Colloidal assembly represents a powerful method for the fabrication of functional materials. In this article, we describe how acoustic radiation forces can guide the assembly of colloidal particles into structures that serve as microscopic elements in novel acoustic metadevices or act as phononic crystals. Using a simple three-dimensional orthogonal system, we show that a diversity of colloidal structures with orthorhombic symmetry can be assembled with megahertz-frequency (MHz) standing pressure waves. These structures allow rapid tuning of acoustic properties and provide a new platform for dynamic metamaterial applications.
L'assemblée colloïdale représente une méthode puissante pour la fabrication de matériaux fonctionnels. Dans cet article, nous décrivons comment les forces de rayonnement acoustique peuvent guider l'assemblage de particules colloïdales dans des structures qui servent d'éléments microscopiques dans les dispositifs à base de méta-matériaux acoustiques ou se comportent comme des cristaux phononiques. En utilisant un simple système orthogonal tridimensionnel, nous montrons que nombre de structures colloïdales à symétrie orthorhombique peuvent être assemblées, avec des ondes de pression stationnaires fonctionnant à des fréquences de l'ordre de quelques mégahertz (MHz). Ces structures permettent un ajustement rapide des propriétés acoustiques et fournissent une nouvelle plate-forme pour les applications de métamatériaux dynamiques.
Mot clés : Cristaux colloïdaux, Assemblée acoustique, Cristaux phononiques, Métamatériaux acoustiques
Mihai Caleap 1; Bruce W. Drinkwater 1
@article{CRPHYS_2016__17_5_501_0, author = {Mihai Caleap and Bruce W. Drinkwater}, title = {Three-dimensional ultrasonic colloidal crystals}, journal = {Comptes Rendus. Physique}, pages = {501--511}, publisher = {Elsevier}, volume = {17}, number = {5}, year = {2016}, doi = {10.1016/j.crhy.2016.02.007}, language = {en}, }
Mihai Caleap; Bruce W. Drinkwater. Three-dimensional ultrasonic colloidal crystals. Comptes Rendus. Physique, Volume 17 (2016) no. 5, pp. 501-511. doi : 10.1016/j.crhy.2016.02.007. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2016.02.007/
[1] Inhibited spontaneous emission in solid-state physics and electronics, Phys. Rev. Lett., Volume 58 (1987) no. 20, pp. 2059-2062 | DOI
[2] Superlenses to overcome the diffraction limit, Nat. Mater., Volume 7 (2008) no. 6, pp. 435-441 | DOI
[3] Analogue transformations in physics and their application to acoustics, Sci. Rep., Volume 3 (2013), p. 2009 | DOI
[4] Broadband acoustic cloak for ultrasound waves, Phys. Rev. Lett., Volume 106 (2011) no. 2 | DOI
[5] Metamaterial based embedded acoustic filters for structural applications, AIP Adv., Volume 3 (2013) no. 9 | DOI
[6] An acoustic rectifier, Nat. Mater., Volume 9 (2010) no. 12, pp. 989-992 | DOI
[7] Acoustic diode: rectification of acoustic energy flux in one-dimensional systems, Phys. Rev. Lett., Volume 103 (2009) no. 10 | DOI
[8] Unidirectional acoustic transmission through a prism with near-zero refractive index, Appl. Phys. Lett., Volume 103 (2013) no. 5 | DOI
[9] Dark acoustic metamaterials as super absorbers for low-frequency sound, Nat. Commun., Volume 3 (2012), p. 756 | DOI
[10] Colloidal crystals, Contemp. Phys., Volume 24 (2006) no. 1, pp. 25-73 | DOI
[11] Observation and tuning of hypersonic bandgaps in colloidal crystals, Nat. Mater., Volume 5 (2006) no. 10, pp. 830-836 | DOI
[12] Acoustic properties of colloidal crystals, Phys. Rev. B, Condens. Matter, Volume 65 (2002) no. 6 | DOI
[13] Tailoring of phononic band structures in colloidal crystals, Phys. Rev. Lett., Volume 99 (2007) no. 20 | DOI
[14] Acoustically trapped colloidal crystals that are reconfigurable in real time, Proc. Natl. Acad. Sci. USA, Volume 111 (2014) no. 17, pp. 6226-6230 | DOI
[15] Radiation force on a spherical object in an axisymmetric wave field and its application to the calibration of high-frequency transducers, J. Acoust. Soc. Am., Volume 99 (1996) no. 2, p. 713 | DOI
[16] On the forces acting on a small particle in an acoustical field in an ideal fluid, Sov. Phys. Dokl., Volume 6 (1962), pp. 773-775
[17] Efficient counter-propagating wave acoustic micro-particle manipulation, Appl. Phys. Lett., Volume 101 (2012), p. 233501 | DOI
[18] Manipulation of particles in two dimensions using phase controllable ultrasonic standing waves, Proc. R. Soc. A, Math. Phys. Eng. Sci., Volume 468 (2011) no. 2138, pp. 337-360 | DOI
[19] Dexterous manipulation of microparticles using Bessel-function acoustic pressure fields, Appl. Phys. Lett., Volume 102 (2013), p. 123508 | DOI
[20] Sound and heat revolutions in phononics, Nature, Volume 503 (2013) no. 7475, pp. 209-217 | DOI
[21] et al. A one-dimensional optomechanical crystal with a complete phononic band gap, Nat. Commun., Volume 5 (2014), p. 4452 | DOI
[22] Bioinspiration and Biomimicry in Chemistry: Reverse-Engineering Nature (G. Swiegers, ed.), John Wiley & Sons, 2012
Cited by Sources:
Comments - Policy