[La beauté des impuretés : nouveaux contextes pour le concept d'état lié virtuel]
Jacques Friedel est l'auteur de travaux pionniers sur la physique des impuretés dans les métaux. On lui doit, outre la découverte des oscillations de Friedel, le concept d'état lié virtuel et la découverte du lien entre déphasage et charge sur l'impureté (règle de somme de Friedel). Après avoir brièvement décrit certaines de ces notions, je présente leur utilisation fructueuse dans deux contextes récents : le blocage de Coulomb dans un point quantique et sa suppression par l'effet Kondo, ainsi que la théorie de champ moyen dynamique des matériaux à fortes corrélations électroniques.
Jacques Friedel pioneered the theoretical study of impurities and magnetic impurities in metals. He discovered Friedel oscillations, introduced the concept of virtual bound-state, and demonstrated that the charge on the impurity is related to the scattering phase-shift at the Fermi level (Friedel sum-rule). After a brief review of some of these concepts, I describe how they proved useful in two new contexts. The first one concerns the Coulomb blockade in quantum dots, and its suppression by the Kondo effect. The second one is the dynamical mean-field theory of strong electronic correlations.
Mot clés : Jacques Friedel, État lié virtuel, Phase-shift, Règle de somme de Friedel, Effet Kondo, Modèle d'impureté d'Anderson, Blocage de Coulomb, Corrélations électroniques fortes, Théorie du champ moyen dynamique, Transition de Mott
Antoine Georges 1
@article{CRPHYS_2016__17_3-4_430_0, author = {Antoine Georges}, title = {The beauty of impurities: {Two} revivals of {Friedel's} virtual bound-state concept}, journal = {Comptes Rendus. Physique}, pages = {430--446}, publisher = {Elsevier}, volume = {17}, number = {3-4}, year = {2016}, doi = {10.1016/j.crhy.2015.12.005}, language = {en}, }
Antoine Georges. The beauty of impurities: Two revivals of Friedel's virtual bound-state concept. Comptes Rendus. Physique, Volume 17 (2016) no. 3-4, pp. 430-446. doi : 10.1016/j.crhy.2015.12.005. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2015.12.005/
[1] Jacques Friedel: 11 February 1921–27 August 2014, Biogr. Mem. Fellows R. Soc., Volume 61 (2015), pp. 123-143 | DOI
[2] Entrevue avec Jacques Friedel, history of recent science and technology project, October 2001 http://authors.library.caltech.edu/5456/1/hrst.mit.edu/hrs/materials/public/FriedelJacques/Jacques_Friedel_intro.htm
[3] The distribution of electrons round impurities in monovalent metals, Philos. Mag., Volume 43 (1952) no. 337, pp. 153-189
[4] On some electrical and magnetic properties of metallic solid solutions, Can. J. Phys., Volume 34 (1956) no. 12A, pp. 1190-1211 | DOI
[5] Sur la structure électronique des métaux et alliages de transition et des métaux lourds, J. Phys. Radium, Volume 19 (1958) no. 6, pp. 573-581 | DOI
[6] Metallic alloys, Nuovo Cimento, Volume 2 (1958), p. 287 (lectures notes at the 1956 Varenna summer school)
[7] Etude de la résistivité et du pouvoir thermoélectrique des impuretés dissoutes dans les métaux nobles, J. Phys. Radium, Volume 17 (1956) no. 1, pp. 27-32 | DOI
[8] Propriétés magnétiques des alliages dilués. Interactions magnétiques et antiferromagnétisme dans les alliages du type métal noble-métal de transition, J. Phys. Radium, Volume 20 (1959) no. 2, pp. 160-168 | DOI
[9] Effet des impuretés sur la densité électronique dans les métaux. I, J. Phys. Radium, Volume 20 (1959) no. 10, pp. 769-783 | DOI
[10] Effet des impuretés sur la densité électronique dans les métaux. II, J. Phys. Radium, Volume 20 (1959) no. 11, pp. 849-859 | DOI
[11] Theoretical Review of the Friedel–Anderson Model and an Essay on the Dynamics of Contemporary Research, Editrice Universitaria, Ferrara, 1981
[12] Dynamics and development of the Friedel–Anderson model. A study in the sociology of modern physics, Eur. J. Phys., Volume 5 (1984) no. 2, p. 120 http://stacks.iop.org/0143-0807/5/i=2/a=011
[13] Localized magnetic impurity states in metals: Some experimental relationships, Rev. Mod. Phys., Volume 40 (1968), pp. 380-389 | DOI
[14] Resistance minimum in dilute magnetic alloys, Prog. Theor. Phys., Volume 32 (1964) no. 1, pp. 37-49 http://ptp.oxfordjournals.org/content/32/1/37.full.pdf+html http://ptp.oxfordjournals.org/content/32/1/37.abstract
[15] Stabilité des moments magnétiques localisés dans les métaux, Adv. Phys., Volume 17 (1968) no. 67, pp. 281-366 | DOI
[16] Exchange interaction in alloys with cerium impurities, Phys. Rev., Volume 185 (1969), pp. 847-853 | DOI
[17] Negative magnetoresistivity in dilute alloys, Phys. Rev., Volume 170 (1968), pp. 552-559 | DOI
[18] Magnetic field dependence of the Kondo resistivity minimum in CuFe and CuMn alloys, Phys. Rev. Lett., Volume 19 (1967), pp. 1113-1117 | DOI
[19] Susceptibility and electron-spin relaxation of Fe in Cu below : A NMR study of 63Cu satellites, Phys. Rev. Lett., Volume 35 (1975), pp. 460-463 | DOI
[20] Concept de niveau lié virtuel, J. Phys. Radium, Volume 23 (1962) no. 10, pp. 692-700 | DOI
[21] Magnetic impurities in metals, J. Appl. Phys., Volume 39 (1968), p. 1285
[22] Localized magnetic states in metals, Phys. Rev., Volume 124 (1961), pp. 41-53 | DOI
[23] Local moments and localized states (Nobel lecture, 1977), Nobel Lectures, Physics 1971–1980, World Scientific, Singapore, 1992
[24] The Kondo Problem to Heavy Fermions, Cambridge University Press, Cambridge, UK, 1993
[25] A ‘Fermi-liquid’ description of the Kondo problem at low temperatures, J. Low Temp. Phys., Volume 17 (1974), p. 31
[26] Perturbation expansion for the Anderson hamiltonian. III, Prog. Theor. Phys., Volume 53 (1975) no. 5, pp. 1286-1301 http://ptp.oxfordjournals.org/content/53/5/1286.full.pdf+html http://ptp.oxfordjournals.org/content/53/5/1286.abstract | DOI
[27] Relation between the Anderson and Kondo hamiltonians, Phys. Rev., Volume 149 (1966), pp. 491-492 | DOI
[28] Friedel sum rule for Anderson's model of localized impurity states, Phys. Rev., Volume 150 (1966), pp. 516-518 | DOI
[29] Fermi-liquid theory for the single-impurity Anderson model, Phys. Rev. B, Volume 92 (2015) | DOI
[30] Transport coefficients of the Anderson model via the numerical renormalization group, J. Phys. Condens. Matter, Volume 6 (1994) no. 13, p. 2519 http://stacks.iop.org/0953-8984/6/i=13/a=013
[31] A local moment approach to the Anderson model, J. Phys. Condens. Matter, Volume 10 (1998) no. 12, p. 2673 http://stacks.iop.org/0953-8984/10/i=12/a=009
[32] On the anomalous temperature dependence of the resistivity of non-magnetic metals with a weak concentration of magnetic impurities, Sov. Phys. JETP, Volume 21 (1965), p. 660
[33] Dispersion theory of the Kondo effect, Phys. Rev., Volume 138 (1965), p. A515-A523 | DOI
[34] Self-consistent treatment of Kondo's effect in dilute alloys, Phys. Rev., Volume 138 (1965), p. A1112-A1120 | DOI
[35] Artificial atoms, Phys. Today ( January 1993 ), p. 24
[36] Landauer formula for the current through an interacting electron region, Phys. Rev. Lett., Volume 68 (1992), pp. 2512-2515 | DOI
[37] Resonant Kondo transparency of a barrier with quasilocal impurity states, Sov. Phys. JETP, Volume 47 (1988), p. 452
[38] On-site Coulomb repulsion and resonant tunneling, Phys. Rev. Lett., Volume 61 (1988), pp. 1768-1771 | DOI
[39] Photoemission from Ce compounds: exact model calculation in the limit of large degeneracy, Phys. Rev. Lett., Volume 50 (1983), pp. 604-607 | DOI
[40] Kondo effect in a single-electron transistor, Nature, Volume 391 (1998), pp. 156-159 | arXiv | DOI
[41] From the Kondo regime to the mixed-valence regime in a single-electron transistor, Phys. Rev. Lett., Volume 81 (1998), pp. 5225-5228 | DOI
[42] A tunable Kondo effect in quantum dots, Science, Volume 281 (1998), p. 540 | arXiv | DOI
[43] Anomalous Kondo effect in a quantum dot at nonzero bias, Phys. Rev. Lett., Volume 83 (1999), pp. 804-807 | DOI
[44] Transmission phase shift of a quantum dot with Kondo correlations, Phys. Rev. Lett., Volume 84 (2000), pp. 3710-3713 | DOI
[45] Phase evolution in a Kondo-correlated system, Science, Volume 290 (2000) no. 5492, pp. 779-783 http://www.sciencemag.org/content/290/5492/779.full.pdf http://www.sciencemag.org/content/290/5492/779.abstract | DOI
[46] Transmission phase in the Kondo regime revealed in a two-path interferometer, Phys. Rev. Lett., Volume 113 (2014) | DOI
[47] Dynamical mean-field theory: materials from an atomic viewpoint beyond the Landau paradigm, DMFT at 25: Infinite Dimensions, Springer, Berlin, 2014 http://www.cond-mat.de/events/correl14/manuscripts/
[48] Hubbard model in infinite dimensions, Phys. Rev. B, Volume 45 (1992), pp. 6479-6483
[49] Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions, Rev. Mod. Phys., Volume 68 (1996), pp. 13-125
[50] E. Gull, A.J. Millis, A.I. Lichtenstein, A.N. Rubtsov, M. Troyer, P. Werner, Continuous-time Monte-Carlo methods for quantum impurity models.
[51] TRIQS: a toolbox for research on interacting quantum systems, Comput. Phys. Commun., Volume 196 (2015), pp. 398-415 http://www.sciencedirect.com/science/article/pii/S0010465515001666 | DOI
[52] The ALPS project (Algorithms Libraries for Physics Simulations) http://alps.comp-phys.org/
[53] Correlated lattice fermions in dimensions, Phys. Rev. Lett., Volume 62 (1989), p. 324
[54] Thinking locally: reflections on dynamical mean-field theory from a high-temperature/high-energy perspective, Ann. Phys., Volume 523 (2011), pp. 672-681 | arXiv | DOI
[55] Application of Gutzwiller's variational method to the metal-insulator transition, Phys. Rev. B, Volume 2 (1970), pp. 4302-4304 | DOI
[56] Metal-insulator transitions, Rev. Mod. Phys., Volume 70 (1998), p. 1039
[57] Critical behavior near the Mott transition in the Hubbard model, Phys. Rev. Lett., Volume 74 (1995), pp. 2082-2085 | DOI
[58] Landau theory of the Mott transition in the fully frustrated Hubbard model in infinite dimensions, Eur. Phys. J. B, Volume 11 (1999) no. 1, pp. 27-39 | DOI
[59] Poor man's understanding of kinks originating from strong electronic correlations, Phys. Rev. Lett., Volume 110 (2013) | DOI
[60] How bad metals turn good: Spectroscopic signatures of resilient quasiparticles, Phys. Rev. Lett., Volume 110 (2013) | DOI
[61] Strong electronic correlations from Hund's coupling, Annu. Rev. Condens. Matter Phys., Volume 4 (2013), p. 137 | arXiv
[62] Driving the electron over the edge, Science, Volume 302 (2003), p. 67
[63] Strongly correlated electron materials: insights from dynamical mean field theory, Phys. Today, Volume March (2004), p. 53
[64] Friedel sum rule for a system of interacting electrons, Phys. Rev., Volume 121 (1961), pp. 1090-1092 | DOI
[65] Quantum fluctuations of a nearly critical Heisenberg spin glass, Phys. Rev. B, Volume 63 (2001)
Cité par Sources :
Commentaires - Politique