We illustrate the continuing pertinence of Friedel's model of the virtual bound state to describe electron scattering in metals. This model has been applied to such disparate studies as the chirality of spin interactions in metals, and the spin Hall effect caused by scattering from impurities with spin–orbit coupling.
Nous illustrons la pertinence toujours actuelle du modèle de l'état lié de Friedel pour décrire la diffusion des électrons dans les métaux. Ce modèle a été appliqué à des problèmes aussi différentes que la chiralité des interactions de spin dans les métaux ou l'effet Hall de spin causé par la diffusion d'impuretés avec couplage spin–orbite.
Mot clés : Magnétisme, Conduction électrique, Impuretés
Peter M. Levy 1; Albert Fert 2, 3
@article{CRPHYS_2016__17_3-4_447_0, author = {Peter M. Levy and Albert Fert}, title = {The longevity of {Jacques} {Friedel's} model of the virtual bound state}, journal = {Comptes Rendus. Physique}, pages = {447--454}, publisher = {Elsevier}, volume = {17}, number = {3-4}, year = {2016}, doi = {10.1016/j.crhy.2015.12.011}, language = {en}, }
Peter M. Levy; Albert Fert. The longevity of Jacques Friedel's model of the virtual bound state. Comptes Rendus. Physique, Volume 17 (2016) no. 3-4, pp. 447-454. doi : 10.1016/j.crhy.2015.12.011. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2015.12.011/
[1] Philos. Mag., 43 (1952), p. 153
[2] Phys. Rev. B, 104 (2010), p. 27
[3] Phys. Rev. B, 7 (2008), p. 125
[4] Phys. Rev. B, 106 (2011)
[5] Phys. Rev. B, 44 (1980), p. 1538
[6] et al. Nat. Phys., 7 (2011), p. 713
[7] et al. Phys. Rev. B, 108 (2012)
[8] Columbus, Ohio, 1964 (J. Daunt; P. Edwards; F. Milford; M. Yaqub, eds.), Plenum, New York (1965), p. 933
[9] The derivation of Eq. (6) and details of the calculations is given in Ref. [5].
[10] Higher-order terms in enter , as, for example, ones proportional to , but for large R, Eq. (8) is the leading term.
[11] Mater. Sci. Forum, 59–60 (1990), p. 439
[12] et al. (see Ref. [6]. H. Yang, et al.) | arXiv
[13] et al. Nat. Nanotechnol., 8 (2013), p. 152
[14] et al. Nat. Mater., 100 (2012), p. 57002
[15] Phys. Lett. A, 13 (1971), p. 657
[16] J. Magn. Magn. Mater., 24 (1981), p. 231 (see Sec. 5)
[17] Quantum Mechanics, North-Holland, Amsterdam, 1961
[18] Phys. Rev. B, 38 (1988), p. 6779
[19] Phys. Rev., l24 (1961), p. 41
[20] Phys. Rev. Lett., 106 (2011) (see inset on Fig. 1)
[21] J. Phys. Condens. Matter, 20 (2008)
[22] [18], in particular see Eq. (3.2b). Also see Angular Momentum in particular p. 148 for the spherical tensor notation of vectors, p. 150 for the gradient formula, and pp. 136–144 for orthogonality and recoupling relations for the 3j symbols
, Oxford University Press, Oxford, 1975 See Ref.[23] Appl. Phys. Lett., 102 (2013)
Cited by Sources:
Comments - Policy