Comptes Rendus
Gamma-ray astronomy / Astronomie des rayons gamma – Volume 2
Gamma rays as probes of the Universe
[Les rayons gamma, sondes de l'Univers]
Comptes Rendus. Physique, Volume 17 (2016) no. 6, pp. 632-648.

La propagation des photons γ sur de très grandes distances nous permet de sonder le milieu intergalactique et fournit des tests de physique fondamentale. Au cours de leur chemin vers la Terre, ceux-ci peuvent s'annihiler avec les photons infrarouges et optiques du milieu intergalactique, produisant ainsi des paires e+e. L'absorption des photons γ émis par des sources extragalactiques à différentes distances permet de mesurer ce fond diffus, par ailleurs très mal connu par des mesures directes en raison des importants rayonnements d'avant-plan dus à la Galaxie. La propagation des photons γ peut aussi être affectée par de nouveaux phénomènes prédits par des extensions du modèle standard de la physique des particules. L'invariance de Lorentz est violée dans certains modèles de gravité quantique où la vitesse de la lumière dans le vide varie avec l'énergie du photon γ. Les mesures différentielles de temps de vol sur les sursauts γ et sur les éruptions de noyaux actifs de galaxie ont permis d'obtenir des bornes inférieures sur l'échelle d'énergie de la gravité quantique. Un autre effet pouvant affecter la propagation des photons γ est prédit par des modèles de la théorie des cordes. Il s'agit du mélange quantique entre le photon et une particule légère de type « axion », qui n'interagit pas avec les photons infrarouge et optiques. En diminuant dans les spectres l'empreinte de l'absorption par le fond diffus, ce mélange rendrait l'Univers plus transparent que prévu aux photons γ. L'article présente l'état actuel des recherches sur l'ensemble de ces phénomènes en astronomie γ

The propagation of γ rays over very large distances provides new insights on the intergalactic medium and on fundamental physics. On their path to the Earth, γ rays can annihilate with diffuse infrared or optical photons of the intergalactic medium, producing e+e pairs. The density of these photons is poorly determined by direct measurements due to significant galactic foregrounds. Studying the absorption of γ rays from extragalactic sources at different distances allows the density of low-energy diffuse photons to be measured. Gamma-ray propagation may also be affected by new phenomena predicted by extensions of the Standard Model of particle physics. Lorentz Invariance is violated in some models of Quantum Gravity, leading to an energy-dependent speed of light in vacuum. From differential time-of-flight measurements of the most distant γ-ray bursts and of flaring active galactic nuclei, lower bounds have been set on the energy scale of Quantum Gravity. Another effect that may alter γ-ray propagation is predicted by some models of String Theory, namely the mixing of the γ ray with a light fundamental boson called an “axion-like particle”, which does not interact with low-energy photons. Such a mixing would make the Universe more transparent to γ rays than what would otherwise be, in a sense it decreases the amount of modification to the spectrum that comes from the extragalactic background light. The present status of the search for all these phenomena in γ-ray astronomy is reviewed.

Publié le :
DOI : 10.1016/j.crhy.2016.04.006
Keywords: Gamma rays, Extragalactic background light, Lorentz invariance violation, Axion-like particles
Mot clés : Rayons gamma, Fond extragalactique infrarouge et optique, Violation de l'invariance de Lorentz, Axions
Dieter Horns 1 ; Agnieszka Jacholkowska 2

1 Universität Hamburg, Institut für Experimentalphysik, Luruper Chaussee 149, 22761 Hamburg, Germany
2 LPNHE, Université Pierre-et-Marie-Curie (Paris-6), Université Paris-Diderot (Paris-7), CNRS/IN2P3, 4, place Jussieu, 75252 Paris cedex 05, France
@article{CRPHYS_2016__17_6_632_0,
     author = {Dieter Horns and Agnieszka Jacholkowska},
     title = {Gamma rays as probes of the {Universe}},
     journal = {Comptes Rendus. Physique},
     pages = {632--648},
     publisher = {Elsevier},
     volume = {17},
     number = {6},
     year = {2016},
     doi = {10.1016/j.crhy.2016.04.006},
     language = {en},
}
TY  - JOUR
AU  - Dieter Horns
AU  - Agnieszka Jacholkowska
TI  - Gamma rays as probes of the Universe
JO  - Comptes Rendus. Physique
PY  - 2016
SP  - 632
EP  - 648
VL  - 17
IS  - 6
PB  - Elsevier
DO  - 10.1016/j.crhy.2016.04.006
LA  - en
ID  - CRPHYS_2016__17_6_632_0
ER  - 
%0 Journal Article
%A Dieter Horns
%A Agnieszka Jacholkowska
%T Gamma rays as probes of the Universe
%J Comptes Rendus. Physique
%D 2016
%P 632-648
%V 17
%N 6
%I Elsevier
%R 10.1016/j.crhy.2016.04.006
%G en
%F CRPHYS_2016__17_6_632_0
Dieter Horns; Agnieszka Jacholkowska. Gamma rays as probes of the Universe. Comptes Rendus. Physique, Volume 17 (2016) no. 6, pp. 632-648. doi : 10.1016/j.crhy.2016.04.006. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2016.04.006/

[1] P. Brun; J. Cohen-Tanugi C. R. Physique, 17 (2016) no. 6, pp. 649-662 (in this issue)

[2] F. Piron C. R. Physique, 17 (2016) no. 6, pp. 617-631 (in this issue)

[3] C.D. Dermer; B. Giebels C. R. Physique, 17 (2016) no. 6, pp. 594-616 (in this issue)

[4] I. Grenier; A.K. Harding C. R. Physique, 16 (2015), pp. 641-660

[5] A. Maurer; J.B. Gonzalez; M. Raue; D. Horns AIP Conf. Proc., 1505 (2012), p. 801

[6] A. Furniss et al. Mon. Not. R. Astron. Soc., 446 (2015), p. 2267

[7] G. Raffelt; L. Stodolsky Phys. Rev. D, 37 (1988), p. 1237

[8] D. Horns; L. Maccione; A. Mirizzi; M. Roncadelli Phys. Rev. D, 85 (2012)

[9] W. Heisenberg; H. Euler Z. Phys., 98 (1936), p. 714

[10] A. Domínguez; F. Prada Astrophys. J., 771 (2013), p. 34

[11] A.I. Nikishov Sov. Phys. JETP, 14 (1962), p. 393

[12] J.R. Gould; G.P. Schréder Phys. Rev., 155 (1967), p. 1404

[13] E. Dwek; F. Krennrich Astropart. Phys., 43 (2012), p. 112

[14] M. Ackermann et al. Science, 338 (2012), p. 1190

[15] A. Abramowski et al. Astron. Astrophys., 550 (2013), p. 4

[16] A.E. Broderick; P. Chang; C. Pfrommer Astrophys. J., 752 (2012), p. 22

[17] A. Neronov; I. Vovk Science, 328 (2010), p. 73

[18] R. Durrer; A. Neronov Astron. Astrophys. Rev., 21 (2013), p. 62

[19] W. Essey; A. Kusenko Astropart. Phys., 33 (2010), p. 81

[20] J.M. Overduin; P.S. Wesson Phys. Rep., 402 (2004), p. 267

[21] M. Raue; T. Kneiske; D. Mazin Astron. Astrophys., 498 (2009), p. 25

[22] A. Maurer et al. Astrophys. J., 745 (2012), p. 166

[23] M. Raue; M. Meyer Mon. Not. R. Astron. Soc., 426 (2012), p. 1097

[24] R.C. Gilmore Mon. Not. R. Astron. Soc., 420 (2012), p. 800

[25] A. Kashlinsky et al. Astrophys. J., 470 (1996), p. 681

[26] A. Kashlinsky; S. Odenwald Astrophys. J., 528 (2000), p. 74

[27] P. Madau; L. Pozzetti Mon. Not. R. Astron. Soc., 312 (2000), p. 9

[28] G. Lagache; J.-L. Puget Astron. Astrophys., 355 (2000), p. 17

[29] D. Elbaz et al. Astron. Astrophys., 384 (2002), p. 848

[30] L. Metcalfe et al. Astron. Astrophys., 407 (2003), p. 791

[31] H. Dole et al. Astrophys. J. Suppl. Ser., 154 (2004), p. 87

[32] G.G. Fazio et al. Astrophys. J. Suppl. Ser., 154 (2004), p. 39

[33] C. Papovich et al. Astrophys. J. Suppl. Ser., 154 (2004), p. 70

[34] H. Dole et al. Astron. Astrophys., 451 (2006), p. 417

[35] D.T. Frayer et al. Astron. J., 131 (2006), p. 250

[36] M. Béthermin et al. Astron. Astrophys., 512 (2010), p. 78

[37] S. Berta et al. Astron. Astrophys., 518 (2010), p. 30

[38] E.N. Voyer et al. Astrophys. J., 736 (2011), p. 80

[39] S. Matsuura et al. Astrophys. J., 737 (2011), p. 2

[40] B. Magnelli et al. Astron. Astrophys., 553 (2013), p. 132

[41] K. Mattila IAU Symp., 139 (1990), p. 257

[42] E. Dwek; R.G. Arendt Astrophys. J., 508 (1998), p. 9

[43] M.G. Hauser et al. Astrophys. J., 508 (1998), p. 25

[44] D. Finkbeiner et al. Astrophys. J., 544 (2000), p. 81

[45] V. Gorjian; E.L. Wright; R.R. Chary Astrophys. J., 536 (2000), p. 550

[46] E.L. Wright; E.D. Reese Astrophys. J., 545 (2000), p. 43

[47] T. Matsumoto et al. Astrophys. J., 626 (2005), p. 31

[48] T.M. Brown et al. Astron. J., 120 (2000), p. 1153

[49] R.A. Bernstein; W.L. Freedman; B.F. Madore Astrophys. J., 571 (2002), p. 56

[50] R.A. Bernstein; W.L. Freedman; B.F. Madore Astrophys. J., 632 (2005), p. 713

[51] Ch. Leinert et al. Astron. Astrophys. Suppl. Ser., 127 (1998), p. 1

[52] F.W. Stecker; O.C. de Jager Astrophys. J., 415 (1993), p. 71

[53] O.C. de Jager; F.W. Stecker; M.H. Salamon Nature, 369 (1994), p. 294

[54] S.D. Biller et al. Astrophys. J., 445 (1995), p. 227

[55] B. Funk et al. Astropart. Phys., 9 (1998), p. 97

[56] C. Renault; A. Barrau; G. Lagache; J.-L. Puget Astron. Astrophys., 371 (2001), p. 771

[57] M. Schroedter Astrophys. J., 628 (2005), p. 617

[58] F. Aharonian; et al.; H.E.S.S. Collaboration Nature, 440 (2006), p. 1018

[59] E. Dwek; F. Krennrich Astrophys. J., 618 (2005), p. 657

[60] M.R. Orr; F. Krennrich; E. Dwek Astrophys. J., 733 (2011), p. 77

[61] A. Sinha et al. Astrophys. J., 795 (2014), p. 91

[62] J. Guy et al. Astron. Astrophys., 359 (2000), p. 419

[63] A. Domínguez et al. Astrophys. J., 770 (2013), p. 77

[64] S. Archambault et al. Astrophys. J., 788 (2014), p. 158

[65] J. Finke; S. Razzaque Astrophys. J., 698 (2009), p. 1761

[66] D. Mazin; M. Raue Astron. Astrophys., 471 (2007), p. 439

[67] M. Georganopoulos; J.D. Finke; L.C. Reyes Astrophys. J., 714 (2010), p. 157

[68] J. Yang; J. Wang Astron. Astrophys., 522 (2010), p. 12

[69] M. Meyer; M. Raue; D. Mazin; D. Horns Astron. Astrophys., 542 (2012), p. 59

[70] Y. Gong; A. Cooray Astrophys. J., 772 (2013), p. 12

[71] J. Biteau; D.A. Williams Astrophys. J., 812 (2015), p. 60

[72] M. Planck, Mitt. Thermodyn., Folg. 5 (1899).

[73] S.N. Solodukhin Living Rev. Relativ., 14 (2011), p. 8 | arXiv

[74] C. Rovelli Living Rev. Relativ., 11 (2008), p. 5

[75] G. Amelino-Camelia; L. Smolin Phys. Rev. D, 80 (2009) | arXiv

[76] J. Ellis; N.E. Mavromatos; D.V. Nanopoulos Phys. Lett. B, 665 (2008), p. 412 | arXiv

[77] J. Knödlseder C. R. Physique, 17 (2016) no. 6, pp. 663-678 (in this issue)

[78] U. Jacob; T. Piran J. Cosmol. Astropart. Phys., 01 (2008)

[79] N.A. Bahcall; J.P. Ostriker; S. Perlmutter; P.J. Steinhardt Science, 284 (1999), p. 1481

[80] R. Lamon; N. Produit; F. Steiner Gen. Relativ. Gravit., 40 (2008), p. 1731 | DOI

[81] J. Bolmont; A. Jacholkowska; J.-L. Atteia; F. Piron; G. Pizzichini Astrophys. J., 676 (2008), p. 532 | arXiv

[82] M. Rodríguez Martínez; T. Piran; Y. Oren J. Cosmol. Astropart. Phys., 5 (2006) | arXiv

[83] J. Ellis; N.E. Mavromatos; D.V. Nanopoulos; A.S. Sakharov; E.K.G. Sarkisyan Astropart. Phys., 25 (2006), p. 402 | arXiv

[84] F. Piron; GBM Collaboration Fermi LAT Collaboration GRB 2012, Marbella, Spain, 8–12 October (2012)

[85] W.B. Atwood; A.A. Abdo; M. Ackermann; W. Althouse Anderson et al. Astrophys. J., 697 (2009), p. 1071 | arXiv

[86] A.A. Abdo; M. Ackermann; M. Arimoto; K. Asano; W.B. Atwood et al. Science, 323 (2009), p. 1688

[87] A.A. Abdo; M. Ackermann; M. Ajello; K. Asano; W.B. Atwood et al. Nature, 462 (2009), p. 331 | arXiv

[88] L. Shao; Z. Xiao; B.-Q. Ma Astropart. Phys., 33 (2010), p. 312 | arXiv

[89] R.J. Nemiroff; R. Connolly; J. Holmes; A.B. Kostinski Phys. Rev. Lett., 108 (2012) | arXiv

[90] V. Vasileiou; A. Jacholkowska; F. Piron et al. Phys. Rev. D, 87 (2013)

[91] A. Franceschini; G. Rodighiero; M. Vaccari Astron. Astrophys., 487 (2008), p. 837

[92] T.M. Kneiske; H. Dole Astron. Astrophys., 515 (2010)

[93] S.D. Biller et al. Phys. Rev. Lett., 83 (1999), p. 2108

[94] MAGIC Collaboration; J. Ellis; N.E. Mavromatos; D.V. Nanopoulos; A.S. Sakharov; E.K.G. Sarkisyan Phys. Lett. B, 668 (2008), p. 253 | arXiv

[95] M. Martı nez; M. Errando Astropart. Phys., 31 (2009), p. 226 | arXiv

[96] F. Aharonian; et al.; H.E.S.S. Collaboration Phys. Rev. Lett., 101 (2008) | arXiv

[97] A. Abramowski; et al.; H.E.S.S. Collaboration Astropart. Phys., 34 (2011), p. 738 | arXiv

[98] A. Abramowski; et al.; H.E.S.S. Collaboration Astrophys. J., 802 (2015), p. 65

[99] B. Zitzer; VERITAS Collaboration Lorentz invariance violation limits from the Crab Pulsar using VERITAS, ICRC 2013 (2013) | arXiv

[100] T. Kifune Astrophys. J., 518 (1999)

[101] U. Jacob; T. Piran Phys. Rev. D, 78 (2008)

[102] E.E. Fenimore; et al.; J.P. Norris et al. Astrophys. J., 448 (1995), p. 101L

[103] J.P. Norris et al. Astrophys. J., 534 (2000), p. 248

[104] R.D. Peccei; H. Quinn Phys. Rev. Lett., 38 (1977), p. 1440

[105] C.A. Baker et al. Phys. Rev. Lett., 97 (2006)

[106] A. Ringwald, L. Rosenberg in K.A. Olive, et al. (Particle Data Group), Review of particle physics, Chin. Phys. C 38 (2014) 090001.

[107] P. Sikivie Phys. Today, 49 (1996), p. 22 | arXiv

[108] M. Cicoli; M. Goodsell; A. Ringwald J. High Energy Phys., 1210 (2012)

[109] J. Jaeckel; A. Ringwald Annu. Rev. Nucl. Part. Sci., 60 (2010), p. 405

[110] P. Arias et al. J. Cosmol. Astropart. Phys., 06 (2012)

[111] S. Andriamonje; et al.; CAST Collaboration J. Cosmol. Astropart. Phys., 04 (2007)

[112] A. Abramowski; et al.; H.E.S.S. Collaboration Phys. Rev. D, 88 (2013)

[113] A. Payez et al. J. Cosmol. Astropart. Phys., 1502 (2015) | arXiv

[114] M. Meyer; D. Horns; M. Raue Phys. Rev. D, 87 (2013)

[115] A. Ayala et al. Phys. Rev. Lett., 113 (2015)

[116] R. Bähre; et al.; ALPS-II Collaboration J. Instrum., 8 (2013), p. T09001

[117] E. Armengaud et al. J. Instrum., 9 (2014), p. T05002

[118] M. Meyer; J. Conrad J. Cosmol. Astropart. Phys., 12 (2014)

[119] L.F. Abbott; P. Sikivie Phys. Lett. B, 120 (1983), p. 133

[120] A. Friedland; M. Giannotti; M. Wise Phys. Rev. Lett., 110 (2013)

[121] D. Horns et al. Phys. Rev. D, 86 (2012)

[122] A. Mirizzi; D. Montanino J. Cosmol. Astropart. Phys., 9 (2009)

[123] A. De Angelis et al. Phys. Rev. D, 84 (2011)

[124] C. Czaki et al. J. Cosmol. Astropart. Phys., 03 (2003)

[125] M. Meyer; D. Montanino; J. Conrad J. Cosmol. Astropart. Phys., 9 (2014)

[126] M.A. Sánchez-Conde et al. Phys. Rev. D, 79 (2009)

[127] F. Tavecchio et al. Phys. Rev. D, 86 (2012)

[128] F. Tavecchio et al. Phys. Lett. B, 744 (2015), p. 375

[129] A. De Angelis et al. Mon. Not. R. Astron. Soc., 394 (2009), p. 21

[130] D. Horns; M. Meyer J. Cosmol. Astropart. Phys., 02 (2012)

[131] G. Galanti et al. | arXiv

[132] G.I. Rubtsov; S.V. Troitsky JETP Lett., 100 (2014), p. 355

[133] M. Meyer; D. Horns, 2013 | arXiv

[134] Y.A. Fomin et al. J. Exp. Theor. Phys., 117 (2013), p. 1011

[135] P.A.R. Ade et al. Astron. Astrophys., 571 (2014)

[136] R. Jansson; G. Farrar Astrophys. J., 757 (2012), p. 14

[137] M. Simet; D. Hooper; P.D. Serpico Phys. Rev. D, 77 (2008)

[138] L. Östman; E. Mortsell J. Cosmol. Astropart. Phys., 02 (2004)

[139] D. Horns SciNeGHE 2014, Lisboa, Portugal, 4–6 June (2014) (id 020)

[140] A. Prosekin et al. Astrophys. J., 757 (2012), p. 183

[141] D. Wouters; P. Brun J. Cosmol. Astropart. Phys., 1 (2014)

[142] R. Gill; J.S. Heyl Phys. Rev. D, 84 (2011)

[143] A.G. Dias et al. J. High Energy Phys., 6 (2014)

[144] J. Bolmont; D. Emmanoupoulos; A. Jacholkowska; J.-P. Tavernet; CTA Consortium Search for Lorentz invariance violation with flaring active galactic nuclei: a prospect for the Cherenkov telescope array, Beijing (2011)

[145] M. Fairbairn et al. J. Cosmol. Astropart. Phys., 06 (2014)

[146] B. Lakic, et al. (CAST Collaboration), DESY-PROC-2013-04, 2014, p. 119.

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Open questions in GRB physics

Bing Zhang

C. R. Phys (2011)


Active galactic nuclei at gamma-ray energies

Charles Dennison Dermer; Berrie Giebels

C. R. Phys (2016)


Introduction to high-energy gamma-ray astronomy

Bernard Degrange; Gérard Fontaine

C. R. Phys (2015)