We report on the existence of unidirectional phononic band gaps that may span over extended regions of the Brillouin zone and can find application in trapping elastic (acoustic) waves in properly designed multilayered 3D structures. Phononic isolators operate as a result of asymmetrical wave transmission through a slab of a crystallographic phononic structure with broken mirror symmetry. Due to the use of lossless materials in the crystal, the absorption rate is dramatically enhanced when the proposed isolator is placed next to a vibrational harvesting cell.
Nous rapportons l'existence de bandes interdites phononiques unidirectionnelles qui peuvent se déployer sur des régions étendues de la zone de Brillouin et peuvent être appliquées au piégeage d'ondes (acoustiques) élastiques dans des structures multicouches tridimensionnelles convenablement conçues. Les isolants phononiques opèrent par transmission asymétrique d'ondes à travers une structure phononique cristallographique présentant une symétrie miroir brisée. Du fait de l'utilisation de matériaux sans perte dans le cristal, le taux d'absorption est considérablement accru quand l'isolant proposé est placé près d'une cellule extractrice d'énergie vibratoire.
Mot clés : Cristaux phononiques, Boucliers phononiques, Diode phononique, Piégeage de vibrations
Ioannis E. Psarobas 1; Vassilios Yannopapas 2; Theodore E. Matikas 1
@article{CRPHYS_2016__17_5_512_0, author = {Ioannis E. Psarobas and Vassilios Yannopapas and Theodore E. Matikas}, title = {Harvesting vibrations via {3D} phononic isolators}, journal = {Comptes Rendus. Physique}, pages = {512--517}, publisher = {Elsevier}, volume = {17}, number = {5}, year = {2016}, doi = {10.1016/j.crhy.2016.02.008}, language = {en}, }
Ioannis E. Psarobas; Vassilios Yannopapas; Theodore E. Matikas. Harvesting vibrations via 3D phononic isolators. Comptes Rendus. Physique, Volume 17 (2016) no. 5, pp. 512-517. doi : 10.1016/j.crhy.2016.02.008. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2016.02.008/
[1] Thermal diode: rectification of heat flux, Phys. Rev. Lett., Volume 93 (2004) | DOI
[2] Interface thermal resistance between dissimilar anharmonic lattices, Phys. Rev. Lett., Volume 95 (2005) | DOI
[3] Classical vibrational modes in phononic lattices: theory and experiment, Z. Kristallogr., Volume 220 (2005) no. 9–10, pp. 765-809 | DOI
[4] An acoustic rectifier, Nat. Mater., Volume 9 (2010), pp. 989-992 | DOI
[5] Tunable unidirectional sound propagation through a sonic-crystal-based acoustic diode, Phys. Rev. Lett., Volume 106 (2011) | DOI
[6] Sound and heat revolutions in phononics, Nature, Volume 503 (2013) no. 14, pp. 209-217 | DOI
[7] Use of a graded gain random amplifier as an optical diode, Opt. Lett., Volume 26 (2001) no. 12, pp. 929-931 | DOI
[8] All-optical diode in a periodically-poled lithium niobate waveguide, Appl. Phys. Lett., Volume 79 (2001), pp. 314-316 | DOI
[9] Magneto-optical nonreciprocal phase shift in garnet/silicon-on-insulator waveguides, Opt. Lett., Volume 29 (2004) no. 9, pp. 941-943 | DOI
[10] One-way photonic band gaps and optical isolation with three-dimensional photonic crystals of low symmetry, Phys. Rev. A, Volume 88 (2013) | DOI
[11] Unidirectional wave propagation in low-symmetric colloidal photonic-crystal heterostructures, Nanomaterials, Volume 5 (2015), pp. 376-385 | DOI
[12] Birefringent phononic structures, AIP Adv., Volume 4 (2014), p. 124307 | DOI
[13] Chiral phononic structures, Proc. SPIE, Volume 9436 (2015), p. 94360Q | DOI
[14] Scattering of elastic waves by periodic arrays of spherical bodies, Phys. Rev. B, Volume 62 (2000) no. 1, pp. 278-291 | DOI
[15] A layer-multiple-scattering method for phononic crystals and heterostructures of such, Comput. Phys. Commun., Volume 166 (2005) no. 3, pp. 197-240 | DOI
[16] Multiple-scattering calculations for layered phononic structures of nonspherical particles, Phys. Rev. B, Volume 83 (2011) | DOI
[17] The layer multiple-scattering method applied to phononic crystals, Z. Kristallogr., Volume 220 (2005) no. 9–10, pp. 848-858 | DOI
[18] Complete optical isolation created by indirect interband photonic transitions, Nat. Photonics, Volume 3 (2009), pp. 91-94 | DOI
[19] Enhanced light absorption using optical diodes based on cholesteric liquid crystals, Opt. Mater. Express, Volume 2 (2012) no. 10, pp. 1449-1461 | DOI
Cited by Sources:
Comments - Policy