[Un modèle de liaisons fortes magnétique pour les métaux de transition et leurs alliages]
An efficient parameterized self-consistent tight-binding model for transition metals using s, p and d valence atomic orbitals as a basis set is presented. The parameters of our tight-binding model for pure elements are determined from a fit to bulk ab-initio calculations. A very simple procedure that does not necessitate any further fitting is proposed to deal with systems made of several chemical elements. This model is extended to spin (and orbital) polarized materials by adding Stoner-like and spin–orbit interactions. Collinear and non-collinear magnetism as well as spin-spirals are considered. Finally the electron–electron intra-atomic interactions are taken into account in the Hartree–Fock approximation. This leads to an orbital dependence of these interactions, which is of a great importance for low-dimensional systems and for a quantitative description of orbital polarization and magneto-crystalline anisotropy. Several examples are discussed.
Nous présentons un modèle de liaisons fortes paramétré et auto-cohérent utilisant une base d'orbitales atomiques s, p, et d pour décrire les électrons de valence des métaux de transition. Les paramètres du modèle sont déterminés à partir d'un ajustement non linéaire sur des résultats de calculs ab initio d'éléments purs en volume. Notre procédure ne nécessite aucun paramètre ni ajustement supplémentaire pour l'étendre aux systèmes avec plusieurs atomes de natures chimiques différentes. Nous avons généralisé notre modèle aux matériaux présentant une polarisation de spin et orbitale à l'aide de termes de Stoner et de couplage spin–orbite. Nous traitons aussi bien le magnétisme colinéaire que non colinéaire ainsi que les spirales de spin. Enfin nous montrons comment prendre en compte l'interaction électron–électron intra-atomique dans l'approximation de Hartree–Fock. Cela introduit une dépendance orbitale des interactions qui peut s'avérer importante dans les systèmes de basse dimensionalité et pour décrire correctement l'anisotropie magnéto-cristalline et la polarisation orbitale. Nous illustrons notre propos à l'aide de plusieurs exemples.
Mots-clés : Liaisons fortes, Magnétisme, Modèle de Stoner, Couplage spin–orbite, Anisotropie magnéto-cristalline, Hartree–Fock
Cyrille Barreteau 1, 2 ; Daniel Spanjaard 3 ; Marie-Catherine Desjonquères 1
@article{CRPHYS_2016__17_3-4_406_0, author = {Cyrille Barreteau and Daniel Spanjaard and Marie-Catherine Desjonqu\`eres}, title = {An efficient magnetic tight-binding method for transition metals and alloys}, journal = {Comptes Rendus. Physique}, pages = {406--429}, publisher = {Elsevier}, volume = {17}, number = {3-4}, year = {2016}, doi = {10.1016/j.crhy.2015.12.014}, language = {en}, }
TY - JOUR AU - Cyrille Barreteau AU - Daniel Spanjaard AU - Marie-Catherine Desjonquères TI - An efficient magnetic tight-binding method for transition metals and alloys JO - Comptes Rendus. Physique PY - 2016 SP - 406 EP - 429 VL - 17 IS - 3-4 PB - Elsevier DO - 10.1016/j.crhy.2015.12.014 LA - en ID - CRPHYS_2016__17_3-4_406_0 ER -
%0 Journal Article %A Cyrille Barreteau %A Daniel Spanjaard %A Marie-Catherine Desjonquères %T An efficient magnetic tight-binding method for transition metals and alloys %J Comptes Rendus. Physique %D 2016 %P 406-429 %V 17 %N 3-4 %I Elsevier %R 10.1016/j.crhy.2015.12.014 %G en %F CRPHYS_2016__17_3-4_406_0
Cyrille Barreteau; Daniel Spanjaard; Marie-Catherine Desjonquères. An efficient magnetic tight-binding method for transition metals and alloys. Comptes Rendus. Physique, Physique de la matière condensée au XXIe siècle: l’héritage de Jacques Friedel, Volume 17 (2016) no. 3-4, pp. 406-429. doi : 10.1016/j.crhy.2015.12.014. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2015.12.014/
[1] Simplified LCAO method for the periodic potential problem, Phys. Rev., Volume 94 (1954) no. 6, pp. 1498-1524
[2] Metallic alloys, Nuovo Cimento, Volume 7 (1958) no. S2, pp. 287-311
[3] Sur la structure électronique et les propriétés magnétiques des métaux et alliages de transition, J. Phys. Radium, Volume 23 (1962) no. 8–9, pp. 501-510
[4] On the possible impact of quantum mechanics on physical metallurgy, Trans. Metall. Soc. AIME, Volume 230 (1964), p. 616
[5] Modules élastiques des métaux de transition, J. Phys. (Paris), Volume 31 (1970) no. 11–12, pp. 1055-1062
[6] Simplified method for calculating the energy of weakly interacting fragments, Phys. Rev. B, Volume 31 (1985) no. 4, pp. 1770-1779
[7] Tight-binding models and density-functional theory, Phys. Rev. B, Volume 39 (1989) no. 17, pp. 12520-12536
[8] Applications of a tight-binding total-energy method for transition and noble metals: elastic constants, vacancies, and surfaces of monatomic metals, Phys. Rev. B, Volume 54 (1996) no. 7, pp. 4519-4530
[9] Ab initio multicenter tight-binding model for molecular-dynamics simulations and other applications in covalent systems, Phys. Rev. B, Volume 40 (1989) no. 6, pp. 3979-3995
[10] Density-functional tight-binding for beginners, Comput. Mater. Sci., Volume 47 (2009) no. 1, pp. 237-253
[11] Collective electron ferromagnetism, Proc. R. Soc. A, Math. Phys. Eng. Sci., Volume 165 (1938) no. 922, pp. 372-414
[12] On the nature of the magnetic couplings in transitional metals, J. Appl. Phys., Volume 32 (1961) no. 3
[13] On the role of d-d electron correlations in the cohesion and ferromagnetism of transition metals, J. Phys. (Paris), Volume 38 (1977) no. 6, p. 697
[14] Local environment and magnetic properties in transitional binary alloys. I. (theory) – Abstract – IOPscience, J. Phys. F, Met. Phys., Volume 5 (1975) no. 5, p. 975
[15] Concepts in Surface Physics, Springer Verlag, Berlin, 1995
[16] Order and Phase Stability in Alloys, North Holland, Amsterdam, 1991
[17] An introduction to the tight binding approximation – implementation by diagonalisation, NIC Series, vol. 42, 2009, pp. 145-176
[18] Bonding and Structure of Molecules and Solids, Oxford Science Publications, 1995
[19] The tight-binding bond model, J. Phys. C, Solid State Phys., Volume 21 (1988) no. 1, pp. 35-66
[20] Electronic Structure of Materials, Oxford University Press, 1993
[21] The first two terms can also be written
[22] Recursion, non-orthogonal basis vectors, and the computation of electronic properties, J. Phys. C, Solid State Phys., Volume 19 (1986) no. 7, pp. 981-993
[23] Nonorthogonal basis sets in quantum mechanics: representations and second quantization, Phys. Rev. A, Volume 43 (1991) no. 11, pp. 5770-5777
[24] R. Soulairol, C. Barreteau, C.C. Fu, A magnetic tight binding model for FeCr, in preparation.
[25] Modified Broyden's method for accelerating convergence in self-consistent calculations, Phys. Rev. B, Volume 38 (1988) no. 18, pp. 12807-12813
[26] Electrons at the Fermi Surface, Springford Cambridge University Press, Cambridge, 1975
[27] , Solid State Phys., vol. 35, Academic, New York, 1980
(H. Ehrenreich; F. Seitz; D. Turnbull, eds.)[28] Local spin density functional approach to the theory of exchange interactions in ferromagnetic metals and alloys, J. Magn. Magn. Mater., Volume 67 (1987) no. 1, p. 65
[29] Magnetocrystalline anisotropy energy of Fe(001) and Fe(110) slabs and nanoclusters: a detailed local analysis within a tight-binding model, Phys. Rev. B, Volume 88 (2013) no. 21
[30] Magnetism of iron: from the bulk to the monatomic wire, J. Phys. Condens. Matter, Volume 18 (2006) no. 29, pp. 6785-6813
[31] Size and structural dependence of the magnetic properties of small 3d-transition-metal clusters, Phys. Rev. B, Volume 40 (1989) no. 11, pp. 7642-7654
[32] spd tight-binding model of magnetism in transition metals: application to Rh and Pd clusters and slabs, Phys. Rev. B, Volume 61 (2000) no. 11, pp. 7781-7794
[33] Theory of Itinerant Electron Magnetism, Oxford University Press, 2009
[34] Fully unconstrained noncollinear magnetism within the projector augmented-wave method, Phys. Rev. B, Volume 62 (2000) no. 17, pp. 11556-11570
[35] The true magnetic ground state of bulk Cr is a so-called spin-density wave (SDW) well established experimentally but calculations based on DFT, or TB formalism fail to predict it as the ground state [38].
[36] Fully unconstrained non-collinear magnetism in triangular Cr and Mn monolayers and overlayers on Cu(111) substrates, J. Phys. Condens. Matter, Volume 12 (2000) no. 31, pp. 7025-7040
[37] Noncollinear magnetism in itinerant-electron systems: theory and applications, Adv. Phys., Volume 47 (1998) no. 1, pp. 91-160
[38] Structure and magnetism of bulk Fe and Cr: from plane waves to LCAO methods, J. Phys. Condens. Matter, Volume 22 (2010) no. 29, p. 295502
[39] Dzyaloshinskii-Moriya interaction and chiral magnetism in 3d–5d zigzag chains: tight-binding model and ab initio calculations, Phys. Rev. B, Volume 90 (2014) no. 21
[40] Tight-binding treatment of complex magnetic structures in low-dimensional systems, Aachen University, Germany, 2010 (Master thesis)
[41] Etude du couplage spin–orbite dans les métaux de transition. Application au platine, J. Phys. Chem. Solids, Volume 25 (1964) no. 8, pp. 781-800
[42] Spin splitting of an Au(111) surface state band observed with angle resolved photoelectron spectroscopy, Phys. Rev. Lett., Volume 77 (1996) no. 16, p. 3419
[43] A simple tight-binding model of spin–orbit splitting of sp-derived surface states, Surf. Sci., Volume 459 ( March 2000 ), p. 49
[44] Spin-orbit modifications and splittings of deep surface states on clean Au(111), Surf. Sci., Volume 602 (2008) no. 4, pp. 893-905
[45] Role of d orbitals in the Rashba-type spin splitting for noble-metal surfaces, Phys. Rev. B, Volume 86 (2012) no. 4
[46] Direct measurements of the L-gap surface states on the (111) face of noble metals by photoelectron spectroscopy, Phys. Rev. B, Volume 63 (2001) no. 11
[47] Out- versus in-plane magnetic anisotropy of free Fe and Co nanocrystals: tight-binding and first-principles studies, Phys. Rev. B, Volume 90 (2014) no. 20
[48] Magnetic and electronic properties of bulk and clusters of FePt L1(0), J. Phys. Condens. Matter, Volume 24 ( October 2012 ) no. 40, p. 406004
[49] Structure and growth mode of epitaxial Co/Au(111) magnetic thin films, J. Electron Spectrosc. Relat. Phenom., Volume 101–103 (1999), pp. 251-256
[50] Tight-binding approach to the orbital magnetic moment and magnetocrystalline anisotropy of transition-metal monolayers, Phys. Rev. B, Volume 39 (1989) no. 1, pp. 865-868
[51] Magnetocrystalline anisotropy in ferromagnetic films, Phys. Rev. B, Volume 50 (1994) no. 6, pp. 3754-3760
[52] Orbital contribution to the magnetic properties of iron as a function of dimensionality, Phys. Rev. B, Volume 76 (2007) no. 2
[53] Orbital contribution to the magnetic properties of nanowires: is the orbital polarization ansatz justified?, Eur. Phys. J. B, Volume 55 (2007) no. 23
[54] The Theory of Transition Metal Ions, Cambridge University Press, London, 1961
[55] Transport électronique polarisé en spin dans les contacts atomiques de fer, Université Paris-6, 2008 (PhD thesis)
[56] Band theory and Mott insulators: Hubbard U instead of Stoner I, Phys. Rev. B, Volume 44 (1991), p. 943
[57] Density-functional theory and strong interactions: orbital ordering in Mott–Hubbard insulators, Phys. Rev. B, Volume 52 (1995)
[58] Implementation of the LDA+U method using the full-potential linearized augmented plane-wave basis, Phys. Rev. B, Volume 60 (1999), p. 10763
[59] Note that most DFT+U implementations are expressed in the spherical harmonics basis while we have chosen the cubic (real) harmonics and the definition of U and J, differs from ours as discussed in Ref. [53].
[60] There also exists a simplified version of rotationally invariant DFT+U introduced by Dudarev [61] where only an
[61] Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA+U study, Phys. Rev. B, Volume 57 (1998), p. 1505
[62] Metallic ferromagnetism in a single-band model, Phys. Rev. B, Volume 40 (1989) no. 4, pp. 2354-2361
[63] Effects of intersite Coulomb interactions on ferromagnetism: application to Fe, Co, and Ni, Phys. Rev. B, Volume 69 (2004) no. 6
[64] Extended DFT+U+V method with on-site and inter-site electronic interactions, J. Phys. Condens. Matter, Volume 22 (2010)
[65] Giant orbital moments are responsible for the anisotropic magnetoresistance of atomic contacts, Europhys. Lett., Volume 83 (2008) no. 1, p. 17010
[66] Electronic transport in iron atomic contacts: from the infinite wire to realistic geometries, Phys. Rev. B, Volume 77 (2008) no. 15
- Adiabatic spin and orbital pumping in metallic heterostructures, Physical Review B, Volume 111 (2025) no. 13 | DOI:10.1103/physrevb.111.134424
- Coupled spin-lattice dynamics from the tight-binding electronic structure, Physical Review B, Volume 109 (2024) no. 14 | DOI:10.1103/physrevb.109.144303
- Intraband terms of magnetocrystalline anisotropy energy in layered systems without inversion symmetry, Physical Review B, Volume 109 (2024) no. 2 | DOI:10.1103/physrevb.109.024424
- Spin-orbit coupling induced Van Hove singularity in proximity to a Lifshitz transition in Sr4Ru3O10, npj Quantum Materials, Volume 9 (2024) no. 1 | DOI:10.1038/s41535-024-00645-3
- Interplay between magnetic excitations and plasticity in body-centered cubic chromium, Physical Review B, Volume 107 (2023) no. 13 | DOI:10.1103/physrevb.107.134105
- Long-Range Orbital Torque by Momentum-Space Hotspots, Physical Review Letters, Volume 130 (2023) no. 24 | DOI:10.1103/physrevlett.130.246701
- Compass-like manipulation of electronic nematicity in Sr 3 Ru 2 O 7, Proceedings of the National Academy of Sciences, Volume 120 (2023) no. 36 | DOI:10.1073/pnas.2308972120
- Simulation of thermodynamic properties of magnetic transition metals from an efficient tight-binding model: The case of cobalt and beyond, Physical Review B, Volume 105 (2022) no. 14 | DOI:10.1103/physrevb.105.144101
- Adiabatic spin dynamics and effective exchange interactions from constrained tight-binding electronic structure theory: Beyond the Heisenberg regime, Physical Review B, Volume 105 (2022) no. 22 | DOI:10.1103/physrevb.105.224408
- Slater-Pauling behavior of interfacial magnetic properties of 3d transition metal alloy/Pt structures, Physical Review B, Volume 105 (2022) no. 6 | DOI:10.1103/physrevb.105.064403
- Efficient magnetic superstructure optimization with ΘΦ, Computational Materials Science, Volume 188 (2021), p. 110140 | DOI:10.1016/j.commatsci.2020.110140
- Spin dynamics from a constrained magnetic tight-binding model, Physical Review B, Volume 103 (2021) no. 23 | DOI:10.1103/physrevb.103.235436
- Semirealistic tight-binding model for spin-orbit torques, Physical Review B, Volume 101 (2020) no. 17 | DOI:10.1103/physrevb.101.174423
- Refined electron-spin transport model for single-element ferromagnetic systems: Application to nickel nanocontacts, Physical Review B, Volume 102 (2020) no. 24 | DOI:10.1103/physrevb.102.245415
- Magnetocrystalline anisotropy of Fe, Co, and Ni slabs from density functional theory and tight-binding models, Physical Review B, Volume 100 (2019) no. 17 | DOI:10.1103/physrevb.100.174426
- Proximity-induced exchange and spin-orbit effects in graphene on Ni and Co, Physical Review B, Volume 99 (2019) no. 19 | DOI:10.1103/physrevb.99.195452
- Intersublattice magnetocrystalline anisotropy using a realistic tight-binding method based on maximally localized Wannier functions, Physical Review B, Volume 99 (2019) no. 5 | DOI:10.1103/physrevb.99.054418
- Proximity-induced spin-orbit effects in graphene on Au, Physical Review B, Volume 99 (2019) no. 8 | DOI:10.1103/physrevb.99.085411
- Accelerating spin-space sampling by auxiliary spin dynamics and temperature-dependent spin-cluster expansion, Physical Review B, Volume 99 (2019) no. 9 | DOI:10.1103/physrevb.99.094402
- Density-functional tight-binding approach for metal clusters, nanoparticles, surfaces and bulk: application to silver and gold, Journal of Physics: Condensed Matter, Volume 30 (2018) no. 30, p. 303001 | DOI:10.1088/1361-648x/aacd6c
- Loss of Hall conductivity quantization in a non-Hermitian quantum anomalous Hall insulator, Physical Review B, Volume 98 (2018) no. 15 | DOI:10.1103/physrevb.98.155430
- Experimental and theoretical investigations of magnetic anisotropy and magnetic hardening at molecule/ferromagnet interfaces, Physical Review B, Volume 98 (2018) no. 8 | DOI:10.1103/physrevb.98.085432
- Interplay between magnetism and energetics in Fe-Cr alloys from a predictive noncollinear magnetic tight-binding model, Physical Review B, Volume 94 (2016) no. 2 | DOI:10.1103/physrevb.94.024427
Cité par 23 documents. Sources : Crossref
Commentaires - Politique