Comptes Rendus
Condensed matter physics in the 21st century: The legacy of Jacques Friedel
An efficient magnetic tight-binding method for transition metals and alloys
[Un modèle de liaisons fortes magnétique pour les métaux de transition et leurs alliages]
Comptes Rendus. Physique, Volume 17 (2016) no. 3-4, pp. 406-429.

Nous présentons un modèle de liaisons fortes paramétré et auto-cohérent utilisant une base d'orbitales atomiques s, p, et d pour décrire les électrons de valence des métaux de transition. Les paramètres du modèle sont déterminés à partir d'un ajustement non linéaire sur des résultats de calculs ab initio d'éléments purs en volume. Notre procédure ne nécessite aucun paramètre ni ajustement supplémentaire pour l'étendre aux systèmes avec plusieurs atomes de natures chimiques différentes. Nous avons généralisé notre modèle aux matériaux présentant une polarisation de spin et orbitale à l'aide de termes de Stoner et de couplage spin–orbite. Nous traitons aussi bien le magnétisme colinéaire que non colinéaire ainsi que les spirales de spin. Enfin nous montrons comment prendre en compte l'interaction électron–électron intra-atomique dans l'approximation de Hartree–Fock. Cela introduit une dépendance orbitale des interactions qui peut s'avérer importante dans les systèmes de basse dimensionalité et pour décrire correctement l'anisotropie magnéto-cristalline et la polarisation orbitale. Nous illustrons notre propos à l'aide de plusieurs exemples.

An efficient parameterized self-consistent tight-binding model for transition metals using s, p and d valence atomic orbitals as a basis set is presented. The parameters of our tight-binding model for pure elements are determined from a fit to bulk ab-initio calculations. A very simple procedure that does not necessitate any further fitting is proposed to deal with systems made of several chemical elements. This model is extended to spin (and orbital) polarized materials by adding Stoner-like and spin–orbit interactions. Collinear and non-collinear magnetism as well as spin-spirals are considered. Finally the electron–electron intra-atomic interactions are taken into account in the Hartree–Fock approximation. This leads to an orbital dependence of these interactions, which is of a great importance for low-dimensional systems and for a quantitative description of orbital polarization and magneto-crystalline anisotropy. Several examples are discussed.

Publié le :
DOI : 10.1016/j.crhy.2015.12.014
Keywords: Tight-binding, Magnetism, Stoner Model, Spin–orbit coupling, Magneto-crystalline anisotropy, Hartree–Fock
Mot clés : Liaisons fortes, Magnétisme, Modèle de Stoner, Couplage spin–orbite, Anisotropie magnéto-cristalline, Hartree–Fock

Cyrille Barreteau 1, 2 ; Daniel Spanjaard 3 ; Marie-Catherine Desjonquères 1

1 SPEC, CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gif-sur-Yvette, France
2 DTU NANOTECH, Technical University of Denmark, Ørsteds Plads 344, DK-2800 Kgs. Lyngby, Denmark
3 Laboratoire de physique des solides, Université Paris-Sud, bâtiment 510, 91405 Orsay cedex, France
@article{CRPHYS_2016__17_3-4_406_0,
     author = {Cyrille Barreteau and Daniel Spanjaard and Marie-Catherine Desjonqu\`eres},
     title = {An efficient magnetic tight-binding method for transition metals and alloys},
     journal = {Comptes Rendus. Physique},
     pages = {406--429},
     publisher = {Elsevier},
     volume = {17},
     number = {3-4},
     year = {2016},
     doi = {10.1016/j.crhy.2015.12.014},
     language = {en},
}
TY  - JOUR
AU  - Cyrille Barreteau
AU  - Daniel Spanjaard
AU  - Marie-Catherine Desjonquères
TI  - An efficient magnetic tight-binding method for transition metals and alloys
JO  - Comptes Rendus. Physique
PY  - 2016
SP  - 406
EP  - 429
VL  - 17
IS  - 3-4
PB  - Elsevier
DO  - 10.1016/j.crhy.2015.12.014
LA  - en
ID  - CRPHYS_2016__17_3-4_406_0
ER  - 
%0 Journal Article
%A Cyrille Barreteau
%A Daniel Spanjaard
%A Marie-Catherine Desjonquères
%T An efficient magnetic tight-binding method for transition metals and alloys
%J Comptes Rendus. Physique
%D 2016
%P 406-429
%V 17
%N 3-4
%I Elsevier
%R 10.1016/j.crhy.2015.12.014
%G en
%F CRPHYS_2016__17_3-4_406_0
Cyrille Barreteau; Daniel Spanjaard; Marie-Catherine Desjonquères. An efficient magnetic tight-binding method for transition metals and alloys. Comptes Rendus. Physique, Volume 17 (2016) no. 3-4, pp. 406-429. doi : 10.1016/j.crhy.2015.12.014. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2015.12.014/

[1] J.C. Slater; G.F. Koster Simplified LCAO method for the periodic potential problem, Phys. Rev., Volume 94 (1954) no. 6, pp. 1498-1524

[2] J. Friedel Metallic alloys, Nuovo Cimento, Volume 7 (1958) no. S2, pp. 287-311

[3] J. Friedel Sur la structure électronique et les propriétés magnétiques des métaux et alliages de transition, J. Phys. Radium, Volume 23 (1962) no. 8–9, pp. 501-510

[4] J. Friedel On the possible impact of quantum mechanics on physical metallurgy, Trans. Metall. Soc. AIME, Volume 230 (1964), p. 616

[5] F. Ducastelle Modules élastiques des métaux de transition, J. Phys. (Paris), Volume 31 (1970) no. 11–12, pp. 1055-1062

[6] J. Harris Simplified method for calculating the energy of weakly interacting fragments, Phys. Rev. B, Volume 31 (1985) no. 4, pp. 1770-1779

[7] W. Foulkes; Roger Haydock Tight-binding models and density-functional theory, Phys. Rev. B, Volume 39 (1989) no. 17, pp. 12520-12536

[8] M. Mehl; D. Papaconstantopoulos Applications of a tight-binding total-energy method for transition and noble metals: elastic constants, vacancies, and surfaces of monatomic metals, Phys. Rev. B, Volume 54 (1996) no. 7, pp. 4519-4530

[9] O. Sankey; D. Niklewski Ab initio multicenter tight-binding model for molecular-dynamics simulations and other applications in covalent systems, Phys. Rev. B, Volume 40 (1989) no. 6, pp. 3979-3995

[10] P. Koskinen; V. Mäkinen Density-functional tight-binding for beginners, Comput. Mater. Sci., Volume 47 (2009) no. 1, pp. 237-253

[11] E.C. Stoner Collective electron ferromagnetism, Proc. R. Soc. A, Math. Phys. Eng. Sci., Volume 165 (1938) no. 922, pp. 372-414

[12] J. Friedel; G. Leman; S. Olszewski On the nature of the magnetic couplings in transitional metals, J. Appl. Phys., Volume 32 (1961) no. 3

[13] J. Friedel; C.M. Sayers On the role of d-d electron correlations in the cohesion and ferromagnetism of transition metals, J. Phys. (Paris), Volume 38 (1977) no. 6, p. 697

[14] F. Brouers; F. Gautier; J. Van Der Rest Local environment and magnetic properties in transitional binary alloys. I. (theory) – Abstract – IOPscience, J. Phys. F, Met. Phys., Volume 5 (1975) no. 5, p. 975

[15] M.C. Desjonquères; D. Spanjaard Concepts in Surface Physics, Springer Verlag, Berlin, 1995

[16] F. Ducastelle Order and Phase Stability in Alloys, North Holland, Amsterdam, 1991

[17] A. Paxton An introduction to the tight binding approximation – implementation by diagonalisation, NIC Series, vol. 42, 2009, pp. 145-176

[18] D.G. Pettifor Bonding and Structure of Molecules and Solids, Oxford Science Publications, 1995

[19] A.P. Sutton; M.W. Finnis; D.G. Pettifor; Y. Ohta The tight-binding bond model, J. Phys. C, Solid State Phys., Volume 21 (1988) no. 1, pp. 35-66

[20] A.P. Sutton Electronic Structure of Materials, Oxford University Press, 1993

[21] The first two terms can also be written εjμatSinλ,jmμ+inλ|Vˆinat|jmμ or more symetrically 12(εiλat+εjμat)Sinλ,jmμ+12(inλ|Vˆinat|jmμ+inλ|Vˆjnat|jmμ), when overlaps are neglected only the term inλ|Vˆinat|jmμ remains. In practice we use a parametrized TB formalism and we never have to calculate such integrals. However in the ab-initio versions of TB [10] these terms are calculated explicitly.

[22] L.E. Ballentine; M. Kolar Recursion, non-orthogonal basis vectors, and the computation of electronic properties, J. Phys. C, Solid State Phys., Volume 19 (1986) no. 7, pp. 981-993

[23] E. Artacho; L. Miláns del Bosch Nonorthogonal basis sets in quantum mechanics: representations and second quantization, Phys. Rev. A, Volume 43 (1991) no. 11, pp. 5770-5777

[24] R. Soulairol, C. Barreteau, C.C. Fu, A magnetic tight binding model for FeCr, in preparation.

[25] D. Johnson Modified Broyden's method for accelerating convergence in self-consistent calculations, Phys. Rev. B, Volume 38 (1988) no. 18, pp. 12807-12813

[26] A.K. Mackintosh; O.K. Andersen Electrons at the Fermi Surface, Springford Cambridge University Press, Cambridge, 1975

[27] V. Heine (H. Ehrenreich; F. Seitz; D. Turnbull, eds.), Solid State Phys., vol. 35, Academic, New York, 1980

[28] A.I. Liechtenstein; M.I. Katsnelson; V.P. Antropov; V.A. Gubanov Local spin density functional approach to the theory of exchange interactions in ferromagnetic metals and alloys, J. Magn. Magn. Mater., Volume 67 (1987) no. 1, p. 65

[29] D. Li; A. Smogunov; C. Barreteau; F. Ducastelle; D. Spanjaard Magnetocrystalline anisotropy energy of Fe(001) and Fe(110) slabs and nanoclusters: a detailed local analysis within a tight-binding model, Phys. Rev. B, Volume 88 (2013) no. 21

[30] G. Autès; C. Barreteau; D. Spanjaard; M.-C. Desjonquères Magnetism of iron: from the bulk to the monatomic wire, J. Phys. Condens. Matter, Volume 18 (2006) no. 29, pp. 6785-6813

[31] G. Pastor; J. Dorantes-Dávila; K. Bennemann Size and structural dependence of the magnetic properties of small 3d-transition-metal clusters, Phys. Rev. B, Volume 40 (1989) no. 11, pp. 7642-7654

[32] C. Barreteau; R. Guirado-López; D. Spanjaard; M. Desjonquères; A. Oleś spd tight-binding model of magnetism in transition metals: application to Rh and Pd clusters and slabs, Phys. Rev. B, Volume 61 (2000) no. 11, pp. 7781-7794

[33] J. Kübler Theory of Itinerant Electron Magnetism, Oxford University Press, 2009

[34] D. Hobbs; G. Kresse; J. Hafner Fully unconstrained noncollinear magnetism within the projector augmented-wave method, Phys. Rev. B, Volume 62 (2000) no. 17, pp. 11556-11570

[35] The true magnetic ground state of bulk Cr is a so-called spin-density wave (SDW) well established experimentally but calculations based on DFT, or TB formalism fail to predict it as the ground state [38].

[36] D. Hobbs; J. Hafner Fully unconstrained non-collinear magnetism in triangular Cr and Mn monolayers and overlayers on Cu(111) substrates, J. Phys. Condens. Matter, Volume 12 (2000) no. 31, pp. 7025-7040

[37] L.M. Sandratskii Noncollinear magnetism in itinerant-electron systems: theory and applications, Adv. Phys., Volume 47 (1998) no. 1, pp. 91-160

[38] R. Soulairol; C.C. Fu; C. Barreteau Structure and magnetism of bulk Fe and Cr: from plane waves to LCAO methods, J. Phys. Condens. Matter, Volume 22 (2010) no. 29, p. 295502

[39] V. Kashid; T. Schena; B. Zimmermann; Y. Mokrousov; S. Blügel; V. Shah; H.G. Salunke Dzyaloshinskii-Moriya interaction and chiral magnetism in 3d–5d zigzag chains: tight-binding model and ab initio calculations, Phys. Rev. B, Volume 90 (2014) no. 21

[40] T. Schena Tight-binding treatment of complex magnetic structures in low-dimensional systems, Aachen University, Germany, 2010 (Master thesis)

[41] J. Friedel; P. Lenglart; G. Leman Etude du couplage spin–orbite dans les métaux de transition. Application au platine, J. Phys. Chem. Solids, Volume 25 (1964) no. 8, pp. 781-800

[42] S. LaShell; B.A. McDougall; E. Jensen Spin splitting of an Au(111) surface state band observed with angle resolved photoelectron spectroscopy, Phys. Rev. Lett., Volume 77 (1996) no. 16, p. 3419

[43] L. Petersen; P. Hedegård A simple tight-binding model of spin–orbit splitting of sp-derived surface states, Surf. Sci., Volume 459 ( March 2000 ), p. 49

[44] R. Mazzarello; A. Dal Corso; E. Tosatti Spin-orbit modifications and splittings of deep surface states on clean Au(111), Surf. Sci., Volume 602 (2008) no. 4, pp. 893-905

[45] H. Lee; H. Joon Choi Role of d orbitals in the Rashba-type spin splitting for noble-metal surfaces, Phys. Rev. B, Volume 86 (2012) no. 4

[46] F. Reinert; G. Nicolay; S. Schmidt; D. Ehm; S. Hüfner Direct measurements of the L-gap surface states on the (111) face of noble metals by photoelectron spectroscopy, Phys. Rev. B, Volume 63 (2001) no. 11

[47] D. Li; C. Barreteau; M.R. Castell; F. Silly; A. Smogunov Out- versus in-plane magnetic anisotropy of free Fe and Co nanocrystals: tight-binding and first-principles studies, Phys. Rev. B, Volume 90 (2014) no. 20

[48] C. Barreteau; D. Spanjaard Magnetic and electronic properties of bulk and clusters of FePt L1(0), J. Phys. Condens. Matter, Volume 24 ( October 2012 ) no. 40, p. 406004

[49] R. Belkhou; N. Marsot; H. Magnan; P. Le Fèvre; N.T. Barrett; C. Guillot; D. Chandesris Structure and growth mode of epitaxial Co/Au(111) magnetic thin films, J. Electron Spectrosc. Relat. Phenom., Volume 101–103 (1999), pp. 251-256

[50] P. Bruno Tight-binding approach to the orbital magnetic moment and magnetocrystalline anisotropy of transition-metal monolayers, Phys. Rev. B, Volume 39 (1989) no. 1, pp. 865-868

[51] M. Cinal; D. Edwards; J. Mathon Magnetocrystalline anisotropy in ferromagnetic films, Phys. Rev. B, Volume 50 (1994) no. 6, pp. 3754-3760

[52] M.-C. Desjonquères; C. Barreteau; G. Autès; D. Spanjaard Orbital contribution to the magnetic properties of iron as a function of dimensionality, Phys. Rev. B, Volume 76 (2007) no. 2

[53] M.-C. Desjonquères; C. Barreteau; G. Autès; D. Spanjaard Orbital contribution to the magnetic properties of nanowires: is the orbital polarization ansatz justified?, Eur. Phys. J. B, Volume 55 (2007) no. 23

[54] J.S. Griffith The Theory of Transition Metal Ions, Cambridge University Press, London, 1961

[55] G. Autès Transport électronique polarisé en spin dans les contacts atomiques de fer, Université Paris-6, 2008 (PhD thesis)

[56] V.I. Anisimov; J. Zaanen; O.K. Andersen Band theory and Mott insulators: Hubbard U instead of Stoner I, Phys. Rev. B, Volume 44 (1991), p. 943

[57] A.I. Liechtenstein; V.I. Anisimov; J. Zaanen Density-functional theory and strong interactions: orbital ordering in Mott–Hubbard insulators, Phys. Rev. B, Volume 52 (1995)

[58] A.B. Shick; A.I. Liechtenstein; W.E. Pickett Implementation of the LDA+U method using the full-potential linearized augmented plane-wave basis, Phys. Rev. B, Volume 60 (1999), p. 10763

[59] Note that most DFT+U implementations are expressed in the spherical harmonics basis while we have chosen the cubic (real) harmonics and the definition of U and J, differs from ours as discussed in Ref. [53].

[60] There also exists a simplified version of rotationally invariant DFT+U introduced by Dudarev [61] where only an Ueff=(UJ) enters in his formulation. Actually this model corresponds to J=0 and B=0.

[61] S.L. Dudarev; G.A. Botton; S.Y. Savrasov; C.J. Humphreys; A.P. Sutton Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA+U study, Phys. Rev. B, Volume 57 (1998), p. 1505

[62] J. Hirsch Metallic ferromagnetism in a single-band model, Phys. Rev. B, Volume 40 (1989) no. 4, pp. 2354-2361

[63] C. Barreteau; M.-C. Desjonquères; A. Oleś; D. Spanjaard Effects of intersite Coulomb interactions on ferromagnetism: application to Fe, Co, and Ni, Phys. Rev. B, Volume 69 (2004) no. 6

[64] V. Leiria Campo; M. Cococcioni Extended DFT+U+V method with on-site and inter-site electronic interactions, J. Phys. Condens. Matter, Volume 22 (2010)

[65] G. Autès; C. Barreteau; M.C. Desjonquères; D. Spanjaard; M. Viret Giant orbital moments are responsible for the anisotropic magnetoresistance of atomic contacts, Europhys. Lett., Volume 83 (2008) no. 1, p. 17010

[66] G. Autès; C. Barreteau; D. Spanjaard; M.-C. Desjonquères Electronic transport in iron atomic contacts: from the infinite wire to realistic geometries, Phys. Rev. B, Volume 77 (2008) no. 15

Cité par Sources :

Commentaires - Politique