Comptes Rendus
Condensed matter physics in the 21st century: The legacy of Jacques Friedel
The beauty of impurities: Two revivals of Friedel's virtual bound-state concept
Comptes Rendus. Physique, Volume 17 (2016) no. 3-4, pp. 430-446.

Jacques Friedel pioneered the theoretical study of impurities and magnetic impurities in metals. He discovered Friedel oscillations, introduced the concept of virtual bound-state, and demonstrated that the charge on the impurity is related to the scattering phase-shift at the Fermi level (Friedel sum-rule). After a brief review of some of these concepts, I describe how they proved useful in two new contexts. The first one concerns the Coulomb blockade in quantum dots, and its suppression by the Kondo effect. The second one is the dynamical mean-field theory of strong electronic correlations.

Jacques Friedel est l'auteur de travaux pionniers sur la physique des impuretés dans les métaux. On lui doit, outre la découverte des oscillations de Friedel, le concept d'état lié virtuel et la découverte du lien entre déphasage et charge sur l'impureté (règle de somme de Friedel). Après avoir brièvement décrit certaines de ces notions, je présente leur utilisation fructueuse dans deux contextes récents : le blocage de Coulomb dans un point quantique et sa suppression par l'effet Kondo, ainsi que la théorie de champ moyen dynamique des matériaux à fortes corrélations électroniques.

Published online:
DOI: 10.1016/j.crhy.2015.12.005
Keywords: Jacques Friedel, Virtual bound-state, Phase-shift, Friedel sum-rule, Kondo effect, Anderson impurity model, Coulomb blockade, Strong electronic correlations, Dynamical Mean-Field Theory, Mott transition
Mot clés : Jacques Friedel, État lié virtuel, Phase-shift, Règle de somme de Friedel, Effet Kondo, Modèle d'impureté d'Anderson, Blocage de Coulomb, Corrélations électroniques fortes, Théorie du champ moyen dynamique, Transition de Mott

Antoine Georges 1

1 Collège de France, 11, place Marcellin-Berthelot, 75005 Paris, France
@article{CRPHYS_2016__17_3-4_430_0,
     author = {Antoine Georges},
     title = {The beauty of impurities: {Two} revivals of {Friedel's} virtual bound-state concept},
     journal = {Comptes Rendus. Physique},
     pages = {430--446},
     publisher = {Elsevier},
     volume = {17},
     number = {3-4},
     year = {2016},
     doi = {10.1016/j.crhy.2015.12.005},
     language = {en},
}
TY  - JOUR
AU  - Antoine Georges
TI  - The beauty of impurities: Two revivals of Friedel's virtual bound-state concept
JO  - Comptes Rendus. Physique
PY  - 2016
SP  - 430
EP  - 446
VL  - 17
IS  - 3-4
PB  - Elsevier
DO  - 10.1016/j.crhy.2015.12.005
LA  - en
ID  - CRPHYS_2016__17_3-4_430_0
ER  - 
%0 Journal Article
%A Antoine Georges
%T The beauty of impurities: Two revivals of Friedel's virtual bound-state concept
%J Comptes Rendus. Physique
%D 2016
%P 430-446
%V 17
%N 3-4
%I Elsevier
%R 10.1016/j.crhy.2015.12.005
%G en
%F CRPHYS_2016__17_3-4_430_0
Antoine Georges. The beauty of impurities: Two revivals of Friedel's virtual bound-state concept. Comptes Rendus. Physique, Volume 17 (2016) no. 3-4, pp. 430-446. doi : 10.1016/j.crhy.2015.12.005. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2015.12.005/

[1] A.P. Sutton; O. Hardouin-Duparc Jacques Friedel: 11 February 1921–27 August 2014, Biogr. Mem. Fellows R. Soc., Volume 61 (2015), pp. 123-143 | DOI

[2] B. Bensaude-Vincent; H. Arribart Entrevue avec Jacques Friedel, history of recent science and technology project, October 2001 http://authors.library.caltech.edu/5456/1/hrst.mit.edu/hrs/materials/public/FriedelJacques/Jacques_Friedel_intro.htm

[3] J. Friedel The distribution of electrons round impurities in monovalent metals, Philos. Mag., Volume 43 (1952) no. 337, pp. 153-189

[4] J. Friedel On some electrical and magnetic properties of metallic solid solutions, Can. J. Phys., Volume 34 (1956) no. 12A, pp. 1190-1211 | DOI

[5] J. Friedel Sur la structure électronique des métaux et alliages de transition et des métaux lourds, J. Phys. Radium, Volume 19 (1958) no. 6, pp. 573-581 | DOI

[6] J. Friedel Metallic alloys, Nuovo Cimento, Volume 2 (1958), p. 287 (lectures notes at the 1956 Varenna summer school)

[7] P. de Faget de Casteljau; J. Friedel Etude de la résistivité et du pouvoir thermoélectrique des impuretés dissoutes dans les métaux nobles, J. Phys. Radium, Volume 17 (1956) no. 1, pp. 27-32 | DOI

[8] A. Blandin; J. Friedel Propriétés magnétiques des alliages dilués. Interactions magnétiques et antiferromagnétisme dans les alliages du type métal noble-métal de transition, J. Phys. Radium, Volume 20 (1959) no. 2, pp. 160-168 | DOI

[9] E. Daniel Effet des impuretés sur la densité électronique dans les métaux. I, J. Phys. Radium, Volume 20 (1959) no. 10, pp. 769-783 | DOI

[10] E. Daniel Effet des impuretés sur la densité électronique dans les métaux. II, J. Phys. Radium, Volume 20 (1959) no. 11, pp. 849-859 | DOI

[11] C.F. Napoli; G. Ratto; G. Morandi Theoretical Review of the Friedel–Anderson Model and an Essay on the Dynamics of Contemporary Research, Editrice Universitaria, Ferrara, 1981

[12] G. Morandi Dynamics and development of the Friedel–Anderson model. A study in the sociology of modern physics, Eur. J. Phys., Volume 5 (1984) no. 2, p. 120 http://stacks.iop.org/0143-0807/5/i=2/a=011

[13] M.D. Daybell; W.A. Steyert Localized magnetic impurity states in metals: Some experimental relationships, Rev. Mod. Phys., Volume 40 (1968), pp. 380-389 | DOI

[14] J. Kondo Resistance minimum in dilute magnetic alloys, Prog. Theor. Phys., Volume 32 (1964) no. 1, pp. 37-49 http://ptp.oxfordjournals.org/content/32/1/37.full.pdf+html http://ptp.oxfordjournals.org/content/32/1/37.abstract

[15] B. Coqblin; A. Blandin Stabilité des moments magnétiques localisés dans les métaux, Adv. Phys., Volume 17 (1968) no. 67, pp. 281-366 | DOI

[16] B. Coqblin; J.R. Schrieffer Exchange interaction in alloys with cerium impurities, Phys. Rev., Volume 185 (1969), pp. 847-853 | DOI

[17] M.-T. Béal-Monod; R.A. Weiner Negative magnetoresistivity in dilute alloys, Phys. Rev., Volume 170 (1968), pp. 552-559 | DOI

[18] P. Monod Magnetic field dependence of the Kondo resistivity minimum in CuFe and CuMn alloys, Phys. Rev. Lett., Volume 19 (1967), pp. 1113-1117 | DOI

[19] H. Alloul Susceptibility and electron-spin relaxation of Fe in Cu below TK: A NMR study of 63Cu satellites, Phys. Rev. Lett., Volume 35 (1975), pp. 460-463 | DOI

[20] J. Friedel Concept de niveau lié virtuel, J. Phys. Radium, Volume 23 (1962) no. 10, pp. 692-700 | DOI

[21] A. Blandin Magnetic impurities in metals, J. Appl. Phys., Volume 39 (1968), p. 1285

[22] P.W. Anderson Localized magnetic states in metals, Phys. Rev., Volume 124 (1961), pp. 41-53 | DOI

[23] P.W. Anderson Local moments and localized states (Nobel lecture, 1977), Nobel Lectures, Physics 1971–1980, World Scientific, Singapore, 1992

[24] A. Hewson The Kondo Problem to Heavy Fermions, Cambridge University Press, Cambridge, UK, 1993

[25] P. Nozières A ‘Fermi-liquid’ description of the Kondo problem at low temperatures, J. Low Temp. Phys., Volume 17 (1974), p. 31

[26] K. Yosida; K. Yamada Perturbation expansion for the Anderson hamiltonian. III, Prog. Theor. Phys., Volume 53 (1975) no. 5, pp. 1286-1301 http://ptp.oxfordjournals.org/content/53/5/1286.full.pdf+html http://ptp.oxfordjournals.org/content/53/5/1286.abstract | DOI

[27] J.R. Schrieffer; P.A. Wolff Relation between the Anderson and Kondo hamiltonians, Phys. Rev., Volume 149 (1966), pp. 491-492 | DOI

[28] D.C. Langreth Friedel sum rule for Anderson's model of localized impurity states, Phys. Rev., Volume 150 (1966), pp. 516-518 | DOI

[29] C. Mora; C.P. Moca; J. von Delft; G. Zaránd Fermi-liquid theory for the single-impurity Anderson model, Phys. Rev. B, Volume 92 (2015) | DOI

[30] T.A. Costi; A.C. Hewson; V. Zlatic Transport coefficients of the Anderson model via the numerical renormalization group, J. Phys. Condens. Matter, Volume 6 (1994) no. 13, p. 2519 http://stacks.iop.org/0953-8984/6/i=13/a=013

[31] D.E. Logan; M.P. Eastwood; M.A. Tusch A local moment approach to the Anderson model, J. Phys. Condens. Matter, Volume 10 (1998) no. 12, p. 2673 http://stacks.iop.org/0953-8984/10/i=12/a=009

[32] A.A. Abrikosov On the anomalous temperature dependence of the resistivity of non-magnetic metals with a weak concentration of magnetic impurities, Sov. Phys. JETP, Volume 21 (1965), p. 660

[33] H. Suhl Dispersion theory of the Kondo effect, Phys. Rev., Volume 138 (1965), p. A515-A523 | DOI

[34] Y. Nagaoka Self-consistent treatment of Kondo's effect in dilute alloys, Phys. Rev., Volume 138 (1965), p. A1112-A1120 | DOI

[35] M. Kastner Artificial atoms, Phys. Today ( January 1993 ), p. 24

[36] Y. Meir; N.S. Wingreen Landauer formula for the current through an interacting electron region, Phys. Rev. Lett., Volume 68 (1992), pp. 2512-2515 | DOI

[37] L.I. Glazman; M.E. Raikh Resonant Kondo transparency of a barrier with quasilocal impurity states, Sov. Phys. JETP, Volume 47 (1988), p. 452

[38] T.K. Ng; P.A. Lee On-site Coulomb repulsion and resonant tunneling, Phys. Rev. Lett., Volume 61 (1988), pp. 1768-1771 | DOI

[39] O. Gunnarsson; K. Schönhammer Photoemission from Ce compounds: exact model calculation in the limit of large degeneracy, Phys. Rev. Lett., Volume 50 (1983), pp. 604-607 | DOI

[40] D. Goldhaber-Gordon; H. Shtrikman; D. Mahalu; D. Abusch-Magder; U. Meirav; M.A. Kastner Kondo effect in a single-electron transistor, Nature, Volume 391 (1998), pp. 156-159 | arXiv | DOI

[41] D. Goldhaber-Gordon; J. Göres; M.A. Kastner; H. Shtrikman; D. Mahalu; U. Meirav From the Kondo regime to the mixed-valence regime in a single-electron transistor, Phys. Rev. Lett., Volume 81 (1998), pp. 5225-5228 | DOI

[42] S.M. Cronenwett; T.H. Oosterkamp; L.P. Kouwenhoven A tunable Kondo effect in quantum dots, Science, Volume 281 (1998), p. 540 | arXiv | DOI

[43] F. Simmel; R.H. Blick; J.P. Kotthaus; W. Wegscheider; M. Bichler Anomalous Kondo effect in a quantum dot at nonzero bias, Phys. Rev. Lett., Volume 83 (1999), pp. 804-807 | DOI

[44] U. Gerland; J. von Delft; T.A. Costi; Y. Oreg Transmission phase shift of a quantum dot with Kondo correlations, Phys. Rev. Lett., Volume 84 (2000), pp. 3710-3713 | DOI

[45] Y. Ji; M. Heiblum; D. Sprinzak; D. Mahalu; H. Shtrikman Phase evolution in a Kondo-correlated system, Science, Volume 290 (2000) no. 5492, pp. 779-783 http://www.sciencemag.org/content/290/5492/779.full.pdf http://www.sciencemag.org/content/290/5492/779.abstract | DOI

[46] S. Takada; C. Bäuerle; M. Yamamoto; K. Watanabe; S. Hermelin; T. Meunier; A. Alex; A. Weichselbaum; J. von Delft; A. Ludwig; A.D. Wieck; S. Tarucha Transmission phase in the Kondo regime revealed in a two-path interferometer, Phys. Rev. Lett., Volume 113 (2014) | DOI

[47] A. Georges Dynamical mean-field theory: materials from an atomic viewpoint beyond the Landau paradigm, DMFT at 25: Infinite Dimensions, Springer, Berlin, 2014 http://www.cond-mat.de/events/correl14/manuscripts/

[48] A. Georges; G. Kotliar Hubbard model in infinite dimensions, Phys. Rev. B, Volume 45 (1992), pp. 6479-6483

[49] A. Georges; G. Kotliar; W. Krauth; M.J. Rozenberg Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions, Rev. Mod. Phys., Volume 68 (1996), pp. 13-125

[50] E. Gull, A.J. Millis, A.I. Lichtenstein, A.N. Rubtsov, M. Troyer, P. Werner, Continuous-time Monte-Carlo methods for quantum impurity models.

[51] O. Parcollet; M. Ferrero; T. Ayral; H. Hafermann; I. Krivenko; L. Messio; P. Seth TRIQS: a toolbox for research on interacting quantum systems, Comput. Phys. Commun., Volume 196 (2015), pp. 398-415 http://www.sciencedirect.com/science/article/pii/S0010465515001666 | DOI

[52] The ALPS project (Algorithms Libraries for Physics Simulations) http://alps.comp-phys.org/

[53] W. Metzner; D. Vollhardt Correlated lattice fermions in d= dimensions, Phys. Rev. Lett., Volume 62 (1989), p. 324

[54] A. Georges Thinking locally: reflections on dynamical mean-field theory from a high-temperature/high-energy perspective, Ann. Phys., Volume 523 (2011), pp. 672-681 | arXiv | DOI

[55] W.F. Brinkman; T.M. Rice Application of Gutzwiller's variational method to the metal-insulator transition, Phys. Rev. B, Volume 2 (1970), pp. 4302-4304 | DOI

[56] M. Imada; A. Fujimori; Y. Tokura Metal-insulator transitions, Rev. Mod. Phys., Volume 70 (1998), p. 1039

[57] G. Moeller; Q. Si; G. Kotliar; M. Rozenberg; D.S. Fisher Critical behavior near the Mott transition in the Hubbard model, Phys. Rev. Lett., Volume 74 (1995), pp. 2082-2085 | DOI

[58] G. Kotliar Landau theory of the Mott transition in the fully frustrated Hubbard model in infinite dimensions, Eur. Phys. J. B, Volume 11 (1999) no. 1, pp. 27-39 | DOI

[59] K. Held; R. Peters; A. Toschi Poor man's understanding of kinks originating from strong electronic correlations, Phys. Rev. Lett., Volume 110 (2013) | DOI

[60] X. Deng; J. Mravlje; R. Žitko; M. Ferrero; G. Kotliar; A. Georges How bad metals turn good: Spectroscopic signatures of resilient quasiparticles, Phys. Rev. Lett., Volume 110 (2013) | DOI

[61] A. Georges; L. de' Medici; J. Mravlje Strong electronic correlations from Hund's coupling, Annu. Rev. Condens. Matter Phys., Volume 4 (2013), p. 137 | arXiv

[62] G. Kotliar Driving the electron over the edge, Science, Volume 302 (2003), p. 67

[63] G. Kotliar; D. Vollhardt Strongly correlated electron materials: insights from dynamical mean field theory, Phys. Today, Volume March (2004), p. 53

[64] J.S. Langer; V. Ambegaokar Friedel sum rule for a system of interacting electrons, Phys. Rev., Volume 121 (1961), pp. 1090-1092 | DOI

[65] A. Georges; O. Parcollet; S. Sachdev Quantum fluctuations of a nearly critical Heisenberg spin glass, Phys. Rev. B, Volume 63 (2001)

Cited by Sources:

Comments - Policy