Comptes Rendus
Spectral properties of transition metal pnictides and chalcogenides: Angle-resolved photoemission spectroscopy and dynamical mean-field theory
Comptes Rendus. Physique, Volume 17 (2016) no. 1-2, pp. 140-163.

Electronic Coulomb correlations lead to characteristic signatures in the spectroscopy of transition metal pnictides and chalcogenides: quasi-particle renormalizations, lifetime effects or incoherent badly metallic behavior above relatively low coherence temperatures are measures of many-body effects due to local Hubbard and Hund's couplings. We review and compare the results of angle-resolved photoemission spectroscopy experiments (ARPES) and of combined density functional/dynamical mean-field theory (DFT+DMFT) calculations. We emphasize the doping-dependence of the quasi-particle mass renormalization and coherence properties.

Les corrélations électroniques de Coulomb sont la cause d'empreintes caractéristiques dans les spectres des pnictures et chalcogénures de métaux de transition : la renormalisation de la masse des quasi-particules, la diminution de leur temps de vie ou le comportement de type mauvais métal au-dessus de températures de cohérence relativement basses permettent ainsi d'évaluer les effets des interactions à plusieurs corps dues aux couplages locaux de Hubbard et de Hund. Nous effectuons une revue et une comparaison des résultats expérimentaux de photoémission résolue en angle (ARPES) et des calculs théoriques combinant la théorie de la fonctionnelle de la densité avec la théorie du champ moyen dynamique (DFT+DMFT). Nous insistons en particulier sur la dépendance de la renormalisation de la masse des quasi-particules et des propriétés de cohérence en fonction du dopage.

Published online:
DOI: 10.1016/j.crhy.2015.11.003
Keywords: Electronic Coulomb correlations, Angle-resolved photoemission spectroscopy, Dynamical mean field theory, Transition metal pnictides and chalcogenides, Hund's coupling induced spin-freezing, Doping-dependent coherence
Mot clés : Corrélations électroniques de Coulomb, Spectroscopie par photoémission résolue en angle, Théorie du champ moyen dynamique, Pnictures et chalcogénures de métaux de transition, Gel de spin induit par le couplage de Hund, Cohérence dépendant du dopage

Ambroise van Roekeghem 1, 2; Pierre Richard 2, 3; Hong Ding 2, 3; Silke Biermann 1, 4, 5

1 Centre de physique théorique, École polytechnique, CNRS, Université Paris-Saclay, 91128 Palaiseau, France
2 Beijing National Laboratory for Condensed Matter Physics, and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
3 Collaborative Innovation Center of Quantum Matter, Beijing, China
4 Collège de France, 11, place Marcelin-Berthelot, 75005 Paris, France
5 European Theoretical Synchrotron Facility, Europe, France
@article{CRPHYS_2016__17_1-2_140_0,
     author = {Ambroise van Roekeghem and Pierre Richard and Hong Ding and Silke Biermann},
     title = {Spectral properties of transition metal pnictides and chalcogenides: {Angle-resolved} photoemission spectroscopy and dynamical mean-field theory},
     journal = {Comptes Rendus. Physique},
     pages = {140--163},
     publisher = {Elsevier},
     volume = {17},
     number = {1-2},
     year = {2016},
     doi = {10.1016/j.crhy.2015.11.003},
     language = {en},
}
TY  - JOUR
AU  - Ambroise van Roekeghem
AU  - Pierre Richard
AU  - Hong Ding
AU  - Silke Biermann
TI  - Spectral properties of transition metal pnictides and chalcogenides: Angle-resolved photoemission spectroscopy and dynamical mean-field theory
JO  - Comptes Rendus. Physique
PY  - 2016
SP  - 140
EP  - 163
VL  - 17
IS  - 1-2
PB  - Elsevier
DO  - 10.1016/j.crhy.2015.11.003
LA  - en
ID  - CRPHYS_2016__17_1-2_140_0
ER  - 
%0 Journal Article
%A Ambroise van Roekeghem
%A Pierre Richard
%A Hong Ding
%A Silke Biermann
%T Spectral properties of transition metal pnictides and chalcogenides: Angle-resolved photoemission spectroscopy and dynamical mean-field theory
%J Comptes Rendus. Physique
%D 2016
%P 140-163
%V 17
%N 1-2
%I Elsevier
%R 10.1016/j.crhy.2015.11.003
%G en
%F CRPHYS_2016__17_1-2_140_0
Ambroise van Roekeghem; Pierre Richard; Hong Ding; Silke Biermann. Spectral properties of transition metal pnictides and chalcogenides: Angle-resolved photoemission spectroscopy and dynamical mean-field theory. Comptes Rendus. Physique, Volume 17 (2016) no. 1-2, pp. 140-163. doi : 10.1016/j.crhy.2015.11.003. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2015.11.003/

[1] H. Hertz Über einen Einfluss des ultravioletten Lichtes auf die electrische Entladung, Ann. Phys., Volume 267 (1887) no. 8, pp. 983-1000

[2] S. Hüfner Photoelectron Spectroscopy: Principles and Applications, Springer, 2003

[3] A. Damascelli Probing the electronic structure of complex systems by ARPES, Phys. Scr., Volume 2004 (2004) no. T109, p. 61

[4] P. Richard; T. Qian; H. Ding ARPES measurements of the superconducting gap of Fe-based superconductors and their implications to the pairing mechanism, J. Phys. Condens. Matter, Volume 27 (2015), p. 293203

[5] P. Richard; T. Sato; K. Nakayama; T. Takahashi; H. Ding Fe-based superconductors: an angle-resolved photoemission spectroscopy perspective, Rep. Prog. Phys., Volume 74 (2011) no. 12, p. 124512

[6] J.D. Lee; O. Gunnarsson; L. Hedin Transition from the adiabatic to the sudden limit in core-level photoemission: a model study of a localized system, Phys. Rev. B, Volume 60 (1999), pp. 8034-8049

[7] L. Hedin On correlation effects in electron spectroscopies and the GW approximation, J. Phys. Condens. Matter, Volume 11 (1999) no. 42

[8] C. Berthod Many-Body Formalism in Condensed Matter Physics, Lecture Notes, University of Geneva, 2014

[9] J. Braun; J. Minár; H. Ebert; M.I. Katsnelson; A.I. Lichtenstein Spectral function of ferromagnetic 3d metals: a self-consistent LSDA+DMFT approach combined with the one-step model of photoemission, Phys. Rev. Lett., Volume 97 (2006)

[10] J.M. Tomczak; A.I. Poteryaev; S. Biermann Momentum-resolved spectroscopy of correlated metals: a view from dynamical mean field theory, C. R. Physique, Volume 10 (2009) no. 6, pp. 537-547

[11] M.P. Seah; W.A. Dench Quantitative electron spectroscopy of surfaces: a standard data base for electron inelastic mean free paths in solids, Surf. Interface Anal., Volume 1 (1979) no. 1, pp. 2-11

[12] L. Perfetti; P.A. Loukakos; M. Lisowski; U. Bovensiepen; H. Berger; S. Biermann; P.S. Cornaglia; A. Georges; M. Wolf Time evolution of the electronic structure of 1t-tas2 through the insulator-metal transition, Phys. Rev. Lett., Volume 97 (2006)

[13] L. Perfetti; P.A. Loukakos; M. Lisowski; U. Bovensiepen; M. Wolf; H. Berger; S. Biermann; A. Georges Femtosecond dynamics of electronic states in the Mott insulator 1t-tas2 by time resolved photoelectron spectroscopy, New J. Phys., Volume 10 (2008) no. 5

[14] I. Avigo; R. Cortés; L. Rettig; S. Thirupathaiah; H.S. Jeevan; P. Gegenwart; T. Wolf; M. Ligges; M. Wolf; J. Fink; U. Bovensiepen Coherent excitations and electron–phonon coupling in Ba/EuFe2As2 compounds investigated by femtosecond time- and angle-resolved photoemission spectroscopy, J. Phys. Condens. Matter, Volume 25 (2013) no. 9

[15] L. Rettig; R. Cortés; H.S. Jeevan; P. Gegenwart; T. Wolf; J. Fink; U. Bovensiepen Electron–phonon coupling in 122 Fe pnictides analyzed by femtosecond time-resolved photoemission, New J. Phys., Volume 15 (2013) no. 8

[16] D.H. Torchinsky; G.F. Chen; J.L. Luo; N.L. Wang; N. Gedik Band-dependent quasiparticle dynamics in single crystals of the Ba0.6K0.4Fe2As2 superconductor revealed by pump-probe spectroscopy, Phys. Rev. Lett., Volume 105 (2010)

[17] S. Kumar; L. Harnagea; S. Wurmehl; B. Buchner; A.K. Sood Ultrafast quasiparticle relaxation dynamics in superconducting iron pnictide Ca(Fe0.944Co0.056)2As2, Solid State Commun., Volume 160 (2013), pp. 8-12

[18] O. Andersen; L. Boeri On the multi-orbital band structure and itinerant magnetism of iron-based superconductors, Ann. Phys., Volume 523 (2011) no. 1–2, pp. 8-50

[19] V. Brouet; M.F. Jensen; P.-H. Lin; A. Taleb-Ibrahimi; P. Le Fèvre; F. Bertran; C.-H. Lin; W. Ku; A. Forget; D. Colson Impact of the two Fe unit cell on the electronic structure measured by ARPES in iron pnictides, Phys. Rev. B, Volume 86 (2012)

[20] C.-H. Lin; T. Berlijn; L. Wang; C.-C. Lee; W.-G. Yin; W. Ku One-fe versus two-Fe Brillouin zone of Fe-based superconductors: creation of the electron pockets by translational symmetry breaking, Phys. Rev. Lett., Volume 107 (2011)

[21] W. Kohn Nobel lecture: electronic structure of matter—wave functions and density functionals, Rev. Mod. Phys., Volume 71 (1999) no. 5, pp. 1253-1266

[22] J. Hubbard Electron correlations in narrow energy bands, Proc. R. Soc. Lond. A, Volume 276 (1963) no. 1, p. 238

[23] J. Hubbard Electron correlations in narrow energy bands. ii. the degenerate band case, Proc. R. Soc. Lond. A, Volume 277 (1964) no. 1369, p. 237

[24] F. Aryasetiawan; M. Imada; A. Georges; G. Kotliar; S. Biermann; A.I. Lichtenstein Frequency-dependent local interactions and low-energy effective models from electronic structure calculations, Phys. Rev. B, Volume 70 (2004) no. 19

[25] L. Vaugier Electronic structure of correlated materials from first principles: Hubbard interaction and Hund's exchange, Ecole Polytechnique, France, 2011 (Ph.D. thesis)

[26] L. Vaugier; H. Jiang; S. Biermann Hubbard U and Hund exchange J in transition metal oxides: screening versus localization trends from constrained random phase approximation, Phys. Rev. B, Volume 86 (2012) no. 16

[27] A. van Roekeghem, L. Vaugier, H. Jiang, S. Biermann, Hubbard interactions in iron-based pnictides and chalcogenides: Slater parametrization, screening channels and frequency dependence, in preparation.

[28] T. Kosugi; T. Miyake; S. Ishibashi; R. Arita; H. Aoki First-principles electronic structure of solid picene, J. Phys. Soc. Jpn., Volume 78 (2009) no. 11, p. 113704

[29] K. Haule; G. Kotliar New J. Phys., 11 (2009)

[30] P. Werner; M. Casula; T. Miyake; F. Aryasetiawan; A.J. Millis; S. Biermann Satellites and large doping- and temperature-dependence of electronic properties in hole-doped BaFe2As2, Nat. Phys., Volume 8 (2012), pp. 331-337

[31] L. de' Medici; G. Giovannetti; M. Capone Selective Mott physics as a key to iron superconductors, Phys. Rev. Lett., Volume 112 (2014)

[32] S. Biermann Electronic structure of transition metal compounds: DFT–DMFT approach, Encyclopedia of Materials: Science and Technology, Elsevier, Oxford, 2006, pp. 1-9 in: K.H.J. Buschow, R.W. Cahn, M.C. Flemings, B. Ilschner (print), E.J. Kramer, S. Mahajan, P. Veyssière (updates) (Eds.)

[33] S. Biermann, LDA+DMFT – A tool for investigating the electronic structure of materials with strong electronic coulomb correlations, Encyclopedia of materials: Science and Technology.

[34] A. Georges; G. Kotliar; W. Krauth; M.J. Rozenberg Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions, Rev. Mod. Phys., Volume 68 (1996) no. 1, p. 13

[35] A. Georges Strongly correlated electron materials: dynamical mean field theory and electronic structure, Lectures on the Physics of Highly Correlated Electron Systems VIII, vol. 715, 2004, p. 3

[36] G. Kotliar; S.Y. Savrasov; K. Haule; V.S. Oudovenko; O. Parcollet; C.A. Marianetti Electronic structure calculations with dynamical mean-field theory, Rev. Mod. Phys., Volume 78 (2006) no. 3, pp. 865-951

[37] R. Bulla Dynamical mean-field theory – from quantum impurity physics to lattice problems, Philos. Mag., Volume 86 (2006), p. 1877

[38] V.I. Anisimov; A. Poteryaev; M. Korotin; A. Anokhin; G. Kotliar First-principles calculations of the electronic structure and spectra of strongly correlated systems: dynamical mean-field theory, J. Phys. Condens. Matter, Volume 9 (1997), p. 943

[39] A.I. Lichtenstein; M.I. Katsnelson Ab initio calculations of quasiparticle band structure in correlated systems: LDA++ approach, Phys. Rev. B, Volume 57 (1998) no. 12, pp. 6884-6895

[40] M. Aichhorn; L. Pourovskii; V. Vildosola; M. Ferrero; O. Parcollet; T. Miyake; A. Georges; S. Biermann Dynamical mean-field theory within an augmented plane-wave framework: assessing electronic correlations in the iron pnictide LaFeAsO, Phys. Rev. B, Volume 80 (2009) no. 8

[41] F. Lechermann; A. Georges; A. Poteryaev; S. Biermann; M. Posternak; A. Yamasaki; O.K. Andersen Dynamical mean-field theory using wannier functions: a flexible route to electronic structure calculations of strongly correlated materials, Phys. Rev. B, Volume 74 (2006) no. 12

[42] M. Ferrero; O. Parcollet TRIQS: a toolbox for research on interacting quantum systems, 2011 http://ipht.cea.fr/triqs

[43] G.D. Mahan Many-Particle Physics, Plenum Press, New York and London, 1990

[44] J.M. Tomczak; S. Biermann Optical properties of correlated materials: generalized Peierls approach and its application to VO2, Phys. Rev. B, Volume 80 (2009)

[45] F. Rullier-Albenque; D. Colson; A. Forget; P. Thuéry; S. Poissonnet Phys. Rev. B, 81 (2010)

[46] N. Xu; P. Richard; A. van Roekeghem; P. Zhang; H. Miao; W.-L. Zhang; T. Qian; M. Ferrero; A.S. Sefat; S. Biermann; H. Ding Electronic band structure of BaCo2As2: a fully doped ferropnictide analog with reduced electronic correlations, Phys. Rev. X, Volume 3 (2013)

[47] A. van Roekeghem; T. Ayral; J.M. Tomczak; M. Casula; N. Xu; H. Ding; M. Ferrero; O. Parcollet; H. Jiang; S. Biermann Dynamical correlations and screened exchange on the experimental bench: spectral properties of the cobalt pnictide BaCo2As2, Phys. Rev. Lett., Volume 113 (2014)

[48] N. Xu; C.E. Matt; P. Richard; A. van Roekeghem; S. Biermann; X. Shi; S.-F. Wu; H.-W. Liu; D. Chen; T. Qian; N. Plumb; M. Radovic; H. Wang; Q. Mao; J. Du; M. Fang; J. Mesot; H. Ding; M. Shi Camelback-shaped band reconciles heavy-electron behavior with weak electronic Coulomb correlations in superconducting TlNi2Se2, Phys. Rev. B, Volume 92 (2015) | DOI

[49] K. Haule; J.H. Shim; G. Kotliar Correlated electronic structure of LaO1xFxFeAs, Phys. Rev. Lett., Volume 100 (2008)

[50] M. Aichhorn; S. Biermann; T. Miyake; A. Georges; M. Imada Theoretical evidence for strong correlations and incoherent metallic state in FeSe, Phys. Rev. B, Volume 82 (2010) no. 6

[51] J. Ferber; K. Foyevtsova; R. Valentí; H.O. Jeschke LDA+DMFT study of the effects of correlation in LiFeAs, Phys. Rev. B, Volume 85 (2012)

[52] P. Hansmann; R. Arita; A. Toschi; S. Sakai; G. Sangiovanni; K. Held Dichotomy between large local and small ordered magnetic moments in iron-based superconductors, Phys. Rev. Lett., Volume 104 (2010)

[53] V.I. Anisimov; D. Korotin; M. Korotin; A.V. Kozhevnikov; J. Kunes; A.O. Shorikov; S.L. Skornyakov; S.V. Streltsov Coulomb repulsion and correlation strength in LaFeAsO from density functional and dynamical mean-field theories, J. Phys. Condens. Matter, Volume 21 (2009)

[54] G. Wang; Y. Qian; G. Xu; X. Dai; Z. Fang Gutzwiller density functional studies of FeAs-based superconductors: structure optimization and evidence for a three-dimensional Fermi surface, Phys. Rev. Lett., Volume 104 (2010)

[55] K. Haule; G. Kotliar Coherence and incoherence crossover in the normal state of iron oxypnictides and importance of Hund's rule coupling, New J. Phys., Volume 11 (2009)

[56] L. de' Medici Hund's coupling and its key role in tuning multiorbital correlations, Phys. Rev. B, Volume 83 (2011)

[57] A. Liebsch; H. Ishida Correlation-induced spin freezing transition in FeSe: a dynamical mean field study, Phys. Rev. B, Volume 82 (2010) no. 15

[58] A.O. Shorikov; M.A. Korotin; S.V. Streltsov; S.L. Skornyakov; D.M. Korotin; V.I. Anisimov Coulomb correlation effects in LaFeAsO: an LDA+DMFT(QMC) study, J. Exp. Theor. Phys., Volume 108 (2009), p. 121

[59] V.I. Anisimov; D.M. Korotin; S.V. Streltsov; A.V. Kozhevnikov; J. Kunes; A.O. Shorikov; M.A. Korotin Density-functional calculation of the Coulomb repulsion and correlation strength in superconducting LaFeAsO, JETP Lett., Volume 88 (2008), p. 729

[60] T. Miyake; L. Pourovskii; V. Vildosola; S. Biermann; A. Georges d- and f-orbital correlations in the REFeAsO compounds, J. Phys. Soc. Jpn., Suppl., Volume 77 (2008), p. 99

[61] H. Eschrig; A. Lankau; K. Koepernik Calculated cleavage behavior and surface states of LaOFeAs, Phys. Rev. B, Volume 81 (2010)

[62] L.X. Yang; B.P. Xie; Y. Zhang; C. He; Q.Q. Ge; X.F. Wang; X.H. Chen; M. Arita; J. Jiang; K. Shimada; M. Taniguchi; I. Vobornik; G. Rossi; J.P. Hu; D.H. Lu; Z.X. Shen; Z.Y. Lu; D.L. Feng Surface and bulk electronic structures of LaFeAsO studied by angle-resolved photoemission spectroscopy, Phys. Rev. B, Volume 82 (2010)

[63] C. Liu; Y. Lee; A.D. Palczewski; J.-Q. Yan; T. Kondo; B.N. Harmon; R.W. McCallum; T.A. Lograsso; A. Kaminski Phys. Rev. B, 82 (2010)

[64] D. Hsieh; Y. Xia; L. Wray; D. Qian; K. Gomes; A. Yazdani; G. Chen; J. Luo; N. Wang; M. Hasan Experimental determination of the microscopic origin of magnetism in parent iron pnictides | arXiv

[65] D. Lu; M. Yi; S.-K. Mo; J. Analytis; J.-H. Chu; A. Erickson; D. Singh; Z. Hussain; T. Geballe; I. Fisher; Z.-X. Shen ARPES studies of the electronic structure of LaOFe(P,As), Physica C, Volume 469 (2009) no. 9–12, pp. 452-458

[66] E. van Heumen; J. Vuorinen; K. Koepernik; F. Massee; Y. Huang; M. Shi; J. Klei; J. Goedkoop; M. Lindroos; J. van den Brink; M.S. Golden Phys. Rev. Lett., 106 (2011)

[67] S. Wu; P. Richard; A. van Roekeghem; S.M. Nie; H. Miao; N. Xu; T. Qian; B. Saparov; Z. Fang; S. Biermann; A.S. Sefat; H. Ding Direct spectroscopic evidence for completely filled Cu 3d shell in BaCu2As2 and α-BaCu2Sb2, Phys. Rev. B, Volume 91 (2015)

[68] A. Yamasaki; Y. Matsui; S. Imada; K. Takase; H. Azuma; T. Muro; Y. Kato; A. Higashiya; A. Sekiyama; S. Suga; M. Yabashi; K. Tamasaku; T. Ishikawa; K. Terashima; H. Kobori; A. Sugimura; N. Umeyama; H. Sato; Y. Hara; N. Miyagawa; S.I. Ikeda Electron correlation in the FeSe superconductor studied by bulk-sensitive photoemission spectroscopy, Phys. Rev. B, Volume 82 (2010)

[69] D. Lu; M. Yi; S.-K. Mo; A. Erickson; J. Analytis; J.-H. Chu; D. Singh; Z. Hussain; T. Geballe; I. Fisher; Z. Shen Electronic structure of the iron-based superconductor LaOFeP, Nature, Volume 455 (2008) no. 7209, pp. 81-84

[70] R. Yoshida; T. Wakita; H. Okazaki; Y. Mizuguchi; S. Tsuda; Y. Takano; H. Takeya; K. Hirata; T. Muro; M. Okawa; K. Ishizaka; S. Shin; H. Harima; M. Hirai; Y. Muraoka; T. Yokoya Electronic structure of superconducting FeSe studied by high-resolution photoemission spectroscopy, J. Phys. Soc. Jpn., Volume 78 (2009)

[71] S.V. Borisenko; V.B. Zabolotnyy; D.V. Evtushinsky; T.K. Kim; I.V. Morozov; A.N. Yaresko; A.A. Kordyuk; G. Behr; A. Vasiliev; R. Follath; B. Büchner Superconductivity without nesting in LiFeAs, Phys. Rev. Lett., Volume 105 (2010)

[72] J.M. Tomczak; M. van Schilfgaarde; G. Kotliar Many-body effects in iron pnictides and chalcogenides: nonlocal versus dynamic origin of effective masses, Phys. Rev. Lett., Volume 109 (2012)

[73] H. Ding; P. Richard; K. Nakayama; K. Sugawara; T. Arakane; Y. Sekiba; A. Takayama; S. Souma; T. Sato; T. Takahashi; Z. Wang; X. Dai; Z. Fang; G.F. Chen; J.L. Luo; N.L. Wang Observation of Fermi-surface–dependent nodeless superconducting gaps in Ba0.6K0.4Fe2As2, Europhys. Lett., Volume 83 (2008) no. 4, p. 47001

[74] C. Liu; G.D. Samolyuk; Y. Lee; N. Ni; T. Kondo; A.F. Santander-Syro; S.L. Bud'ko; J.L. McChesney; E. Rotenberg; T. Valla; A.V. Fedorov; P.C. Canfield; B.N. Harmon; A. Kaminski K-doping dependence of the Fermi surface of the iron-arsenic Ba1xKxFe2As2 superconductor using angle-resolved photoemission spectroscopy, Phys. Rev. Lett., Volume 101 (2008)

[75] V. Brouet; M. Marsi; B. Mansart; A. Nicolaou; A. Taleb-Ibrahimi; P. Le Fèvre; F. Bertran; F. Rullier-Albenque; A. Forget; D. Colson Nesting between hole and electron pockets in Ba(Fe1xCox)2As2 (x=00.3) observed with angle-resolved photoemission, Phys. Rev. B, Volume 80 (2009)

[76] T. Shimojima; K. Ishizaka; Y. Ishida; N. Katayama; K. Ohgushi; T. Kiss; M. Okawa; T. Togashi; X.-Y. Wang; C.-T. Chen; S. Watanabe; R. Kadota; T. Oguchi; A. Chainani; S. Shin Orbital-dependent modifications of electronic structure across the magnetostructural transition in BaFe2As2, Phys. Rev. Lett., Volume 104 (2010)

[77] S. de Jong; Y. Huang; R. Huisman; F. Massee; S. Thirupathaiah; M. Gorgoi; F. Schaefers; R. Follath; J.B. Goedkoop; M.S. Golden High-resolution, hard x-ray photoemission investigation of BaFe2As2: moderate influence of the surface and evidence for a low degree of fe 3d-as 4p hybridization of electronic states near the Fermi energy, Phys. Rev. B, Volume 79 (2009)

[78] J. Fink; S. Thirupathaiah; R. Ovsyannikov; H.A. Dürr; R. Follath; Y. Huang; S. de Jong; M.S. Golden; Y.-Z. Zhang; H.O. Jeschke; R. Valentí; C. Felser; S. Dastjani Farahani; M. Rotter; D. Johrendt Electronic structure studies of BaFe2As2 by angle-resolved photoemission spectroscopy, Phys. Rev. B, Volume 79 (2009)

[79] W. Malaeb; T. Yoshida; A. Fujimori; M. Kubota; K. Ono; K. Kihou; P.M. Shirage; H. Kito; A. Iyo; H. Eisaki; Y. Nakajima; T. Tamegai; R. Arita Three-dimensional electronic structure of superconducting iron pnictides observed by angle-resolved photoemission spectroscopy, J. Phys. Soc. Jpn., Volume 78 (2009) no. 12, p. 123706

[80] D.J. Singh Electronic structure of fe-based superconductors, Physica C, Volume 469 (2009) no. 9, pp. 418-424

[81] V. Vildosola; L. Pourovskii; R. Arita; S. Biermann; A. Georges Bandwidth and Fermi surface of iron oxypnictides: covalency and sensitivity to structural changes, Phys. Rev. B, Volume 78 (2008)

[82] I.I. Mazin; D.J. Singh; M.D. Johannes; M.H. Du Unconventional superconductivity with a sign reversal in the order parameter of LaFeAsO1xFx, Phys. Rev. Lett., Volume 101 (2008)

[83] V. Brouet; P.-H. Lin; Y. Texier; J. Bobroff; A. Taleb-Ibrahimi; P. Le Fèvre; F. Bertran; M. Casula; P. Werner; S. Biermann; F. Rullier-Albenque; A. Forget; D. Colson Large temperature dependence of the number of carriers in Co-doped BaFe2As2, Phys. Rev. Lett., Volume 110 (2013)

[84] C. Liu; T. Kondo; A. Palczewski; G. Samolyuk; Y. Lee; M. Tillman; N. Ni; E. Mun; R. Gordon; A. Santander-Syro; S. Bud'ko; J. McChesney; E. Rotenberg; A. Fedorov; T. Valla; O. Copie; M. Tanatar; C. Martin; B. Harmon; P. Canfield; R. Prozorov; J. Schmalian; A. Kaminski Electronic properties of iron arsenic high temperature superconductors revealed by angle resolved photoemission spectroscopy (ARPES), Physica C, Volume 469 (2009) no. 9–12, pp. 491-497

[85] P. Vilmercati; A. Fedorov; I. Vobornik; U. Manju; G. Panaccione; A. Goldoni; A.S. Sefat; M.A. McGuire; B.C. Sales; R. Jin; D. Mandrus; D.J. Singh; N. Mannella Evidence for three-dimensional Fermi-surface topology of the layered electron-doped iron superconductor Ba(Fe1xCox)2As2, Phys. Rev. B, Volume 79 (2009)

[86] I.I. Mazin; M.D. Johannes; L. Boeri; K. Koepernik; D.J. Singh Problems with reconciling density functional theory calculations with experiment in ferropnictides, Phys. Rev. B, Volume 78 (2008)

[87] M. Aichhorn; L. Pourovskii; A. Georges Importance of electronic correlations for structural and magnetic properties of the iron pnictide superconductor LaFeAsO, Phys. Rev. B, Volume 84 (2011)

[88] G. Lee; H.S. Ji; Y. Kim; C. Kim; K. Haule; G. Kotliar; B. Lee; S. Khim; K.H. Kim; K.S. Kim; K.-S. Kim; J.H. Shim Orbital selective Fermi surface shifts and mechanism of high Tc superconductivity in correlated AFeAs (A=Li,Na), Phys. Rev. Lett., Volume 109 (2012)

[89] H. Ding; K. Nakayama; P. Richard; S. Souma; T. Sato; T. Takahashi; M. Neupane; Y.-M. Xu; Z.-H. Pan; A.V. Fedorov; Z. Wang; X. Dai; Z. Fang; G.F. Chen; J.L. Luo; N.L. Wang Electronic structure of optimally doped pnictide Ba0.6K0.4Fe2As2: a comprehensive angle-resolved photoemission spectroscopy investigation, J. Phys. Condens. Matter, Volume 23 (2011) no. 13, p. 135701

[90] Y. Lubashevsky; E. Lahoud; K. Chashka; D. Podolsky; A. Kanigel Nat. Phys., 8 (2012), p. 309

[91] J. Maletz; V.B. Zabolotnyy; D.V. Evtushinsky; S. Thirupathaiah; A.U.B. Wolter; L. Harnagea; A.N. Yaresko; A.N. Vasiliev; D.A. Chareev; A.E. Böhmer; F. Hardy; T. Wolf; C. Meingast; E.D.L. Rienks; B. Büchner; S.V. Borisenko Unusual band renormalization in the simplest iron-based superconductor FeSe1x, Phys. Rev. B, Volume 89 (2014)

[92] K. Nakayama; Y. Miyata; G.N. Phan; T. Sato; Y. Tanabe; T. Urata; K. Tanigaki; T. Takahashi Reconstruction of band structure induced by electronic nematicity in an FeSe superconductor, Phys. Rev. Lett., Volume 113 (2014)

[93] T. Shimojima; Y. Suzuki; T. Sonobe; A. Nakamura; M. Sakano; J. Omachi; K. Yoshioka; M. Kuwata-Gonokami; K. Ono; H. Kumigashira; A.E. Böhmer; F. Hardy; T. Wolf; C. Meingast; H. v. Löhneysen; H. Ikeda; K. Ishizaka Lifting of xz/yz orbital degeneracy at the structural transition in detwinned FeSe, Phys. Rev. B, Volume 90 (2014)

[94] K. Okazaki, Y. Ito, Y. Ota, Y. Kotani, T. Shimojima, T. Kiss, S. Watanabe, C.-T. Chen, S. Niitaka, T. Hanaguri, H. Takagi, A. Chainani, S. Shin, Superconductivity in an electron band just above the fermi level: possible route to BCS-BEC superconductivity, Scientific reports 4.

[95] S. Kasahara; T. Watashige; T. Hanaguri; Y. Kohsaka; T. Yamashita; Y. Shimoyama; Y. Mizukami; R. Endo; H. Ikeda; K. Aoyama et al. Field-induced superconducting phase of FeSe in the BCS-BEC cross-over, Proc. Natl. Acad. Sci., Volume 111 (2014) no. 46, pp. 16309-16313

[96] M.D. Watson; T.K. Kim; A.A. Haghighirad; N.R. Davies; A. McCollam; A. Narayanan; S.F. Blake; Y.L. Chen; S. Ghannadzadeh; A.J. Schofield; M. Hoesch; C. Meingast; T. Wolf; A.I. Coldea Emergence of the nematic electronic state in FeSe, Phys. Rev. B, Volume 91 (2015)

[97] P. Zhang; T. Qian; P. Richard; X.P. Wang; H. Miao; B.Q. Lv; B.B. Fu; T. Wolf; C. Meingast; X.X. Wu; Z.Q. Wang; J.P. Hu; H. Ding Observation of two distinct dxz/dyz band splittings in FeSe, Phys. Rev. B, Volume 91 (2015)

[98] Y. Suzuki; T. Shimojima; T. Sonobe; A. Nakamura; M. Sakano; H. Tsuji; J. Omachi; K. Yoshioka; M. Kuwata-Gonokami; T. Watashige; R. Kobayashi; S. Kasahara; T. Shibauchi; Y. Matsuda; Y. Yamakawa; H. Kontani; K. Ishizaka Momentum-dependent sign-inversion of orbital polarization in superconducting FeSe, Phys. Rev. B, Volume 92 (2015) | DOI

[99] Y. Zhang; M. Yi; Z.-K. Liu; W. Li; J.J. Lee; R.G. Moore; M. Hashimoto; N. Masamichi; H. Eisaki; S.-K. Mo; Z. Hussain; T.P. Devereaux; Z.-X. Shen; D.H. Lu Distinctive momentum dependence of the band reconstruction in the nematic state of FeSe thin film | arXiv

[100] K. Umezawa; Y. Li; H. Miao; K. Nakayama; Z.-H. Liu; P. Richard; T. Sato; J.B. He; D.-M. Wang; G.F. Chen; H. Ding; T. Takahashi; S.-C. Wang Phys. Rev. Lett., 108 (2012)

[101] S.V. Borisenko; V.B. Zabolotnyy; A.A. Kordyuk; D.V. Evtushinsky; T.K. Kim; I.V. Morozov; R. Follath; B. Büchner Symmetry, 4 (2012), p. 251

[102] S. Chi; S. Johnston; G. Levy; S. Grothe; R. Szedlak; B. Ludbrook; R. Liang; P. Dosanjh; S.A. Burke; A. Damascelli; D.A. Bonn; W.N. Hardy; Y. Pennec Sign inversion in the superconducting order parameter of LiFeAs inferred from Bogoliubov quasiparticle interference, Phys. Rev. B, Volume 89 (2014)

[103] M. van Schilfgaarde; T. Kotani; S. Faleev Quasiparticle self-consistent GW theory, Phys. Rev. Lett., Volume 96 (2006) no. 22

[104] D.J. Singh Electronic structure and doping in BaFe2As2 and LiFeAs: density functional calculations, Phys. Rev. B, Volume 78 (2008)

[105] S. Borisenko; D. Evtushinsky; I. Morozov; S. Wurmehl; B. Büchner; A. Yaresko; T. Kim; M. Hoesch; T. Wolf; N. Zhigadlo Direct observation of spin-orbit coupling in iron-based superconductors | arXiv

[106] M. Yi; D.H. Lu; J.G. Analytis; J.-H. Chu; S.-K. Mo; R.-H. He; R.G. Moore; X.J. Zhou; G.F. Chen; J.L. Luo; N.L. Wang; Z. Hussain; D.J. Singh; I.R. Fisher; Z.-X. Shen Electronic structure of the BaFe2As2 family of iron-pnictide superconductors, Phys. Rev. B, Volume 80 (2009)

[107] A. Tamai; A.Y. Ganin; E. Rozbicki; J. Bacsa; W. Meevasana; P.D.C. King; M. Caffio; R. Schaub; S. Margadonna; K. Prassides; M.J. Rosseinsky; F. Baumberger Strong electron correlations in the normal state of the iron-based FeSe0.42Te0.58 superconductor observed by angle-resolved photoemission spectroscopy, Phys. Rev. Lett., Volume 104 (2010)

[108] C. He; Y. Zhang; B.P. Xie; X.F. Wang; L.X. Yang; B. Zhou; F. Chen; M. Arita; K. Shimada; H. Namatame; M. Taniguchi; X.H. Chen; J.P. Hu; D.L. Feng Electronic-structure-driven magnetic and structure transitions in superconducting NaFeAs single crystals measured by angle-resolved photoemission spectroscopy, Phys. Rev. Lett., Volume 105 (2010)

[109] S.T. Cui; S.Y. Zhu; A.F. Wang; S. Kong; S.L. Ju; X.G. Luo; X.H. Chen; G.B. Zhang; Z. Sun Evolution of the band structure of superconducting NaFeAs from optimally doped to heavily overdoped Co substitution using angle-resolved photoemission spectroscopy, Phys. Rev. B, Volume 86 (2012)

[110] V. Brouet; F. Rullier-Albenque; M. Marsi; B. Mansart; M. Aichhorn; S. Biermann; J. Faure; L. Perfetti; A. Taleb-Ibrahimi; P. Le Fèvre; F. Bertran; A. Forget; D. Colson Significant reduction of electronic correlations upon isovalent Ru substitution of BaFe2As2, Phys. Rev. Lett., Volume 105 (2010)

[111] N. Xu; T. Qian; P. Richard; Y.-B. Shi; X.-P. Wang; P. Zhang; Y.-B. Huang; Y.-M. Xu; H. Miao; G. Xu; G.-F. Xuan; W.-H. Jiao; Z.-A. Xu; G.-H. Cao; H. Ding Effects of Ru substitution on electron correlations and Fermi-surface dimensionality in Ba(Fe1xRux)2As2, Phys. Rev. B, Volume 86 (2012)

[112] T. Sato; K. Nakayama; Y. Sekiba; P. Richard; Y.-M. Xu; S. Souma; T. Takahashi; G.F. Chen; J.L. Luo; N.L. Wang; H. Ding Band structure and Fermi surface of an extremely overdoped iron-based superconductor KFe2As2, Phys. Rev. Lett., Volume 103 (2009)

[113] T. Yoshida; S.-I. Ideta; I. Nishi; A. Fujimori; M. Yi; R. Moore; S.-K. Mo; D. Lu; Z.-X. Shen; Z. Hussain et al. Orbital character and electron correlation effects on two-and three-dimensional Fermi surfaces in KFe2As2 revealed by angle-resolved photoemission spectroscopy, Front. Phys., Volume 2 (2014), p. 17

[114] A. Kordyuk; V. Zabolotnyy; D. Evtushinsky; A. Yaresko; B. Büchner; S. Borisenko Electronic band structure of ferro-pnictide superconductors from ARPES experiment, J. Supercond. Nov. Magn., Volume 26 (2013) no. 9, pp. 2837-2841

[115] E. Razzoli; C.E. Matt; M. Kobayashi; X.-P. Wang; V.N. Strocov; A. van Roekeghem; S. Biermann; N.C. Plumb; M. Radovic; T. Schmitt; C. Capan; Z. Fisk; P. Richard; H. Ding; P. Aebi; J. Mesot; M. Shi Tuning electronic correlations in transition metal pnictides: chemistry beyond the valence count, Phys. Rev. B, Volume 91 (2015)

[116] K. Terashima; Y. Sekiba; J.H. Bowen; K. Nakayama; T. Kawahara; T. Sato; P. Richard; Y.-M. Xu; L.J. Li; G.H. Cao; Z.-A. Xu; H. Ding; T. Takahashi Proc. Natl. Acad. Sci. USA, 106 (2009), p. 7330

[117] V. Brouet; M.F. Jensen; A. Nicolaou; A. Taleb-Ibrahimi; P.L. Fevre; F. Bertran; A. Forget; D. Colson Orbitally resolved lifetimes in Ba(Fe0.92Co0.08)2As2 measured by ARPES, Phys. Rev. B, Volume 85 (2012)

[118] F. Chen; B. Zhou; Y. Zhang; J. Wei; H.-W. Ou; J.-F. Zhao; C. He; Q.-Q. Ge; M. Arita; K. Shimada; H. Namatame; M. Taniguchi; Z.-Y. Lu; J. Hu; X.-Y. Cui; D.L. Feng Electronic structure of Fe1.04Te0.66Se0.34, Phys. Rev. B, Volume 81 (2010)

[119] K. Nakayama; T. Sato; P. Richard; T. Kawahara; Y. Sekiba; T. Qian; G.F. Chen; J.L. Luo; N.L. Wang; H. Ding; T. Takahashi Angle-resolved photoemission spectroscopy of the iron-chalcogenide superconductor Fe1.03Te0.7Se0.3: strong coupling behavior and the universality of interband scattering, Phys. Rev. Lett., Volume 105 (2010)

[120] T. Hajiri; T. Ito; R. Niwa; M. Matsunami; B.H. Min; Y.S. Kwon; S. Kimura Three-dimensional electronic structure and interband nesting in the stoichiometric superconductor LiFeAs, Phys. Rev. B, Volume 85 (2012)

[121] M. Yi; D.H. Lu; R.G. Moore; K. Kihou; C.-H. Lee; A. Iyo; H. Eisaki; T. Yoshida; A. Fujimori; Z.-X. Shen New J. Phys., 14 (2012)

[122] Z.R. Ye; Y. Zhang; F. Chen; M. Xu; J. Jiang; X.H. Niu; C.H.P. Wen; L.Y. Xing; X.C. Wang; C.Q. Jin; B.P. Xie; D.L. Feng Extraordinary doping effects on quasiparticle scattering and bandwidth in iron-based superconductors, Phys. Rev. X, Volume 4 (2014)

[123] W. Malaeb; T. Yoshida; T. Kataoka; A. Fujimori; M. Kubota; K. Ono; H. Usui; K. Kuroki; R. Arita; H. Aoki et al. Electronic structure and electron correlation in LaFeAsO1xFx and LaFePO1xFx, J. Phys. Soc. Jpn., Volume 77 (2008) no. 9

[124] I. Nishi; M. Ishikado; S. Ideta; W. Malaeb; T. Yoshida; A. Fujimori; Y. Kotani; M. Kubota; K. Ono; M. Yi; D.H. Lu; R. Moore; Z.-X. Shen; A. Iyo; K. Kihou; H. Kito; H. Eisaki; S. Shamoto; R. Arita Phys. Rev. B, 84 (2011)

[125] W. Malaeb; T. Yoshida; A. Fujimori; M. Kubota; K. Ono; K. Kihou; P.M. Shirage; H. Kito; A. Iyo; H. Eisaki; Y. Nakajima; T. Tamegai; R. Arita Three-dimensional electronic structure of superconducting iron pnictides observed by angle-resolved photoemission spectroscopy, J. Phys. Soc. Jpn., Volume 78 (2008), p. 123706

[126] Y. Zhang; F. Chen; C. He; B. Zhou; B.P. Xie; C. Fang; W.F. Tsai; X.H. Chen; H. Hayashi; J. Jiang; H. Iwasawa; K. Shimada; H. Namatame; M. Taniguchi; J.P. Hu; D.L. Feng Orbital characters of bands in the iron-based superconductor BaFe1.85Co0.15As2, Phys. Rev. B, Volume 83 (2011)

[127] R.S. Dhaka; Y. Lee; V.K. Anand; D.C. Johnston; B.N. Harmon; A. Kaminski Angle-resolved photoemission spectroscopy study of BaCo2As2, Phys. Rev. B, Volume 87 (2013)

[128] S. Thirupathaiah; S. de Jong; R. Ovsyannikov; H.A. Dürr; A. Varykhalov; R. Follath; Y. Huang; R. Huisman; M.S. Golden; Y.-Z. Zhang; H.O. Jeschke; R. Valentí; A. Erb; A. Gloskovskii; J. Fink Orbital character variation of the Fermi surface and doping dependent changes of the dimensionality in BaFe2xCoxAs2 from angle-resolved photoemission spectroscopy, Phys. Rev. B, Volume 81 (2010)

[129] M. Yi; D.H. Lu; R. Yu; S.C. Riggs; J.-H. Chu; B. Lv; Z.K. Liu; M. Lu; Y.-T. Cui; M. Hashimoto; S.-K. Mo; Z. Hussain; C.W. Chu; I.R. Fisher; Q. Si; Z.-X. Shen Observation of temperature-induced crossover to an orbital-selective Mott phase in AxFe2ySe2 (A=K, Rb) superconductors, Phys. Rev. Lett., Volume 110 (2013)

[130] L. de' Medici; S.R. Hassan; M. Capone; X. Dai Orbital-selective Mott transition out of band degeneracy lifting, Phys. Rev. Lett., Volume 102 (2009)

[131] N. Lanatà; H.U.R. Strand; G. Giovannetti; B. Hellsing; L. de' Medici; M. Capone Orbital selectivity in hund's metals: the iron chalcogenides, Phys. Rev. B, Volume 87 (2013)

[132] E. Ieki; K. Nakayama; Y. Miyata; T. Sato; H. Miao; N. Xu; X.-P. Wang; P. Zhang; T. Qian; P. Richard; Z.-J. Xu; J.S. Wen; G.D. Gu; H.Q. Luo; H.-H. Wen; H. Ding; T. Takahashi Evolution from incoherent to coherent electronic states and its implications for superconductivity in FeTe1xSex, Phys. Rev. B, Volume 89 (2014)

[133] M.H. Fang; H.M. Pham; B. Qian; T.J. Liu; E.K. Vehstedt; Y. Liu; L. Spinu; Z.Q. Mao Superconductivity close to magnetic instability in Fe(Se1xTex)0.82, Phys. Rev. B, Volume 78 (2008)

[134] T. Liu; J. Hu; B. Qian; D. Fobes; Z. Mao; W. Bao; M. Reehuis; S. Kimber; K. Prokeš; S. Matas; D. Argyriou; A. Hiess; A. Rotaru; H. Pham; L. Spinu; Y. Qiu; V. Thampy; A. Savici; J. Rodriguez; C. Broholm From (π, 0) magnetic order to superconductivity with (π, π) magnetic resonance in Fe1.02Te1xSex, Nat. Mater., Volume 9 (2010) no. 9, pp. 718-720

[135] Y. Mizuguchi; Y. Takano Review of Fe chalcogenides as the simplest Fe-based superconductor, J. Phys. Soc. Jpn., Volume 79 (2010) no. 10, p. 102001

[136] P. Werner; E. Gull; M. Troyer; A.J. Millis Spin freezing transition and non-Fermi-liquid self-energy in a three-orbital model, Phys. Rev. Lett., Volume 101 (2008) no. 16

[137] Y. Nomura; S. Sakai; R. Arita Nonlocal correlations induced by hund's coupling: a cluster dmft study, Phys. Rev. B, Volume 91 (2015)

[138] C. Aron; G. Kotliar Analytic theory of hund's metals: a renormalization group perspective, Phys. Rev. B, Volume 91 (2015)

[139] P.-H. Lin; Y. Texier; A. Taleb-Ibrahimi; P. Le Fèvre; F. Bertran; E. Giannini; M. Grioni; V. Brouet Nature of the bad metallic behavior of Fe1.06Te inferred from its evolution in the magnetic state, Phys. Rev. Lett., Volume 111 (2013)

[140] Y.-M. Xu; P. Richard; K. Nakayama; T. Kawahara; Y. Sekiba; T. Qian; M. Neupane; S. Souma; T. Sato; T. Takahashi; H.-Q. Luo; H.-H. Wen; G.-F. Chen; N.-L. Wang; Z. Wang; Z. Fang; X. Dai; H. Ding Fermi surface dichotomy of the superconducting gap and pseudogap in underdoped pnictides, Nat. Commun., Volume 2 (2011), p. 394

[141] T. Misawa; K. Nakamura; M. Imada Ab Initio evidence for strong correlation associated with Mott proximity in iron-based superconductors, Phys. Rev. Lett., Volume 108 (2012)

[142] L. de' Medici; J. Mravlje; A. Georges Janus-faced influence of Hund's rule coupling in strongly correlated materials, Phys. Rev. Lett., Volume 107 (2011)

[143] A. van Roekeghem; P. Richard; X. Shi; S.-F. Wu; L.-K. Zeng; B.I. Saparov; Y. Ohtsubo; T. Qian; A. Safa-Sefat; S. Biermann; H. Ding Tetragonal and collapsed-tetragonal phases of CaFe2As2 – a view from angle-resolved photoemission and dynamical mean field theory | arXiv

[144] H. Ding; P. Richard; K. Nakayama; K. Sugawara; T. Arakane; Y. Sekiba; A. Takayama; S. Souma; T. Sato; T. Takahashi; Z. Wang; X. Dai; Z. Fang; G.F. Chen; J.L. Luo; N.L. Wang Europhys. Lett., 83 (2008), p. 47001

[145] L. Zhao; H.-Y. Liu; W.-T. Zhang; J.-Q. Meng; X.-W. Jia; G.-D. Liu; X. -Li Dong; G.-F. Chen; J.-L. Luo; N.-L. Wang; W. Lu; G.-L. Wang; Y. Zhou; Y. Zhu; X.-Y. Wang; Z.-Y. Xu; C.-T. Chen; X.-J. Zhou Chin. Phys. Lett., 25 (2008), p. 4402

[146] T. Kondo; A.F. Santander-Syro; O. Copie; C. Liu; M.E. Tillman; E.D. Mun; J. Schmalian; S.L. Bud'ko; M.A. Tanatar; P.C. Canfield; A. Kaminski Momentum dependence of the superconducting gap in NdFeAsO0.9F0.1 single crystals measured by angle resolved photoemission spectroscopy, Phys. Rev. Lett., Volume 101 (2008)

[147] Z.-H. Liu; P. Richard; K. Nakayama; G.-F. Chen; S. Dong; J.-B. He; D.-M. Wang; T.-L. Xia; K. Umezawa; T. Kawahara; S. Souma; T. Sato; T. Takahashi; T. Qian; Y. Huang; N. Xu; Y. Shi; H. Ding; S.-C. Wang Unconventional superconducting gap in NaFe0.95Co0.05As observed by angle-resolved photoemission spectroscopy, Phys. Rev. B, Volume 84 (2011)

[148] I.I. Mazin; D.J. Singh; M.D. Johannes; M.H. Du Unconventional superconductivity with a sign reversal in the order parameter of LaFeAsO1xFx, Phys. Rev. Lett., Volume 101 (2008)

[149] I.I. Mazin; J. Schmalian Physica C, 469 (2009), p. 614

[150] K. Kuroki; S. Onari; R. Arita; H. Usui; Y. Tanaka; H. Kontani; H. Aoki Unconventional pairing originating from the disconnected Fermi surfaces of superconducting LaFeAsO1xFx, Phys. Rev. Lett., Volume 101 (2008)

[151] S. Graser; T.A. Maier; P.J. Hirschfeld; D.J. Scalapino New J. Phys., 11 (2009)

[152] V. Cvetkovic; Z. Tesanovic Europhys. Lett., 85 (2009), p. 37002

[153] K. Nakayama; T. Sato; P. Richard; Y.-M. Xu; Y. Sekiba; S. Souma; G.F. Chen; J.L. Luo; N.L. Wang; H. Ding; T. Takahashi Europhys. Lett., 85 (2009), p. 67002

[154] J. Guo; S. Jin; G. Wang; S. Wang; K. Zhu; T. Zhou; M. He; X. Chen Phys. Rev. B, 82 (2010)

[155] M.-H. Fang; H.-D. Wang; C.-H. Dong; Z.-J. Li; C.-M. Feng; J. Chen; H.Q. Yuan Europhys. Lett., 94 (2011), p. 27009

[156] T. Qian; X.-P. Wang; W.-C. Jin; P. Zhang; P. Richard; G. Xu; X. Dai; Z. Fang; J.-G. Guo; X.-L. Chen; H. Ding Phys. Rev. Lett., 106 (2011)

[157] X.-P. Wang; T. Qian; P. Richard; P. Zhang; J. Dong; H.-D. Wang; C.-H. Dong; M.-H. Fang; H. Ding Europhys. Lett., 93 (2011), p. 57001

[158] D. Mou; S. Liu; X. Jia; J. He; Y. Peng; Lin Zhao; L. Yu; G. Liu; S. He; X. Dong; J. Zhang; H. Wang; C. Dong; M. Fang; X. Wang; Q. Peng; Z. Wang; S. Zhang; F. Yang; Z. Xu; C. Chen; X.J. Zhou Phys. Rev. Lett., 106 (2011)

[159] Y. Zhang; L.X. Yang; M. Xu; Z.R. Ye; F. Chen; C. He; H.C. Xu; J. Jiang; B.P. Xie; J.J. Ying; X.F. Wang; X.H. Chen; J.P. Hu; M. Matsunami; S. Kimura; D.L. Feng Nat. Mater., 10 (2011), p. 273

[160] X.-P. Wang; P. Richard; X. Shi; A. Roekeghem; Y.-B. Huang; E. Razzoli; T. Qian; E. Rienks; S. Thirupathaiah; H.-D. Wang; C.-H. Dong; M.-H. Fang; M. Shi; H. Ding Europhys. Lett., 99 (2012), p. 67001

[161] T. Sato; K. Nakayama; Y. Sekiba; P. Richard; Y.-M. Xu; S. Souma; T. Takahashi; G.F. Chen; J.L. Luo; N.L. Wang; H. Ding Phys. Rev. Lett., 103 (2009)

[162] T. Yoshida; I. Nishi; A. Fujimori; M. Yi; R.G. Moore; D.-H. Lu; Z.-X. Shen; K. Kihou; P.M. Shirage; H. Kito; C.H. Lee; A. Iyo; H. Eisaki; H. Harima J. Phys. Chem. Solids, 72 (2011), p. 465

[163] J. Hu; H. Ding Sci. Rep., 2 (2012), p. 381

[164] A.N. Yaresko; G.-Q. Liu; V.N. Antonov; O.K. Andersen Interplay between magnetic properties and Fermi surface nesting in iron pnictides, Phys. Rev. B, Volume 79 (2009)

[165] H. Miao; P. Richard; Y. Tanaka; K. Nakayama; T. Qian; K. Umezawa; T. Sato; Y.-M. Xu; Y.-B. Shi; N. Xu; X.-P. Wang; P. Zhang; H.-B. Yang; Z.-J. Xu; J.S. Wen; G.-D. Gu; X. Dai; J.-P. Hu; T. Takahashi; H. Ding Phys. Rev. B, 85 (2012)

[166] Z.P. Yin; K. Haule; G. Kotliar Nat. Phys., 10 (2014), p. 845

[167] X. Lu; C. Fang; W.-F. Tsai; Y. Jiang; J. Hu Phys. Rev. B, 85 (2012)

[168] P. Zhang; P. Richard; T. Qian; X. Shi; J. Ma; L.-K. Zeng; X.-P. Wang; E. Rienks; C.-L. Zhang; P. Dai; Y.-Z. You; Z.-Y. Weng; X.-X. Wu; J.P. Hu; H. Ding Phys. Rev. X, 4 (2014)

[169] M. Casula; A. Rubtsov; S. Biermann Dynamical screening effects in correlated materials: plasmon satellites and spectral weight transfers from a Green's function ansatz to extended dynamical mean field theory, Phys. Rev. B, Volume 85 (2012)

[170] M. Casula; P. Werner; L. Vaugier; F. Aryasetiawan; T. Miyake; A.J. Millis; S. Biermann Low-energy models for correlated materials: bandwidth renormalization from coulombic screening, Phys. Rev. Lett., Volume 109 (2012)

[171] S. Biermann; F. Aryasetiawan; A. Georges First-principles approach to the electronic structure of strongly correlated systems: combining the GW Approximation and Dynamical Mean-Field Theory, Phys. Rev. Lett., Volume 90 (2003) no. 8

[172] J.M. Tomczak; M. Casula; T. Miyake; F. Aryasetiawan; S. Biermann Combined GW and dynamical mean-field theory: dynamical screening effects in transition metal oxides, Europhys. Lett., Volume 100 (2012) no. 6, p. 67001

[173] J.M. Tomczak; M. Casula; T. Miyake; S. Biermann Asymmetry in band widening and quasiparticle lifetimes in SrVO3: competition between screened exchange and local correlations from combined GW and dynamical mean-field theory GW+DMFT, Phys. Rev. B, Volume 90 (2014)

[174] T. Ayral; P. Werner; S. Biermann Spectral properties of correlated materials: local vertex and nonlocal two-particle correlations from combined GW and dynamical mean field theory, Phys. Rev. Lett., Volume 109 (2012)

[175] T. Ayral; S. Biermann; P. Werner Screening and nonlocal correlations in the extended Hubbard model from self-consistent combined GW and dynamical mean field theory, Phys. Rev. B, Volume 87 (2013)

[176] A. van Roekeghem; S. Biermann Screened exchange dynamical mean-field theory and its relation to density functional theory: SrVO3 and SrTiO3, Europhys. Lett., Volume 108 (2014), p. 75003

Cited by Sources:

Comments - Policy