Comptes Rendus
Harvesting vibrations via 3D phononic isolators
[Extraction d'énergie vibrationnelle par des isolants phononiques à trois dimensions]
Comptes Rendus. Physique, Volume 17 (2016) no. 5, pp. 512-517.

Nous rapportons l'existence de bandes interdites phononiques unidirectionnelles qui peuvent se déployer sur des régions étendues de la zone de Brillouin et peuvent être appliquées au piégeage d'ondes (acoustiques) élastiques dans des structures multicouches tridimensionnelles convenablement conçues. Les isolants phononiques opèrent par transmission asymétrique d'ondes à travers une structure phononique cristallographique présentant une symétrie miroir brisée. Du fait de l'utilisation de matériaux sans perte dans le cristal, le taux d'absorption est considérablement accru quand l'isolant proposé est placé près d'une cellule extractrice d'énergie vibratoire.

We report on the existence of unidirectional phononic band gaps that may span over extended regions of the Brillouin zone and can find application in trapping elastic (acoustic) waves in properly designed multilayered 3D structures. Phononic isolators operate as a result of asymmetrical wave transmission through a slab of a crystallographic phononic structure with broken mirror symmetry. Due to the use of lossless materials in the crystal, the absorption rate is dramatically enhanced when the proposed isolator is placed next to a vibrational harvesting cell.

Publié le :
DOI : 10.1016/j.crhy.2016.02.008
Keywords: Phononic crystals, Phononic shields, Phononic diode, Trapping vibrations
Mot clés : Cristaux phononiques, Boucliers phononiques, Diode phononique, Piégeage de vibrations
Ioannis E. Psarobas 1 ; Vassilios Yannopapas 2 ; Theodore E. Matikas 1

1 Dept. of Materials Science & Engineering, University of Ioannina, 45110 Ioannina, Greece
2 Dept. of Physics, National Technical University of Athens, 15780 Athens, Greece
@article{CRPHYS_2016__17_5_512_0,
     author = {Ioannis E. Psarobas and Vassilios Yannopapas and Theodore E. Matikas},
     title = {Harvesting vibrations via {3D} phononic isolators},
     journal = {Comptes Rendus. Physique},
     pages = {512--517},
     publisher = {Elsevier},
     volume = {17},
     number = {5},
     year = {2016},
     doi = {10.1016/j.crhy.2016.02.008},
     language = {en},
}
TY  - JOUR
AU  - Ioannis E. Psarobas
AU  - Vassilios Yannopapas
AU  - Theodore E. Matikas
TI  - Harvesting vibrations via 3D phononic isolators
JO  - Comptes Rendus. Physique
PY  - 2016
SP  - 512
EP  - 517
VL  - 17
IS  - 5
PB  - Elsevier
DO  - 10.1016/j.crhy.2016.02.008
LA  - en
ID  - CRPHYS_2016__17_5_512_0
ER  - 
%0 Journal Article
%A Ioannis E. Psarobas
%A Vassilios Yannopapas
%A Theodore E. Matikas
%T Harvesting vibrations via 3D phononic isolators
%J Comptes Rendus. Physique
%D 2016
%P 512-517
%V 17
%N 5
%I Elsevier
%R 10.1016/j.crhy.2016.02.008
%G en
%F CRPHYS_2016__17_5_512_0
Ioannis E. Psarobas; Vassilios Yannopapas; Theodore E. Matikas. Harvesting vibrations via 3D phononic isolators. Comptes Rendus. Physique, Volume 17 (2016) no. 5, pp. 512-517. doi : 10.1016/j.crhy.2016.02.008. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2016.02.008/

[1] B. Li; L. Wang; G. Casati Thermal diode: rectification of heat flux, Phys. Rev. Lett., Volume 93 (2004) | DOI

[2] B. Li; J. Lan; L. Wang Interface thermal resistance between dissimilar anharmonic lattices, Phys. Rev. Lett., Volume 95 (2005) | DOI

[3] M. Sigalas; M. Kushwaha; E.N. Economou; M. Kafesaki; I.E. Psarobas; W. Steurer Classical vibrational modes in phononic lattices: theory and experiment, Z. Kristallogr., Volume 220 (2005) no. 9–10, pp. 765-809 | DOI

[4] B. Liang; X.S. Guo; J. Tu; D. Zhang; J.C. Cheng An acoustic rectifier, Nat. Mater., Volume 9 (2010), pp. 989-992 | DOI

[5] X.-F. Li; X. Ni; L. Feng; M.-H. Lu; C. He; Y.-F. Chen Tunable unidirectional sound propagation through a sonic-crystal-based acoustic diode, Phys. Rev. Lett., Volume 106 (2011) | DOI

[6] M. Maldovan Sound and heat revolutions in phononics, Nature, Volume 503 (2013) no. 14, pp. 209-217 | DOI

[7] S. Mujumdar; H. Ramachandran Use of a graded gain random amplifier as an optical diode, Opt. Lett., Volume 26 (2001) no. 12, pp. 929-931 | DOI

[8] B. Li; L. Wang; G. Casati All-optical diode in a periodically-poled lithium niobate waveguide, Appl. Phys. Lett., Volume 79 (2001), pp. 314-316 | DOI

[9] R.L. Espinola; T. Izuhara; M.-C. Tsai; R.M. Osgood; H. Dötsch Magneto-optical nonreciprocal phase shift in garnet/silicon-on-insulator waveguides, Opt. Lett., Volume 29 (2004) no. 9, pp. 941-943 | DOI

[10] V. Yannopapas One-way photonic band gaps and optical isolation with three-dimensional photonic crystals of low symmetry, Phys. Rev. A, Volume 88 (2013) | DOI

[11] V. Yannopapas Unidirectional wave propagation in low-symmetric colloidal photonic-crystal heterostructures, Nanomaterials, Volume 5 (2015), pp. 376-385 | DOI

[12] I.E. Psarobas; D.A. Exarchos; T.E. Matikas Birefringent phononic structures, AIP Adv., Volume 4 (2014), p. 124307 | DOI

[13] I.E. Psarobas; D.A. Exarchos; T.E. Matikas Chiral phononic structures, Proc. SPIE, Volume 9436 (2015), p. 94360Q | DOI

[14] I.E. Psarobas; N. Stefanou; A. Modinos Scattering of elastic waves by periodic arrays of spherical bodies, Phys. Rev. B, Volume 62 (2000) no. 1, pp. 278-291 | DOI

[15] R. Sainidou; N. Stefanou; I.E. Psarobas; A. Modinos A layer-multiple-scattering method for phononic crystals and heterostructures of such, Comput. Phys. Commun., Volume 166 (2005) no. 3, pp. 197-240 | DOI

[16] G. Gantzounis; N. Papanikolaou; N. Stefanou Multiple-scattering calculations for layered phononic structures of nonspherical particles, Phys. Rev. B, Volume 83 (2011) | DOI

[17] R. Sainidou; N. Stefanou; I.E. Psarobas; A. Modinos The layer multiple-scattering method applied to phononic crystals, Z. Kristallogr., Volume 220 (2005) no. 9–10, pp. 848-858 | DOI

[18] Z. Yu; S. Fan Complete optical isolation created by indirect interband photonic transitions, Nat. Photonics, Volume 3 (2009), pp. 91-94 | DOI

[19] E. Kallos; V. Yannopapas; D.J. Photinos Enhanced light absorption using optical diodes based on cholesteric liquid crystals, Opt. Mater. Express, Volume 2 (2012) no. 10, pp. 1449-1461 | DOI

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Phononic crystals: Harnessing the propagation of sound, elastic waves, and phonons

Vincent Laude

C. R. Phys (2016)


Phoxonic crystals and cavity optomechanics

Bahram Djafari-Rouhani; Said El-Jallal; Yan Pennec

C. R. Phys (2016)


Topological wave insulators: a review

Farzad Zangeneh-Nejad; Andrea Alù; Romain Fleury

C. R. Phys (2020)