phys. Rev. X, 4 (2014)
[169] Dynamical screening effects in correlated materials: plasmon satellites and spectral weight transfers from a Green's function ansatz to extended dynamical mean field theory, Phys. Rev. B, Volume 85 (2012)
[170] Low-energy models for correlated materials: bandwidth renormalization from coulombic screening, Phys. Rev. Lett., Volume 109 (2012)
[171] First-principles approach to the electronic structure of strongly correlated systems: combining the GW Approximation and Dynamical Mean-Field Theory, Phys. Rev. Lett., Volume 90 (2003) no. 8
[172] Combined GW and dynamical mean-field theory: dynamical screening effects in transition metal oxides, Europhys. Lett., Volume 100 (2012) no. 6, p. 67001
[173] Asymmetry in band widening and quasiparticle lifetimes in SrVO3: competition between screened exchange and local correlations from combined GW and dynamical mean-field theory GW+DMFT, Phys. Rev. B, Volume 90 (2014)
[174] Spectral properties of correlated materials: local vertex and nonlocal two-particle correlations from combined GW and dynamical mean field theory, Phys. Rev. Lett., Volume 109 (2012)
[175] Screening and nonlocal correlations in the extended Hubbard model from self-consistent combined GW and dynamical mean field theory, Phys. Rev. B, Volume 87 (2013)
[176] Screened exchange dynamical mean-field theory and its relation to density functional theory: SrVO3 and SrTiO3, Europhys. Lett., Volume 108 (2014), p. 75003
Cited by Sources:
Comments - Policy