[Comment la diffraction limite l'opacité ultrasonore d'une plaque phononique composée d'un réseau périodique de fentes résonantes]
Nous étudions expérimentalement le rôle joué par la diffraction dans le phénomène d'isolation acoustique que présente une plaque phononique perforée périodiquement par des fentes sub-longueur d'onde et plongée dans l'eau. Nous avons effectué des mesures de transmission dans le domaine ultrasonore pour toutes les directions de propagation dans le but de vérifier l'omnidirectionalité de l'isolation acoustique. Alors qu'une fente se comporte comme un résonateur de Fabry–Pérot dans le domaine de fréquence considéré, le couplage des fentes voisines produit une bande fréquentielle d'atténuation centrée sur la fréquence de résonance et qui est quasiment indépendante de l'angle d'incidence. Au-delà d'un angle d'incidence de 45 degrés, cependant, nous observons l'apparition d'un rayonnement diffracté qui limite l'atténuation ultrasonore. Nous montrons que ce rayonnement indésirable provient de la diffraction associée au réseau de fentes.
We explore experimentally the role played by diffraction in the phenomenon of acoustic shielding provided by a plate that is periodically perforated with subwavelength slits and immersed in water. We carried out ultrasonic transmission measurements for all directions of propagation in order to check the omnidirectionality of acoustic shielding. While a single slit acts as a Fabry–Perot resonator in the frequency range of interest, the coupling between adjacent slits provides an attenuation frequency band centered around the resonant frequency that is mostly independent of the angle of incidence. Beyond the incident angle of 45 degrees, however, we observe the appearance of scattered radiation that limits the attenuation of ultrasound. This spurious scattering is shown to arise from diffraction by the grating of slits.
Mot clés : Résonateur acoustique de Fabry–Perot, Opacité acoustique, Diffraction, Métamatériaux acoustiques
Aliyasin Elayouch 1 ; Mahmoud Addouche 1 ; Philippe Lasaygues 2 ; Younes Achaoui 2 ; Morvan Ouisse 1 ; Abdelkrim Khelif 1
@article{CRPHYS_2016__17_5_518_0, author = {Aliyasin Elayouch and Mahmoud Addouche and Philippe Lasaygues and Younes Achaoui and Morvan Ouisse and Abdelkrim Khelif}, title = {How diffraction limits ultrasonic screening in phononic plate composed of a periodic array of resonant slits}, journal = {Comptes Rendus. Physique}, pages = {518--523}, publisher = {Elsevier}, volume = {17}, number = {5}, year = {2016}, doi = {10.1016/j.crhy.2016.02.006}, language = {en}, }
TY - JOUR AU - Aliyasin Elayouch AU - Mahmoud Addouche AU - Philippe Lasaygues AU - Younes Achaoui AU - Morvan Ouisse AU - Abdelkrim Khelif TI - How diffraction limits ultrasonic screening in phononic plate composed of a periodic array of resonant slits JO - Comptes Rendus. Physique PY - 2016 SP - 518 EP - 523 VL - 17 IS - 5 PB - Elsevier DO - 10.1016/j.crhy.2016.02.006 LA - en ID - CRPHYS_2016__17_5_518_0 ER -
%0 Journal Article %A Aliyasin Elayouch %A Mahmoud Addouche %A Philippe Lasaygues %A Younes Achaoui %A Morvan Ouisse %A Abdelkrim Khelif %T How diffraction limits ultrasonic screening in phononic plate composed of a periodic array of resonant slits %J Comptes Rendus. Physique %D 2016 %P 518-523 %V 17 %N 5 %I Elsevier %R 10.1016/j.crhy.2016.02.006 %G en %F CRPHYS_2016__17_5_518_0
Aliyasin Elayouch; Mahmoud Addouche; Philippe Lasaygues; Younes Achaoui; Morvan Ouisse; Abdelkrim Khelif. How diffraction limits ultrasonic screening in phononic plate composed of a periodic array of resonant slits. Comptes Rendus. Physique, Volume 17 (2016) no. 5, pp. 518-523. doi : 10.1016/j.crhy.2016.02.006. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2016.02.006/
[1] Band structure of elastic waves in two dimensional systems, Solid State Commun., Volume 86 (1993) no. 3, pp. 141-143 http://www.sciencedirect.com/science/article/pii/003810989390888T (00517) | DOI
[2] Acoustic band structure of periodic elastic composites, Phys. Rev. Lett., Volume 71 (1993) no. 13, pp. 2022-2025 (01364) | DOI
[3] Acoustic metamaterial panels for sound attenuation in the 50–1000 Hz regime, Appl. Phys. Lett., Volume 96 (2010) no. 4 http://scitation.aip.org/content/aip/journal/apl/96/4/10.1063/1.3299007 | DOI
[4] Low-frequency narrow-band acoustic filter with large orifice, Appl. Phys. Lett., Volume 103 (2013) no. 1 http://apl.aip.org/resource/1/applab/v103/i1/p011903_s1 | DOI
[5] Dark acoustic metamaterials as super absorbers for low-frequency sound, Nat. Commun., Volume 3 (2012), p. 756 | DOI
[6] In-plane confinement and waveguiding of surface acoustic waves through line defects in pillars-based phononic crystal, AIP Adv., Volume 1 (2011) no. 4 http://scitation.aip.org/content/aip/journal/adva/1/4/10.1063/1.3675923 | DOI
[7] Locally resonant surface acoustic wave band gaps in a two-dimensional phononic crystal of pillars on a surface, Phys. Rev. B, Volume 81 (2010) no. 21 | DOI
[8] Surface acoustic wave trapping in a periodic array of mechanical resonators, Appl. Phys. Lett., Volume 89 (2006) no. 8 http://scitation.aip.org/content/aip/journal/apl/89/8/10.1063/1.2338523 | DOI
[9] Influence of the hole filling fraction on the ultrasonic transmission through plates with subwavelength aperture arrays, Appl. Phys. Lett., Volume 93 (2008) no. 1 http://apl.aip.org/resource/1/applab/v93/i1/p011907_s1 | DOI
[10] Acoustical mechanism for the extraordinary sound transmission through subwavelength apertures, Appl. Phys. Lett., Volume 96 (2010) no. 13 http://apl.aip.org/resource/1/applab/v96/i13/p134104_s1 | DOI
[11] Complete transmission through a periodically perforated rigid slab, J. Acoust. Soc. Am., Volume 121 (2007) no. 6, pp. 3288-3299 http://link.aip.org/link/?JAS/121/3288/1 | DOI
[12] Extraordinary acoustic reflection enhancement by acoustically transparent thin plates, Appl. Phys. Lett., Volume 100 (2012) no. 9 http://apl.aip.org/resource/1/applab/v100/i9/p091904_s1 | DOI
[13] Sound transmission through perforated plates with subwavelength hole arrays: a rigid-solid model, Wave Motion, Volume 48 (2011) no. 3, pp. 235-242 http://www.sciencedirect.com/science/article/pii/S0165212510001022 | DOI
[14] Theory of resonant acoustic transmission through subwavelength apertures, Phys. Rev. Lett., Volume 101 (2008) no. 1 | DOI
[15] Tunable transmission spectra of acoustic waves through double phononic crystal slabs, Appl. Phys. Lett., Volume 92 (2008) no. 10, p. 103504 http://apl.aip.org/resource/1/applab/v92/i10/p103504_s1 | DOI
[16] Acoustic resonant transmission through acoustic gratings with very narrow slits: multiple-scattering numerical simulations, Phys. Rev. B, Volume 71 (2005) no. 24 | DOI
[17] Extraordinary acoustic transmission through a 1d grating with very narrow apertures, Phys. Rev. Lett., Volume 99 (2007) | DOI
[18] Acoustic analog of electromagnetically induced transparency in periodic arrays of square rods, Phys. Rev. E, Stat. Nonlinear Soft Matter Phys., Volume 82 (2010) no. 2 Pt 2
[19] Extraordinary acoustic shielding by a monolayer of periodical polymethyl methacrylate cylinders immersed in water, J. Appl. Phys., Volume 110 (2011) no. 1 http://jap.aip.org/resource/1/japiau/v110/i1/p014509_s1 | DOI
[20] High sound screening in low impedance slit arrays, New J. Phys., Volume 13 (2011) no. 4 http://iopscience.iop.org/1367-2630/13/4/043009 | DOI
[21] Broadband transmission enhancement of acoustic waves through a hybrid grating, Appl. Phys. Lett., Volume 100 (2012) no. 19, p. 191908 http://apl.aip.org/resource/1/applab/v100/i19/p191908_s1 | DOI
[22] Experimental evidence of ultrasonic opacity using the coupling of resonant cavities in a phononic membrane, Appl. Phys. Lett., Volume 103 (2013) no. 8 http://scitation.aip.org/content/aip/journal/apl/103/8/10.1063/1.4819021 | DOI
[23] Membrane-type acoustic metamaterial with negative dynamic mass, Phys. Rev. Lett., Volume 101 (2008) | DOI
[24] Phononic crystal diffraction gratings, J. Appl. Phys., Volume 111 (2012) no. 3 | DOI
[25] Blazed phononic crystal grating, Appl. Phys. Lett., Volume 102 (2013) no. 3 | DOI
[26] Fundamentals of Acoustics, Vol. 1, 1999
[27] Ondes élastiques dans les solides, Wiley, New York, 1999
Cité par Sources :
Commentaires - Politique