The propagation of γ rays over very large distances provides new insights on the intergalactic medium and on fundamental physics. On their path to the Earth, γ rays can annihilate with diffuse infrared or optical photons of the intergalactic medium, producing pairs. The density of these photons is poorly determined by direct measurements due to significant galactic foregrounds. Studying the absorption of γ rays from extragalactic sources at different distances allows the density of low-energy diffuse photons to be measured. Gamma-ray propagation may also be affected by new phenomena predicted by extensions of the Standard Model of particle physics. Lorentz Invariance is violated in some models of Quantum Gravity, leading to an energy-dependent speed of light in vacuum. From differential time-of-flight measurements of the most distant γ-ray bursts and of flaring active galactic nuclei, lower bounds have been set on the energy scale of Quantum Gravity. Another effect that may alter γ-ray propagation is predicted by some models of String Theory, namely the mixing of the γ ray with a light fundamental boson called an “axion-like particle”, which does not interact with low-energy photons. Such a mixing would make the Universe more transparent to γ rays than what would otherwise be, in a sense it decreases the amount of modification to the spectrum that comes from the extragalactic background light. The present status of the search for all these phenomena in γ-ray astronomy is reviewed.
La propagation des photons γ sur de très grandes distances nous permet de sonder le milieu intergalactique et fournit des tests de physique fondamentale. Au cours de leur chemin vers la Terre, ceux-ci peuvent s'annihiler avec les photons infrarouges et optiques du milieu intergalactique, produisant ainsi des paires . L'absorption des photons γ émis par des sources extragalactiques à différentes distances permet de mesurer ce fond diffus, par ailleurs très mal connu par des mesures directes en raison des importants rayonnements d'avant-plan dus à la Galaxie. La propagation des photons γ peut aussi être affectée par de nouveaux phénomènes prédits par des extensions du modèle standard de la physique des particules. L'invariance de Lorentz est violée dans certains modèles de gravité quantique où la vitesse de la lumière dans le vide varie avec l'énergie du photon γ. Les mesures différentielles de temps de vol sur les sursauts γ et sur les éruptions de noyaux actifs de galaxie ont permis d'obtenir des bornes inférieures sur l'échelle d'énergie de la gravité quantique. Un autre effet pouvant affecter la propagation des photons γ est prédit par des modèles de la théorie des cordes. Il s'agit du mélange quantique entre le photon et une particule légère de type « axion », qui n'interagit pas avec les photons infrarouge et optiques. En diminuant dans les spectres l'empreinte de l'absorption par le fond diffus, ce mélange rendrait l'Univers plus transparent que prévu aux photons γ. L'article présente l'état actuel des recherches sur l'ensemble de ces phénomènes en astronomie γ
Mot clés : Rayons gamma, Fond extragalactique infrarouge et optique, Violation de l'invariance de Lorentz, Axions
Dieter Horns 1; Agnieszka Jacholkowska 2
@article{CRPHYS_2016__17_6_632_0, author = {Dieter Horns and Agnieszka Jacholkowska}, title = {Gamma rays as probes of the {Universe}}, journal = {Comptes Rendus. Physique}, pages = {632--648}, publisher = {Elsevier}, volume = {17}, number = {6}, year = {2016}, doi = {10.1016/j.crhy.2016.04.006}, language = {en}, }
Dieter Horns; Agnieszka Jacholkowska. Gamma rays as probes of the Universe. Comptes Rendus. Physique, Volume 17 (2016) no. 6, pp. 632-648. doi : 10.1016/j.crhy.2016.04.006. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2016.04.006/
[1] C. R. Physique, 17 (2016) no. 6, pp. 649-662 (in this issue)
[2] C. R. Physique, 17 (2016) no. 6, pp. 617-631 (in this issue)
[3] C. R. Physique, 17 (2016) no. 6, pp. 594-616 (in this issue)
[4] C. R. Physique, 16 (2015), pp. 641-660
[5] AIP Conf. Proc., 1505 (2012), p. 801
[6] et al. Mon. Not. R. Astron. Soc., 446 (2015), p. 2267
[7] Phys. Rev. D, 37 (1988), p. 1237
[8] Phys. Rev. D, 85 (2012)
[9] Z. Phys., 98 (1936), p. 714
[10] Astrophys. J., 771 (2013), p. 34
[11] Sov. Phys. JETP, 14 (1962), p. 393
[12] Phys. Rev., 155 (1967), p. 1404
[13] Astropart. Phys., 43 (2012), p. 112
[14] et al. Science, 338 (2012), p. 1190
[15] et al. Astron. Astrophys., 550 (2013), p. 4
[16] Astrophys. J., 752 (2012), p. 22
[17] Science, 328 (2010), p. 73
[18] Astron. Astrophys. Rev., 21 (2013), p. 62
[19] Astropart. Phys., 33 (2010), p. 81
[20] Phys. Rep., 402 (2004), p. 267
[21] Astron. Astrophys., 498 (2009), p. 25
[22] et al. Astrophys. J., 745 (2012), p. 166
[23] Mon. Not. R. Astron. Soc., 426 (2012), p. 1097
[24] Mon. Not. R. Astron. Soc., 420 (2012), p. 800
[25] et al. Astrophys. J., 470 (1996), p. 681
[26] Astrophys. J., 528 (2000), p. 74
[27] Mon. Not. R. Astron. Soc., 312 (2000), p. 9
[28] Astron. Astrophys., 355 (2000), p. 17
[29] et al. Astron. Astrophys., 384 (2002), p. 848
[30] et al. Astron. Astrophys., 407 (2003), p. 791
[31] et al. Astrophys. J. Suppl. Ser., 154 (2004), p. 87
[32] et al. Astrophys. J. Suppl. Ser., 154 (2004), p. 39
[33] et al. Astrophys. J. Suppl. Ser., 154 (2004), p. 70
[34] et al. Astron. Astrophys., 451 (2006), p. 417
[35] et al. Astron. J., 131 (2006), p. 250
[36] et al. Astron. Astrophys., 512 (2010), p. 78
[37] et al. Astron. Astrophys., 518 (2010), p. 30
[38] et al. Astrophys. J., 736 (2011), p. 80
[39] et al. Astrophys. J., 737 (2011), p. 2
[40] et al. Astron. Astrophys., 553 (2013), p. 132
[41] IAU Symp., 139 (1990), p. 257
[42] Astrophys. J., 508 (1998), p. 9
[43] et al. Astrophys. J., 508 (1998), p. 25
[44] et al. Astrophys. J., 544 (2000), p. 81
[45] Astrophys. J., 536 (2000), p. 550
[46] Astrophys. J., 545 (2000), p. 43
[47] et al. Astrophys. J., 626 (2005), p. 31
[48] et al. Astron. J., 120 (2000), p. 1153
[49] Astrophys. J., 571 (2002), p. 56
[50] Astrophys. J., 632 (2005), p. 713
[51] et al. Astron. Astrophys. Suppl. Ser., 127 (1998), p. 1
[52] Astrophys. J., 415 (1993), p. 71
[53] Nature, 369 (1994), p. 294
[54] et al. Astrophys. J., 445 (1995), p. 227
[55] et al. Astropart. Phys., 9 (1998), p. 97
[56] Astron. Astrophys., 371 (2001), p. 771
[57] Astrophys. J., 628 (2005), p. 617
[58] Nature, 440 (2006), p. 1018
[59] Astrophys. J., 618 (2005), p. 657
[60] Astrophys. J., 733 (2011), p. 77
[61] et al. Astrophys. J., 795 (2014), p. 91
[62] et al. Astron. Astrophys., 359 (2000), p. 419
[63] et al. Astrophys. J., 770 (2013), p. 77
[64] et al. Astrophys. J., 788 (2014), p. 158
[65] Astrophys. J., 698 (2009), p. 1761
[66] Astron. Astrophys., 471 (2007), p. 439
[67] Astrophys. J., 714 (2010), p. 157
[68] Astron. Astrophys., 522 (2010), p. 12
[69] Astron. Astrophys., 542 (2012), p. 59
[70] Astrophys. J., 772 (2013), p. 12
[71] Astrophys. J., 812 (2015), p. 60
[72] M. Planck, Mitt. Thermodyn., Folg. 5 (1899).
[73] Living Rev. Relativ., 14 (2011), p. 8 | arXiv
[74] Living Rev. Relativ., 11 (2008), p. 5
[75] Phys. Rev. D, 80 (2009) | arXiv
[76] Phys. Lett. B, 665 (2008), p. 412 | arXiv
[77] C. R. Physique, 17 (2016) no. 6, pp. 663-678 (in this issue)
[78] J. Cosmol. Astropart. Phys., 01 (2008)
[79] Science, 284 (1999), p. 1481
[80] Gen. Relativ. Gravit., 40 (2008), p. 1731 | DOI
[81] Astrophys. J., 676 (2008), p. 532 | arXiv
[82] J. Cosmol. Astropart. Phys., 5 (2006) | arXiv
[83] Astropart. Phys., 25 (2006), p. 402 | arXiv
[84] GRB 2012, Marbella, Spain, 8–12 October (2012)
[85] et al. Astrophys. J., 697 (2009), p. 1071 | arXiv
[86] et al. Science, 323 (2009), p. 1688
[87] et al. Nature, 462 (2009), p. 331 | arXiv
[88] Astropart. Phys., 33 (2010), p. 312 | arXiv
[89] Phys. Rev. Lett., 108 (2012) | arXiv
[90] et al. Phys. Rev. D, 87 (2013)
[91] Astron. Astrophys., 487 (2008), p. 837
[92] Astron. Astrophys., 515 (2010)
[93] et al. Phys. Rev. Lett., 83 (1999), p. 2108
[94] Phys. Lett. B, 668 (2008), p. 253 | arXiv
[95] Astropart. Phys., 31 (2009), p. 226 | arXiv
[96] Phys. Rev. Lett., 101 (2008) | arXiv
[97] Astropart. Phys., 34 (2011), p. 738 | arXiv
[98] Astrophys. J., 802 (2015), p. 65
[99] Lorentz invariance violation limits from the Crab Pulsar using VERITAS, ICRC 2013 (2013) | arXiv
[100] Astrophys. J., 518 (1999)
[101] Phys. Rev. D, 78 (2008)
[102] et al. Astrophys. J., 448 (1995), p. 101L
[103] et al. Astrophys. J., 534 (2000), p. 248
[104] Phys. Rev. Lett., 38 (1977), p. 1440
[105] et al. Phys. Rev. Lett., 97 (2006)
[106] A. Ringwald, L. Rosenberg in K.A. Olive, et al. (Particle Data Group), Review of particle physics, Chin. Phys. C 38 (2014) 090001.
[107] Phys. Today, 49 (1996), p. 22 | arXiv
[108] J. High Energy Phys., 1210 (2012)
[109] Annu. Rev. Nucl. Part. Sci., 60 (2010), p. 405
[110] et al. J. Cosmol. Astropart. Phys., 06 (2012)
[111] J. Cosmol. Astropart. Phys., 04 (2007)
[112] Phys. Rev. D, 88 (2013)
[113] et al. J. Cosmol. Astropart. Phys., 1502 (2015) | arXiv
[114] Phys. Rev. D, 87 (2013)
[115] et al. Phys. Rev. Lett., 113 (2015)
[116] J. Instrum., 8 (2013), p. T09001
[117] et al. J. Instrum., 9 (2014), p. T05002
[118] J. Cosmol. Astropart. Phys., 12 (2014)
[119] Phys. Lett. B, 120 (1983), p. 133
[120] Phys. Rev. Lett., 110 (2013)
[121] et al. Phys. Rev. D, 86 (2012)
[122] J. Cosmol. Astropart. Phys., 9 (2009)
[123] et al. Phys. Rev. D, 84 (2011)
[124] et al. J. Cosmol. Astropart. Phys., 03 (2003)
[125] J. Cosmol. Astropart. Phys., 9 (2014)
[126] et al. Phys. Rev. D, 79 (2009)
[127] et al. Phys. Rev. D, 86 (2012)
[128] et al. Phys. Lett. B, 744 (2015), p. 375
[129] et al. Mon. Not. R. Astron. Soc., 394 (2009), p. 21
[130] J. Cosmol. Astropart. Phys., 02 (2012)
[131] et al. | arXiv
[132] JETP Lett., 100 (2014), p. 355
[133] arXiv
, 2013 |[134] et al. J. Exp. Theor. Phys., 117 (2013), p. 1011
[135] et al. Astron. Astrophys., 571 (2014)
[136] Astrophys. J., 757 (2012), p. 14
[137] Phys. Rev. D, 77 (2008)
[138] J. Cosmol. Astropart. Phys., 02 (2004)
[139] SciNeGHE 2014, Lisboa, Portugal, 4–6 June (2014) (id 020)
[140] et al. Astrophys. J., 757 (2012), p. 183
[141] J. Cosmol. Astropart. Phys., 1 (2014)
[142] Phys. Rev. D, 84 (2011)
[143] et al. J. High Energy Phys., 6 (2014)
[144] Search for Lorentz invariance violation with flaring active galactic nuclei: a prospect for the Cherenkov telescope array, Beijing (2011)
[145] et al. J. Cosmol. Astropart. Phys., 06 (2014)
[146] B. Lakic, et al. (CAST Collaboration), DESY-PROC-2013-04, 2014, p. 119.
Cited by Sources:
Comments - Policy