The physics of the interaction between a dense two-dimensional electron gas and a microcavity photonic mode is reviewed. For high electronic densities, this system enters the ultra-strong coupling regime in which the Rabi energy, which measures the strength of the light–matter coupling, is of the same order of magnitude as the matter excitation. The ultra-strong coupling has been experimentally demonstrated by inserting a highly doped semiconductor layer between two metal plates that produce a microcavity, with extreme sub-wavelength confinement of the electromagnetic field. A record value at room temperature (73%) of the ratio between the Rabi and the matter excitation energies (the relative Rabi energy) has been measured together with a very large photonic gap induced by the polariton splitting. The ultra-strong coupling is a manifestation of a huge cooperative dipole, which is proportional to the number of electrons participating in the interaction. Such a phenomenal interaction with light appears also in the absence of a microcavity and, for a dipole coupled with free space, it gives rise to superradiance.
Nous passons en revue la physique de l'interaction entre un gaz bidimensionnel d'électrons et un mode photonique de microcavité. Pour des densités électroniques suffisamment grandes, le système rentre dans le régime de couplage ultra-fort, dans lequel l'énergie de Rabi, qui mesure l'intensité du couplage lumière–matière, est du même ordre de grandeur que l'excitation dans la matière. Le couplage ultra-fort a été démontré expérimentalement en insérant un semiconducteur fortement dopé entre deux couches métalliques, qui forment une cavité avec un confinement très sub-longueur d'onde du champ électromagnétique. À température ambiante, une valeur record (73%) du rapport entre l'énergie de Rabi et celle de l'éxcitation électronique (l'énergie de Rabi relative) a été mesurée, ainsi qu'une large bande interdite photonique induite par l'anticroisement entre les branches polaritoniques. Le couplage ultra-fort est une manifestation de l'existence d'un dipôle coopératif, proportionnel au nombre d'électrons qui participent à l'interaction avec la lumière. Ce très fort couplage apparaît aussi en l'absence d'une microcavité et, dans le cas d'un dipôle couplé à l'espace libre, donne lieu au phénomène de superradiance.
Mot clés : Polariton, Plasmon, Puits quantiques de semiconducteur, Interaction lumière–matière, Superradiance, Microcavités patch
Angela Vasanelli 1; Yanko Todorov 1; Carlo Sirtori 1
@article{CRPHYS_2016__17_8_861_0, author = {Angela Vasanelli and Yanko Todorov and Carlo Sirtori}, title = {Ultra-strong light{\textendash}matter coupling and superradiance using dense electron gases}, journal = {Comptes Rendus. Physique}, pages = {861--873}, publisher = {Elsevier}, volume = {17}, number = {8}, year = {2016}, doi = {10.1016/j.crhy.2016.05.001}, language = {en}, }
TY - JOUR AU - Angela Vasanelli AU - Yanko Todorov AU - Carlo Sirtori TI - Ultra-strong light–matter coupling and superradiance using dense electron gases JO - Comptes Rendus. Physique PY - 2016 SP - 861 EP - 873 VL - 17 IS - 8 PB - Elsevier DO - 10.1016/j.crhy.2016.05.001 LA - en ID - CRPHYS_2016__17_8_861_0 ER -
Angela Vasanelli; Yanko Todorov; Carlo Sirtori. Ultra-strong light–matter coupling and superradiance using dense electron gases. Comptes Rendus. Physique, Volume 17 (2016) no. 8, pp. 861-873. doi : 10.1016/j.crhy.2016.05.001. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2016.05.001/
[1] Quantum vacuum properties of the intersubband cavity polariton field, Phys. Rev. B, Volume 72 (2005)
[2] Quantum vacuum radiation spectra from a semiconductor microcavity with a time-modulated vacuum Rabi frequency, Phys. Rev. Lett., Volume 98 (2007) | DOI
[3] Entangled photons from the polariton vacuum in a switchable optical cavity, Phys. Rev. B, Volume 85 (2012) http://link.aps.org/doi/10.1103/PhysRevB.85.235140 | DOI
[4] No-go theorem for superradiant quantum phase transitions in cavity qed and counter-example in circuit qed, Nat. Commun., Volume 1 (2010), p. 72 | DOI
[5] Quantum phases of a multimode bosonic field coupled to flat electronic bands, Phys. Rev. Lett., Volume 110 (2013) http://link.aps.org/doi/10.1103/PhysRevLett.110.133603 | DOI
[6] Input–output theory of cavities in the ultrastrong coupling regime: the case of time-independent cavity parameters, Phys. Rev. A, Volume 74 (2006) no. 3
[7] Quantum model of microcavity intersubband electroluminescent devices, Phys. Rev. B, Volume 77 (2008) | DOI
[8] Quantum theory of electron tunneling into intersubband cavity polariton states, Phys. Rev. B, Volume 79 (2009)
[9] Photon blockade in the ultrastrong coupling regime, Phys. Rev. Lett., Volume 109 (2012) http://link.aps.org/doi/10.1103/PhysRevLett.109.193602 | DOI
[10] Conductivity in organic semiconductors hybridized with the vacuum field, Nat. Mater., Volume 14 (2015), p. 1123
[11] Extraordinary exciton conductance induced by strong coupling, Phys. Rev. Lett., Volume 114 (2015)
[12] Cavity-enhanced transport of excitons, Phys. Rev. Lett., Volume 114 (2015) http://link.aps.org/doi/10.1103/PhysRevLett.114.196403 | DOI
[13] Tuning the work-function via strong coupling, Adv. Mater., Volume 25 (2013), p. 2481 | DOI
[14] Sub-cycle switch-on of ultrastrong light–matter interaction, Nature, Volume 458 (2009), p. 178
[15] Ultrastrong light–matter coupling regime with polariton dots, Phys. Rev. Lett., Volume 105 (2010)
[16] Rabi splitting of the optical intersubband absorption line of multiple quantum wells inside a Fabry–Pérot microcavity, Phys. Rev. B, Volume 55 (1997) no. 11, p. 7101
[17] Microcavity polariton splitting of intersubband transitions, Phys. Rev. Lett., Volume 90 (2003) no. 12
[18] Signatures of the ultrastrong light–matter coupling regime, Phys. Rev. B, Volume 79 (2009)
[19] Transition from strong to ultra-strong coupling regime in mid-infrared metal–dielectric–metal cavities, Appl. Phys. Lett., Volume 98 (2011) no. 23, p. 231114
[20] Nonadiabatic switching of a photonic band structure: ultrastrong light–matter coupling and slow-down of light, Phys. Rev. B, Volume 85 (2012) http://link.aps.org/doi/10.1103/PhysRevB.85.081302 | DOI
[21] Charge-induced coherence between intersubband plasmons in a quantum structure, Phys. Rev. Lett., Volume 109 (2012)
[22] Ultra-strong light–matter coupling for designer Reststrahlen band, New J. Phys., Volume 16 (2014)
[23] Ultrastrong coupling regime and plasmon polaritons in parabolic semiconductor quantum wells, Phys. Rev. Lett., Volume 108 (2012) http://link.aps.org/doi/10.1103/PhysRevLett.108.106402 | DOI
[24] Role of geometry for strong coupling in active terahertz metamaterials, Phys. Rev. B, Volume 87 (2013) http://link.aps.org/doi/10.1103/PhysRevB.87.075324 | DOI
[25] Circuit quantum electrodynamics in the ultrastrong-coupling regime, Nat. Phys., Volume 6 (2010), p. 772 | DOI
[26] Quantum simulation of the ultrastrong-coupling dynamics in circuit quantum electrodynamics, Phys. Rev. X, Volume 2 (2012) http://link.aps.org/doi/10.1103/PhysRevX.2.021007 | DOI
[27] Ultrastrong coupling of the cyclotron transition of a 2d electron gas to a THz metamaterial, Science, Volume 335 (2012), p. 1323 | DOI
[28] Ultrastrong coupling of high-frequency two-dimensional cyclotron plasma mode with a cavity photon, Phys. Rev. B, Volume 87 (2013) http://link.aps.org/doi/10.1103/PhysRevB.87.045307 | DOI
[29] Ultrastrongly coupled exciton–polaritons in metal-clad organic semiconductor microcavities, Adv. Opt. Mater., Volume 1 (2013), p. 827 | DOI
[30] Exploring light–matter interaction phenomena under ultrastrong coupling regime, ACS Photonics, Volume 1 (2014), p. 1042 | DOI
[31] Reversible switching of ultrastrong light-molecule coupling, Phys. Rev. Lett., Volume 106 (2011) http://link.aps.org/doi/10.1103/PhysRevLett.106.196405 | DOI
[32] Giant Rabi splitting between localized mixed plasmon-exciton states in a two-dimensional array of nanosize metallic disks in an organic semiconductor, Phys. Rev. B, Volume 80 (2009) http://link.aps.org/doi/10.1103/PhysRevB.80.033303 | DOI
[33] Vacuum-field Rabi splitting in quantum-well infrared photodetectors, Phys. Rev. B, Volume 68 (2003) http://link.aps.org/doi/10.1103/PhysRevB.68.245320 | DOI
[34] Photovoltaic probe of cavity polaritons in a quantum cascade structure, Appl. Phys. Lett., Volume 90 (2007), p. 201101
[35] Electrically injected cavity polaritons, Phys. Rev. Lett., Volume 100 (2008)
[36] Stark tunable electroluminescence from cavity polariton states, Appl. Phys. Lett., Volume 93 (2008), p. 171105
[37] Intersubband electroluminescent devices operating in the strong coupling regime, Phys. Rev. B, Volume 82 (2010)
[38] Optical phonon scattering of cavity polaritons in an electroluminescent device, Phys. Rev. B, Volume 83 (2011) 081404(R)
[39] Room temperature terahertz polariton emitter, Appl. Phys. Lett., Volume 101 (2012), p. 141118 | DOI
[40] Stimulated scattering and lasing of intersubband cavity polaritons, Phys. Rev. Lett., Volume 102 (2009)
[41] Perspectives for intersubband polariton lasers, Phys. Rev. X, Volume 5 (2015) http://link.aps.org/doi/10.1103/PhysRevX.5.011031 | DOI
[42] Nonequilibrium condensates and lasers without inversion: exciton–polariton lasers, Phys. Rev. A, Volume 53 (1996), pp. 4250-4253 http://link.aps.org/doi/10.1103/PhysRevA.53.4250 | DOI
[43] Polariton laser using single micropillar GaAs-GaAlAs semiconductor cavities, Phys. Rev. Lett., Volume 100 (2008)
[44] Strong coupling in the sub-wavelength limit using metamaterial nanocavities, Nat. Commun., Volume 4 (2013), p. 2882 | DOI
[45] Electrodynamic modeling of strong coupling between a metasurface and intersubband transitions in quantum wells, Phys. Rev. B, Volume 89 (2014) http://link.aps.org/doi/10.1103/PhysRevB.89.165133 | DOI
[46] Terahertz meta-atoms coupled to a quantum well intersubband transition, Opt. Express, Volume 19 (2011), p. 13700
[47] Giant nonlinear response from plasmonic metasurfaces coupled to intersubband transitions, Nature, Volume 511 (2014), p. 65 | DOI
[48] Second harmonic generation from metamaterials strongly coupled to intersubband transitions in quantum wells, Appl. Phys. Lett., Volume 104 (2014), p. 131104 | DOI
[49] Perfect energy-feeding into strongly coupled systems and interferometric control of polariton absorption, Nat. Phys., Volume 10 (2014), pp. 830-834 | DOI
[50] Superradiant emission from a collective excitation in a semiconductor, Phys. Rev. Lett., Volume 115 (2015)
[51] Intersubband Transitions in Quantum Wells. Physics and Device Applications I, Semiconductor and Semimetals, vol. 66, Academic Press, 2000
[52] Nonparabolicity and a sum rule associated with bound-to-bound and bound-to-continuum intersubband transitions in quantum wells, Phys. Rev. B, Volume 50 (1994) no. 12, p. 8663
[53] Electronic properties of two-dimensional systems, Rev. Mod. Phys., Volume 54 (1982), p. 437
[54] Intra- and intersubband plasmon–polaritons in semiconductor quantum wells, Phys. Status Solidi B, Volume 177 (1993), p. 9
[55] Quantum model of coupled intersubband plasmons, Phys. Rev. B, Volume 90 (2014)
[56] Optical properties of thin films and the Berreman effect, Appl. Phys., Volume 38 (1985), p. 263
[57] Plasma resonance absorption in thin metal films, Phys. Rev., Volume 132 (1963), p. 1599
[58] Intersubband polaritons in the electrical dipole gauge, Phys. Rev. B, Volume 85 (2012)
[59] Mapping surface plasmons on a single metallic nanoparticle, Nat. Phys., Volume 3 (2007), pp. 348-353 | DOI
[60] Quantum Theory of Solids, John Wiley & Sons, New York, 1963
[61] Electrical control of polariton coupling in intersubband microcavities, Appl. Phys. Lett., Volume 87 (2005)
[62] Strong light–matter coupling in subwavelength metal–dielectric microcavities at terahertz frequencies, Phys. Rev. Lett., Volume 102 (2009)
[63] Antenna Theory Analysis and Design, John Wiley & Sons, Hoboken, New Jersey, 2005
[64] Terahertz quantum-cascade laser at using metal waveguide for mode confinement, Appl. Phys. Lett., Volume 83 (2003) no. 11, pp. 2124-2126 http://scitation.aip.org/content/aip/journal/apl/83/11/10.1063/1.1611642 | DOI
[65] An Introduction to Optical Waveguides, John Wiley & Sons, Chichester, 1981
[66] Optical properties of metal–dielectric–metal microcavities in the frequency range, Opt. Express, Volume 18 (2010) no. 13, pp. 13886-13907 http://www.opticsexpress.org/abstract.cfm?URI=oe-18-13-13886 | DOI
[67] Characterization of wafer-level thermocompression bonds, J. Microelectromech. Syst., Volume 13 (2004) no. 6, pp. 963-971 | DOI
[68] Coupling of a surface plasmon with localized subwavelength microcavity modes, Appl. Phys. Lett., Volume 98 (2011) no. 2 http://scitation.aip.org/content/aip/journal/apl/98/2/10.1063/1.3536504
[69] Wideband omnidirectional infrared absorber with a patchwork of plasmonic nanoantennas, Opt. Lett., Volume 37 (2012) no. 6, pp. 1038-1040 http://ol.osa.org/abstract.cfm?URI=ol-37-6-1038 | DOI
[70] Coupled electron–phonon modes in optically pumped resonant intersubband lasers, Phys. Rev. Lett., Volume 90 (2003) http://link.aps.org/doi/10.1103/PhysRevLett.90.077402 | DOI
[71] B. Askenazi, et al., in preparation.
[72] Semiclassical theory of multisubband plasmons: nonlocal electrodynamics and radiative effects, Phys. Rev. B, Volume 90 (2014) http://link.aps.org/doi/10.1103/PhysRevB.90.115311 | DOI
[73] Coherence in spontaneous radiation process, Phys. Rev., Volume 93 (1954), p. 99
[74] Observation of Dicke superradiance in optically pumped HF gas, Phys. Rev. Lett., Volume 30 (1973), pp. 309-312 http://link.aps.org/doi/10.1103/PhysRevLett.30.309 | DOI
[75] Superradiance for atoms trapped along a photonic crystal waveguide, Phys. Rev. Lett., Volume 115 (2015) http://link.aps.org/doi/10.1103/PhysRevLett.115.063601 | DOI
[76] Superradiance of quantum dots, Nat. Phys., Volume 3 (2007), p. 106 | DOI
[77] Superradiant emission and optical dephasing in j-aggregates, Chem. Phys. Lett., Volume 171 (1990) no. 5–6, pp. 529-536 http://www.sciencedirect.com/science/article/pii/000926149085258E | DOI
[78] Photon-mediated interactions between distant artificial atoms, Science, Volume 342 (2013) no. 6165, pp. 1494-1496 http://science.sciencemag.org/content/342/6165/1494.full.pdf http://science.sciencemag.org/content/342/6165/1494 (arXiv:) | DOI
[79] Superradiant decay of cyclotron resonance of two-dimensional electron gases, Phys. Rev. Lett., Volume 113 (2014) http://link.aps.org/doi/10.1103/PhysRevLett.113.047601 | DOI
[80] Radiatively broadened incandescent sources, ACS Photonics, Volume 2 (2015) no. 12, pp. 1663-1668 | DOI
[81] Transport properties of a two-dimensional electron gas dressed by light, Phys. Rev. B, Volume 91 (2015) http://link.aps.org/doi/10.1103/PhysRevB.91.155312 | DOI
[82] Mid-infrared optical coherence tomography, Rev. Sci. Instrum., Volume 78 (2007), p. 123108 | DOI
[83] Quantum cascade intersubband polariton light emitters, Semicond. Sci. Technol., Volume 20 (2005), p. 985
[84] Quantum cascade laser, Science, Volume 264 (1994), p. 553 | DOI
[85] Terahertz quantum cascade lasers operating up to ≈200 K with optimized oscillator strength and improved injection tunneling, Opt. Express, Volume 20 (2012), p. 3866
Cited by Sources:
Comments - Policy