An important feature of the iron-based pnictides is their multi-band electronic structure with both electron and hole bands at the Fermi level. The size of these pockets can be changed by different types of substitution, resulting in a variety of original magnetic and electronic properties. The contributions of both types of carriers will thus have important consequences on the evolution of the transport properties versus temperature and doping. It has been pointed out that Hund's rule interaction plays a prominent role in the physics of these compounds by allowing a strong orbital differentiation between the 3d Fe orbitals. As a result, a description in terms of more or less correlated electrons was proposed and may have important consequences on the scattering lifetimes of the different carriers. Finally, the presence of very flat bands at the Fermi level may induce a semiconductor-like behavior, with a change in carrier concentration with temperature. In this paper, we will review the evolution of transport properties with chemical doping/substitution in iron pnictides. We will more particularly focus on the 122 family (Ba(Sr,Ca)Fe2As2) and the 111 LiFeAs compound for which sizeable single crystals required for transport measurements are available. The combined resistivity, Hall effect and magnetoresistance data will be analyzed in association with electronic structure calculations, angle-resolved photoemission measurements and quantum oscillations. In spite of the strong interplay between antiferromagnetism and superconductivity in most part of their phase diagram, direct signatures of spin fluctuations are difficult to identify in the transport properties of iron pnictides. We will show that measurements of the longitudinal magnetoresistance provide a powerful tool for studying the coupling between the charge carriers and the spin degrees of freedom.
Une caractéristique importante des pnictures à base de fer est leur structure électronique « multi-bandes » présentant à la fois des bandes d'électrons et de trous au niveau de Fermi. La taille de ces poches peut être changée par différents types de substitution, ce qui entraine une grande diversité de propriétés magnétiques et électroniques originales. On s'attend également à ce que la contribution des deux types de porteurs ait une importance considérable sur les propriétés de transport en fonction de la température et du dopage. Il a été également souligné que l'interaction de Hund joue un rôle prépondérant dans la physique de ces composés en permettant une forte différenciation entre les orbitales 3d du Fe. En conséquence, une description en termes d'électrons plus ou moins corrélés a été proposée, ce qui pourrait avoir d'importantes conséquences sur les temps de diffusion des différents porteurs de charge. Enfin la présence de bandes très plates au niveau de Fermi est susceptible d'induire un comportement de type « semiconducteur », avec un changement de la concentration des porteurs de charge avec la température. Dans ce papier, nous allons passer en revue l'évolution des propriétés de transport avec la substitution ou le dopage chimique dans les pnictures de fer. Nous allons plus particulièrement nous intéresser à la famille des composés 122 (Ba(Sr,Ca)Fe2As2) et du composé 111 LiFeAs pour lesquels des monocristaux de taille adaptée à la mesure des propriétés de transport sont disponibles. Les données combinées de résistivité, effet Hall et magnétorésistance seront analysées en association avec les calculs de structure électronique, les mesures de photoémission résolues en angle et oscillations quantiques. En dépit de la forte interaction entre antiferromagnétisme et supraconductivité dans la plus grande partie de leurs diagrammes de phase, la signature des fluctuations de spin n'apparait pas directement dans les propriétés de transport des pnictures de fer. Nous montrerons que la mesure de la magnétorésistance longitudinale fournit une sonde intéressante pour étudier le couplage entre les porteurs de charge et les degrés de liberté de spin.
Mot clés : Pnictures de fer, Propriétés de transport, Famille des 122, Compose 111 LiFeAs
Florence Rullier-Albenque 1
@article{CRPHYS_2016__17_1-2_164_0, author = {Florence Rullier-Albenque}, title = {Influence of the electronic structure on the transport properties of some iron pnictides}, journal = {Comptes Rendus. Physique}, pages = {164--187}, publisher = {Elsevier}, volume = {17}, number = {1-2}, year = {2016}, doi = {10.1016/j.crhy.2015.10.007}, language = {en}, }
Florence Rullier-Albenque. Influence of the electronic structure on the transport properties of some iron pnictides. Comptes Rendus. Physique, Volume 17 (2016) no. 1-2, pp. 164-187. doi : 10.1016/j.crhy.2015.10.007. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2015.10.007/
[1] Nat. Phys., 6 (2010), p. 645
[2] Adv. Phys., 59 (2010), p. 803
[3] Spectral properties of transition metal pnictides and chalcogenides: angle-resolved photoemission spectroscopy and dynamical mean-field theory, C. R. Physique, Volume 17 (2016) no. 1–2, pp. 140-163 ( this issue )
[4] Phys. Rev. Lett., 101 (2008)
[5] Using gap symmetry and structure to reveal the pairing mechanism in Fe-based superconductors, C. R. Physique, Volume 17 (2016) no. 1–2, pp. 197-231 ( this issue )
[6] Phys. Rev. Lett., 103 (2009)
[7] Phys. Rev. B, 82 (2010)
[8] Phys. Rev. Lett., 101 (2008)
[9] Phys. Rev. Lett., 101 (2008)
[10] Phys. Rev. B, 78 (2008)
[11] Phys. Rev. B, 81 (2010)
[12] Phys. Rev. B, 79 (2009)
[13] Phys. Rev. Lett., 101 (2008)
[14] Phys. Rev. Lett., 102 (2009)
[15] J. Phys. Condens. Matter, 21 (2009), p. 382203
[16] Phys. Rev. B, 81 (2010)
[17] Phys. Rev. Lett., 103 (2009)
[18] The phase diagrams of iron-based superconductors: theory and experiments, C. R. Physique, Volume 17 (2016) no. 1–2, pp. 5-35 ( this issue )
[19] Phys. Rev. Lett., 112 (2014)
[20] Phys. Rev. B, 83 (2011)
[21] J. Phys. Soc. Jpn., 78 (2009)
[22] Phys. Rev. B, 80 (2009)
[23] New J. Phys., 11 (2009)
[24] Phys. Rev. Lett., 110 (2013)
[25] Phys. Rev. Lett., 105 (2010)
[26] Annu. Rev. Condens. Matter Phys., 1 (2010), pp. 27-50
[27] Phys. Rev. Lett., 101 (2008)
[28] New J. Phys., 11 (2009)
[29] Phys. Rev. Lett., 110 (2013)
[30] Phys. Rev. Lett., 114 (2015)
[31] F. Rullier-Albenque, D. Colson, A. Forget, unpublished results.
[32] Phys. Rev. B, 80 (2009)
[33] Phys. Rev. Lett., 110 (2013)
[34] Phys. Rev. B, 80 (2009)
[35] Phys. Rev. B, 83 (2011)
[36] Phys. Rev. B, 83 (2011)
[37] Phys. Rev. B, 89 (2014)
[38] Phys. Rev. B, 83 (2011)
[39] Phys. Rev. B, 79 (2009)
[40] Phys. Rev. B, 80 (2009)
[41] Solid State Physics, Saunders College Publishing, Philadelphia, 1976
[42] Phys. Rev. Lett., 109 (2012)
[43] Phys. Rev. Lett., 104 (2010)
[44] Nat. Commun., 4 (2013), p. 2265
[45] Phys. Rev. B, 82 (2010)
[46] Phys. Rev. B, 88 (2013)
[47] Spin Fluctuations in Itinerant Electron Magnetism, Springer Series in Solid State Sciences, vol. 56, Springer-Verlag, 1985
[48] J. Phys. Soc. Jpn., 44 (1978), p. 122
[49] Nat. Phys., 6 (2010), p. 178
[50] J. Supercond. Nov. Magn., 22 (2009), p. 535
[51] Nat. Mater., 10 (2011), pp. 932-935
[52] arXiv
(unpublished) |[53] Phys. Rev. B, 64 (2001)
[54] Phys. Rev. B, 87 (2013)
[55] arXiv
, 2008 (unpublished) |[56] Nat. Phys., 6 (2010), p. 419
[57] Phys. Rev. Lett., 104 (2010)
[58] Phys. Rev. B, 83 (2011)
[59] Phys. Rev. B, 84 (2011)
[60] J. Phys. Condens. Matter, 20 (2008), p. 422203
[61] Phys. Rev. B, 80 (2009)
[62] Phys. Rev. Lett., 107 (2011)
[63] Phys. Rev. Lett., 106 (2011)
[64] Phys. Rev. B, 84 (2011)
[65] Phys. Rev. B, 84 (2011)
[66] Phys. Rev. B, 82 (2010)
[67] arXiv
, 2011 (unpublished) |[68] Phys. Rev. B, 89 (2014)
[69] Phys. Rev. B, 80 (2009)
[70] Philos. Mag., 93 (2012) no. 6, p. 661
[71] Science, 329 (2010), p. 824
[72] Phys. Rev. Lett., 112 (2014)
[73] Phys. Rev. Lett., 110 (2013)
[74] Phys. Rev. Lett., 105 (2010)
[75] Phys. Rev. B, 86 (2012)
[76] Phys. Rev. B, 81 (2010)
[77] Phys. Rev. B, 82 (2010)
[78] Phys. Rev. B, 86 (2012)
[79] Phys. Rev. B, 80 (2009)
[80] Phys. Rev. B, 85 (2012)
[81] Phys. Rev. B, 83 (2011)
[82] F. Rullier-Albenque, D. Colson, A. Forget, unpublished results.
[83] Phys. Rev. Lett., 110 (2013)
[84] Phys. Rev. Lett., 104 (2010)
[85] Annu. Rev. Condens. Matter Phys., 5 (2014), pp. 113-135
[86] Phys. Rev. Lett., 106 (2011)
[87] Nat. Phys., 10 (2014), p. 194
[88] Phys. Rev. Lett., 105 (2010)
[89] Science, 336 (2012), p. 1554
[90] Phys. Rev. Lett., 110 (2013)
[91] Phys. Rev. B, 83 (2011)
[92] J. Phys. Condens. Matter, 23 (2011)
[93] Phys. Rev. Lett., 110 (2013)
[94] Electronic scattering effects in europium-based iron pnictides, C. R. Physique, Volume 17 (2016) no. 1–2, pp. 188-196 ( this issue )
[95] Phys. Rev. B, 85 (2012)
[96] Phys. Rev. B, 84 (2011)
[97] Europhys. Lett., 99 (2012), p. 17002
[98] Phys. Rev. B, 88 (2013)
[99] Phys. Rev. B, 89 (2014)
[100] Phys. Rev. B, 91 (2015)
[101] Phys. Rev. B, 84 (2011)
[102] Europhys. Lett., 85 (2009), p. 17006
[103] Phys. Rev. B, 85 (2012)
[104] Phys. Rev. B, 89 (2014)
[105] Phys. Rev. B, 81 (2010)
[106] JETP Lett., 94 (2011), p. 333
[107] Phys. Rev. Lett., 111 (2013)
[108] Phys. Rev. B, 86 (2012)
[109] Angew. Chem., Int. Ed. Engl., 50 (2011), p. 7919
[110] Phys. Rev. B, 85 (2012)
[111] Nat. Commun., 4 (2013), p. 1914
[112] J. Phys. Soc. Jpn., 84 (2015)
[113] Nat. Phys., 9 (2013), p. 220
[114] Phys. Rev. Lett., 113 (2014)
[115] Phys. Rev. Lett., 107 (2011)
[116] Electronic nematic susceptibility of iron-based superconductors, C. R. Physique, Volume 17 (2016) no. 1–2, pp. 90-112 ( this issue )
[117] Charge nematicity and electronic Raman scattering in iron-based superconductors, C. R. Physique, Volume 17 (2016) no. 1–2, pp. 113-139 ( this issue )
[118] Phys. Rev. B, 82 (2010)
[119] Phys. Rev. B, 84 (2011)
[120] Phys. Rev. B, 89 (2014)
[121] Phys. Rev. B, 87 (2013)
[122] Phys. Rev. B, 90 (2014)
[123] Phys. Rev. Lett., 109 (2012)
[124] Phys. Rev. Lett., 110 (2013)
[125] Phys. Rev. B, 86 (2012)
[126] Phys. Rev. B, 58 (1998), p. 10107(R)
[127] Phys. Rev. Lett., 105 (2010)
[128] Phys. Rev. Lett., 108 (2012)
[129] Phys. Rev. B, 84 (2011)
[130] Phys. Rev. B, 85 (2012)
[131] Phys. Rev. Lett., 109 (2012) ( ibid. Phys. Rev. Lett., 113, 2014, 209901)
[132] Phys. Rev. B, 85 (2012)
[133] arXiv
, 2014 (unpublished) |[134] Phys. Rev. Lett., 108 (2012)
[135] Phys. Rev. B, 83 (2011)
[136] Phys. Rev. B, 82 (2010)
[137] Phys. Rev. Lett., 108 (2012)
[138] New J. Phys., 15 (2013)
[139] Phys. Rev. B, 91 (2015)
[140] Phys. Rev. X, 5 (2015)
[141] J. Am. Chem. Soc., 132 (2010), p. 10467
[142] arXiv
, 2013 (unpublished) |[143] Chem. Commun. (2009), p. 2189
[144] Phys. Rev. Lett., 104 (2010)
[145] Phys. Rev. B, 91 (2015)
[146] Phys. Rev. B, 85 (2012)
[147] Phys. Rev. B, 86 (2012)
[148] Phys. Rev. B, 90 (2014)
[149] Phys. Rev. B, 91 (2015)
[150] arXiv
, 2015 (unpublished) |Cited by Sources:
Comments - Policy