Comptes Rendus
Ultra-strong light–matter coupling and superradiance using dense electron gases
Comptes Rendus. Physique, Volume 17 (2016) no. 8, pp. 861-873.

The physics of the interaction between a dense two-dimensional electron gas and a microcavity photonic mode is reviewed. For high electronic densities, this system enters the ultra-strong coupling regime in which the Rabi energy, which measures the strength of the light–matter coupling, is of the same order of magnitude as the matter excitation. The ultra-strong coupling has been experimentally demonstrated by inserting a highly doped semiconductor layer between two metal plates that produce a microcavity, with extreme sub-wavelength confinement of the electromagnetic field. A record value at room temperature (73%) of the ratio between the Rabi and the matter excitation energies (the relative Rabi energy) has been measured together with a very large photonic gap induced by the polariton splitting. The ultra-strong coupling is a manifestation of a huge cooperative dipole, which is proportional to the number of electrons participating in the interaction. Such a phenomenal interaction with light appears also in the absence of a microcavity and, for a dipole coupled with free space, it gives rise to superradiance.

Nous passons en revue la physique de l'interaction entre un gaz bidimensionnel d'électrons et un mode photonique de microcavité. Pour des densités électroniques suffisamment grandes, le système rentre dans le régime de couplage ultra-fort, dans lequel l'énergie de Rabi, qui mesure l'intensité du couplage lumière–matière, est du même ordre de grandeur que l'excitation dans la matière. Le couplage ultra-fort a été démontré expérimentalement en insérant un semiconducteur fortement dopé entre deux couches métalliques, qui forment une cavité avec un confinement très sub-longueur d'onde du champ électromagnétique. À température ambiante, une valeur record (73%) du rapport entre l'énergie de Rabi et celle de l'éxcitation électronique (l'énergie de Rabi relative) a été mesurée, ainsi qu'une large bande interdite photonique induite par l'anticroisement entre les branches polaritoniques. Le couplage ultra-fort est une manifestation de l'existence d'un dipôle coopératif, proportionnel au nombre d'électrons qui participent à l'interaction avec la lumière. Ce très fort couplage apparaît aussi en l'absence d'une microcavité et, dans le cas d'un dipôle couplé à l'espace libre, donne lieu au phénomène de superradiance.

Published online:
DOI: 10.1016/j.crhy.2016.05.001
Keywords: Polariton, Plasmon, Semiconductor quantum well, Light–matter interaction, Superradiance, Patch microcavities
Mot clés : Polariton, Plasmon, Puits quantiques de semiconducteur, Interaction lumière–matière, Superradiance, Microcavités patch

Angela Vasanelli 1; Yanko Todorov 1; Carlo Sirtori 1

1 Université Paris-Diderot, Sorbonne Paris Cité, Laboratoire “Matériaux et phénomènes quantiques”, UMR 7162, 75013 Paris, France
@article{CRPHYS_2016__17_8_861_0,
     author = {Angela Vasanelli and Yanko Todorov and Carlo Sirtori},
     title = {Ultra-strong light{\textendash}matter coupling and superradiance using dense electron gases},
     journal = {Comptes Rendus. Physique},
     pages = {861--873},
     publisher = {Elsevier},
     volume = {17},
     number = {8},
     year = {2016},
     doi = {10.1016/j.crhy.2016.05.001},
     language = {en},
}
TY  - JOUR
AU  - Angela Vasanelli
AU  - Yanko Todorov
AU  - Carlo Sirtori
TI  - Ultra-strong light–matter coupling and superradiance using dense electron gases
JO  - Comptes Rendus. Physique
PY  - 2016
SP  - 861
EP  - 873
VL  - 17
IS  - 8
PB  - Elsevier
DO  - 10.1016/j.crhy.2016.05.001
LA  - en
ID  - CRPHYS_2016__17_8_861_0
ER  - 
%0 Journal Article
%A Angela Vasanelli
%A Yanko Todorov
%A Carlo Sirtori
%T Ultra-strong light–matter coupling and superradiance using dense electron gases
%J Comptes Rendus. Physique
%D 2016
%P 861-873
%V 17
%N 8
%I Elsevier
%R 10.1016/j.crhy.2016.05.001
%G en
%F CRPHYS_2016__17_8_861_0
Angela Vasanelli; Yanko Todorov; Carlo Sirtori. Ultra-strong light–matter coupling and superradiance using dense electron gases. Comptes Rendus. Physique, Volume 17 (2016) no. 8, pp. 861-873. doi : 10.1016/j.crhy.2016.05.001. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2016.05.001/

[1] C. Ciuti; G. Bastard; I. Carusotto Quantum vacuum properties of the intersubband cavity polariton field, Phys. Rev. B, Volume 72 (2005)

[2] S.D. Liberato; C. Ciuti; I. Carusotto Quantum vacuum radiation spectra from a semiconductor microcavity with a time-modulated vacuum Rabi frequency, Phys. Rev. Lett., Volume 98 (2007) | DOI

[3] A. Auer; G. Burkard Entangled photons from the polariton vacuum in a switchable optical cavity, Phys. Rev. B, Volume 85 (2012) http://link.aps.org/doi/10.1103/PhysRevB.85.235140 | DOI

[4] P. Nataf; C. Ciuti No-go theorem for superradiant quantum phase transitions in cavity qed and counter-example in circuit qed, Nat. Commun., Volume 1 (2010), p. 72 | DOI

[5] S. De Liberato; C. Ciuti Quantum phases of a multimode bosonic field coupled to flat electronic bands, Phys. Rev. Lett., Volume 110 (2013) http://link.aps.org/doi/10.1103/PhysRevLett.110.133603 | DOI

[6] C. Ciuti; I. Carusotto Input–output theory of cavities in the ultrastrong coupling regime: the case of time-independent cavity parameters, Phys. Rev. A, Volume 74 (2006) no. 3

[7] S.D. Liberato; C. Ciuti Quantum model of microcavity intersubband electroluminescent devices, Phys. Rev. B, Volume 77 (2008) | DOI

[8] S.D. Liberato; C. Ciuti Quantum theory of electron tunneling into intersubband cavity polariton states, Phys. Rev. B, Volume 79 (2009)

[9] A. Ridolfo; M. Leib; S. Savasta; M.J. Hartmann Photon blockade in the ultrastrong coupling regime, Phys. Rev. Lett., Volume 109 (2012) http://link.aps.org/doi/10.1103/PhysRevLett.109.193602 | DOI

[10] E. Orgiu; J. George; J.A. Hutchison; E. Devaux; J.F. Dayen; B. Doudin; F. Stellacci; C. Genet; J. Schachenmayer; C. Genes; G. Pupillo; P. Samorì; T.W. Ebbesen Conductivity in organic semiconductors hybridized with the vacuum field, Nat. Mater., Volume 14 (2015), p. 1123

[11] J. Feist; F.J. Garcia-Vidal Extraordinary exciton conductance induced by strong coupling, Phys. Rev. Lett., Volume 114 (2015)

[12] J. Schachenmayer; C. Genes; E. Tignone; G. Pupillo Cavity-enhanced transport of excitons, Phys. Rev. Lett., Volume 114 (2015) http://link.aps.org/doi/10.1103/PhysRevLett.114.196403 | DOI

[13] J.A. Hutchison; A. Liscio; T. Schwartz; A. Canaguier-Durand; C. Genet; V. Palermo; P. Samori; T.W. Ebbesen Tuning the work-function via strong coupling, Adv. Mater., Volume 25 (2013), p. 2481 | DOI

[14] G. Günter; A.A. Anappara; J. Hees; A. Sell; G. Biasiol; L. Sorba; S.D. Liberato; C. Ciuti; A. Tredicucci; A. Leitenstorfer; R. Huber Sub-cycle switch-on of ultrastrong light–matter interaction, Nature, Volume 458 (2009), p. 178

[15] Y. Todorov; A.M. Andrews; R. Colombelli; S.D. Liberato; C. Ciuti; P. Klang; G. Strasser; C. Sirtori Ultrastrong light–matter coupling regime with polariton dots, Phys. Rev. Lett., Volume 105 (2010)

[16] A. Liu Rabi splitting of the optical intersubband absorption line of multiple quantum wells inside a Fabry–Pérot microcavity, Phys. Rev. B, Volume 55 (1997) no. 11, p. 7101

[17] D. Dini; R. Köhler; A. Tredicucci; G. Biasiol; L. Sorba Microcavity polariton splitting of intersubband transitions, Phys. Rev. Lett., Volume 90 (2003) no. 12

[18] A.A. Anappara; S.D. Liberato; A. Tredicucci; C. Ciuti; G. Biasiol; L. Sorba; F. Beltram Signatures of the ultrastrong light–matter coupling regime, Phys. Rev. B, Volume 79 (2009)

[19] P. Jouy; A. Vasanelli; Y. Todorov; A. Delteil; G. Biasiol; L. Sorba; C. Sirtori Transition from strong to ultra-strong coupling regime in mid-infrared metal–dielectric–metal cavities, Appl. Phys. Lett., Volume 98 (2011) no. 23, p. 231114

[20] M. Porer; J.-M. Ménard; A. Leitenstorfer; R. Huber; R. Degl'Innocenti; S. Zanotto; G. Biasiol; L. Sorba; A. Tredicucci Nonadiabatic switching of a photonic band structure: ultrastrong light–matter coupling and slow-down of light, Phys. Rev. B, Volume 85 (2012) http://link.aps.org/doi/10.1103/PhysRevB.85.081302 | DOI

[21] A. Delteil; A. Vasanelli; Y. Todorov; C.F. Palma; M.R. St-Jean; G. Beaudoin; I. Sagnes; C. Sirtori Charge-induced coherence between intersubband plasmons in a quantum structure, Phys. Rev. Lett., Volume 109 (2012)

[22] B. Askenazi; A. Vasanelli; A. Delteil; Y. Todorov; L.C. Andreani; G. Beaudoin; I. Sagnes; C. Sirtori Ultra-strong light–matter coupling for designer Reststrahlen band, New J. Phys., Volume 16 (2014)

[23] M. Geiser; F. Castellano; G. Scalari; M. Beck; L. Nevou; J. Faist Ultrastrong coupling regime and plasmon polaritons in parabolic semiconductor quantum wells, Phys. Rev. Lett., Volume 108 (2012) http://link.aps.org/doi/10.1103/PhysRevLett.108.106402 | DOI

[24] D. Dietze; K. Unterrainer; J. Darmo Role of geometry for strong coupling in active terahertz metamaterials, Phys. Rev. B, Volume 87 (2013) http://link.aps.org/doi/10.1103/PhysRevB.87.075324 | DOI

[25] T. Niemczyk; F. Deppe; H. Huebl; E.P. Menzel; F. Hocke; M.J. Schwarz; J.J. Garcia-Ripoll; D. Zueco; T. Hümmer; E. Solano; A. Marx; R. Gross Circuit quantum electrodynamics in the ultrastrong-coupling regime, Nat. Phys., Volume 6 (2010), p. 772 | DOI

[26] D. Ballester; G. Romero; J.J. García-Ripoll; F. Deppe; E. Solano Quantum simulation of the ultrastrong-coupling dynamics in circuit quantum electrodynamics, Phys. Rev. X, Volume 2 (2012) http://link.aps.org/doi/10.1103/PhysRevX.2.021007 | DOI

[27] G. Scalari; C. Maissen; D. Turcinkova; D. Hagenmuller; S.D. Liberato; C. Ciuti; C. Reichl; D. Schuh; W. Wegscheider; M. Beck; J. Faist Ultrastrong coupling of the cyclotron transition of a 2d electron gas to a THz metamaterial, Science, Volume 335 (2012), p. 1323 | DOI

[28] V.M. Muravev; P.A. Gusikhin; I.V. Andreev; I.V. Kukushkin Ultrastrong coupling of high-frequency two-dimensional cyclotron plasma mode with a cavity photon, Phys. Rev. B, Volume 87 (2013) http://link.aps.org/doi/10.1103/PhysRevB.87.045307 | DOI

[29] S. Kéna-Cohen; S.A. Maier; D.D.C. Bradley Ultrastrongly coupled exciton–polaritons in metal-clad organic semiconductor microcavities, Adv. Opt. Mater., Volume 1 (2013), p. 827 | DOI

[30] S. Gambino; M. Mazzeo; A. Genco; O.D. Stefano; S. Savasta; S. Patane; D. Ballarini; F. Mangione; G. Lerario; D. Sanvitto; G. Gigli Exploring light–matter interaction phenomena under ultrastrong coupling regime, ACS Photonics, Volume 1 (2014), p. 1042 | DOI

[31] T. Schwartz; J.A. Hutchison; C. Genet; T.W. Ebbesen Reversible switching of ultrastrong light-molecule coupling, Phys. Rev. Lett., Volume 106 (2011) http://link.aps.org/doi/10.1103/PhysRevLett.106.196405 | DOI

[32] J. Bellessa; C. Symonds; K. Vynck; A. Lemaître; A. Brioude; L. Beaur; J.-C. Plenet; P. Viste; D. Felbacq; E. Cambril; P. Valvin Giant Rabi splitting between localized mixed plasmon-exciton states in a two-dimensional array of nanosize metallic disks in an organic semiconductor, Phys. Rev. B, Volume 80 (2009) http://link.aps.org/doi/10.1103/PhysRevB.80.033303 | DOI

[33] E. Dupont; H.C. Liu; A.J. SpringThorpe; W. Lai; M. Extavour Vacuum-field Rabi splitting in quantum-well infrared photodetectors, Phys. Rev. B, Volume 68 (2003) http://link.aps.org/doi/10.1103/PhysRevB.68.245320 | DOI

[34] L. Sapienza; A. Vasanelli; C. Ciuti; C. Manquest; C. Sirtori; R. Colombelli; U. Gennser Photovoltaic probe of cavity polaritons in a quantum cascade structure, Appl. Phys. Lett., Volume 90 (2007), p. 201101

[35] L. Sapienza; A. Vasanelli; R. Colombelli; C. Ciuti; Y. Chassagneux; C. Manquest; U. Gennser; C. Sirtori Electrically injected cavity polaritons, Phys. Rev. Lett., Volume 100 (2008)

[36] Y. Todorov; P. Jouy; A. Vasanelli; L. Sapienza; R. Colombelli; U. Gennser; C. Sirtori Stark tunable electroluminescence from cavity polariton states, Appl. Phys. Lett., Volume 93 (2008), p. 171105

[37] P. Jouy; A. Vasanelli; Y. Todorov; L. Sapienza; R. Colombelli; U. Gennser; C. Sirtori Intersubband electroluminescent devices operating in the strong coupling regime, Phys. Rev. B, Volume 82 (2010)

[38] A. Delteil; A. Vasanelli; P. Jouy; D. Barate; J. Moreno; R. Teissier; A. Baranov; C. Sirtori Optical phonon scattering of cavity polaritons in an electroluminescent device, Phys. Rev. B, Volume 83 (2011) 081404(R)

[39] M. Geiser; G. Scalari; F. Castellano; M. Beck; J. Faist Room temperature terahertz polariton emitter, Appl. Phys. Lett., Volume 101 (2012), p. 141118 | DOI

[40] S.D. Liberato; C. Ciuti Stimulated scattering and lasing of intersubband cavity polaritons, Phys. Rev. Lett., Volume 102 (2009)

[41] R. Colombelli; J.-M. Manceau Perspectives for intersubband polariton lasers, Phys. Rev. X, Volume 5 (2015) http://link.aps.org/doi/10.1103/PhysRevX.5.011031 | DOI

[42] A. Imamoglu; R.J. Ram; S. Pau; Y. Yamamoto Nonequilibrium condensates and lasers without inversion: exciton–polariton lasers, Phys. Rev. A, Volume 53 (1996), pp. 4250-4253 http://link.aps.org/doi/10.1103/PhysRevA.53.4250 | DOI

[43] D. Bajoni; P. Senellart; E. Wertz; I. Sagnes; A. Miard; A. Lemaître; J. Bloch Polariton laser using single micropillar GaAs-GaAlAs semiconductor cavities, Phys. Rev. Lett., Volume 100 (2008)

[44] A. Benz; S. Campione; S. Liu; I. Montano; J. Klem; A. Allerman; J. Wendt; M. Sinclair; F. Capolino; I. Brener Strong coupling in the sub-wavelength limit using metamaterial nanocavities, Nat. Commun., Volume 4 (2013), p. 2882 | DOI

[45] S. Campione; A. Benz; J.F. Klem; M.B. Sinclair; I. Brener; F. Capolino Electrodynamic modeling of strong coupling between a metasurface and intersubband transitions in quantum wells, Phys. Rev. B, Volume 89 (2014) http://link.aps.org/doi/10.1103/PhysRevB.89.165133 | DOI

[46] D. Dietze; A. Benz; G. Strasser; K. Unterrainer; J. Darmo Terahertz meta-atoms coupled to a quantum well intersubband transition, Opt. Express, Volume 19 (2011), p. 13700

[47] J. Lee; M. Tymchenko; C. Argyropoulos; P.-Y. Chen; F. Lu; F. Demmerle; G. Boehm; M.-C. Amann; A. Alù; M.A. Belkin Giant nonlinear response from plasmonic metasurfaces coupled to intersubband transitions, Nature, Volume 511 (2014), p. 65 | DOI

[48] S. Campione; A. Benz; M.B. Sinclair; F. Capolino; I. Brener Second harmonic generation from metamaterials strongly coupled to intersubband transitions in quantum wells, Appl. Phys. Lett., Volume 104 (2014), p. 131104 | DOI

[49] S. Zanotto; F.P. Mezzapesa; F. Bianco; G. Biasiol; L. Baldacci; M.S. Vitiello; L. Sorba; R. Colombelli; A. Tredicucci Perfect energy-feeding into strongly coupled systems and interferometric control of polariton absorption, Nat. Phys., Volume 10 (2014), pp. 830-834 | DOI

[50] T. Laurent; Y. Todorov; A. Vasanelli; A. Delteil; C. Sirtori; G. Beaudoin; I. Sagnes Superradiant emission from a collective excitation in a semiconductor, Phys. Rev. Lett., Volume 115 (2015)

[51] M. Helm Intersubband Transitions in Quantum Wells. Physics and Device Applications I, Semiconductor and Semimetals, vol. 66, Academic Press, 2000

[52] C. Sirtori; F. Capasso; J. Faist; S. Scandolo Nonparabolicity and a sum rule associated with bound-to-bound and bound-to-continuum intersubband transitions in quantum wells, Phys. Rev. B, Volume 50 (1994) no. 12, p. 8663

[53] T. Ando; A.B. Fowler; F. Stern Electronic properties of two-dimensional systems, Rev. Mod. Phys., Volume 54 (1982), p. 437

[54] L. Wendler; E. Kändler Intra- and intersubband plasmon–polaritons in semiconductor quantum wells, Phys. Status Solidi B, Volume 177 (1993), p. 9

[55] G. Pegolotti; A. Vasanelli; Y. Todorov; C. Sirtori Quantum model of coupled intersubband plasmons, Phys. Rev. B, Volume 90 (2014)

[56] B. Harbecke; B. Heinz; P. Grosse Optical properties of thin films and the Berreman effect, Appl. Phys., Volume 38 (1985), p. 263

[57] A.J. McAlister; E.A. Stern Plasma resonance absorption in thin metal films, Phys. Rev., Volume 132 (1963), p. 1599

[58] Y. Todorov; C. Sirtori Intersubband polaritons in the electrical dipole gauge, Phys. Rev. B, Volume 85 (2012)

[59] J. Nelayah; M. Kociak; O. Stéphan; F.J.G. de Abajo; M. Tencé; L. Henrard; D. Taverna; I. Pastoriza-Santos; L.M. Liz-Marzán; C. Colliex Mapping surface plasmons on a single metallic nanoparticle, Nat. Phys., Volume 3 (2007), pp. 348-353 | DOI

[60] C. Kittel Quantum Theory of Solids, John Wiley & Sons, New York, 1963

[61] A.A. Anappara; A. Tredicucci; G. Biasiol; L. Sorba Electrical control of polariton coupling in intersubband microcavities, Appl. Phys. Lett., Volume 87 (2005)

[62] Y. Todorov; A.M. Andrews; I. Sagnes; R. Colombelli; P. Klang; G. Strasser; C. Sirtori Strong light–matter coupling in subwavelength metal–dielectric microcavities at terahertz frequencies, Phys. Rev. Lett., Volume 102 (2009)

[63] C. Balanis Antenna Theory Analysis and Design, John Wiley & Sons, Hoboken, New Jersey, 2005

[64] B.S. Williams; S. Kumar; H. Callebaut; Q. Hu; J.L. Reno Terahertz quantum-cascade laser at λ=100 μm using metal waveguide for mode confinement, Appl. Phys. Lett., Volume 83 (2003) no. 11, pp. 2124-2126 http://scitation.aip.org/content/aip/journal/apl/83/11/10.1063/1.1611642 | DOI

[65] M.J. Adams An Introduction to Optical Waveguides, John Wiley & Sons, Chichester, 1981

[66] Y. Todorov; L. Tosetto; J. Teissier; A.M. Andrews; P. Klang; R. Colombelli; I. Sagnes; G. Strasser; C. Sirtori Optical properties of metal–dielectric–metal microcavities in the frequency range, Opt. Express, Volume 18 (2010) no. 13, pp. 13886-13907 http://www.opticsexpress.org/abstract.cfm?URI=oe-18-13-13886 | DOI

[67] C. Tsau; S. Spearing; M. Schmidt Characterization of wafer-level thermocompression bonds, J. Microelectromech. Syst., Volume 13 (2004) no. 6, pp. 963-971 | DOI

[68] P. Jouy; Y. Todorov; A. Vasanelli; R. Colombelli; I. Sagnes; C. Sirtori Coupling of a surface plasmon with localized subwavelength microcavity modes, Appl. Phys. Lett., Volume 98 (2011) no. 2 http://scitation.aip.org/content/aip/journal/apl/98/2/10.1063/1.3536504

[69] P. Bouchon; C. Koechlin; F. Pardo; R. Haïdar; J.-L. Pelouard Wideband omnidirectional infrared absorber with a patchwork of plasmonic nanoantennas, Opt. Lett., Volume 37 (2012) no. 6, pp. 1038-1040 http://ol.osa.org/abstract.cfm?URI=ol-37-6-1038 | DOI

[70] H.C. Liu; C.Y. Song; Z.R. Wasilewski; A.J. SpringThorpe; J.C. Cao; C. Dharma-wardana; G.C. Aers; D.J. Lockwood; J.A. Gupta Coupled electron–phonon modes in optically pumped resonant intersubband lasers, Phys. Rev. Lett., Volume 90 (2003) http://link.aps.org/doi/10.1103/PhysRevLett.90.077402 | DOI

[71] B. Askenazi, et al., in preparation.

[72] F. Alpeggiani; L.C. Andreani Semiclassical theory of multisubband plasmons: nonlocal electrodynamics and radiative effects, Phys. Rev. B, Volume 90 (2014) http://link.aps.org/doi/10.1103/PhysRevB.90.115311 | DOI

[73] R.H. Dicke Coherence in spontaneous radiation process, Phys. Rev., Volume 93 (1954), p. 99

[74] N. Skribanowitz; I.P. Herman; J.C. MacGillivray; M.S. Feld Observation of Dicke superradiance in optically pumped HF gas, Phys. Rev. Lett., Volume 30 (1973), pp. 309-312 http://link.aps.org/doi/10.1103/PhysRevLett.30.309 | DOI

[75] A. Goban; C.-L. Hung; J.D. Hood; S.-P. Yu; J.A. Muniz; O. Painter; H.J. Kimble Superradiance for atoms trapped along a photonic crystal waveguide, Phys. Rev. Lett., Volume 115 (2015) http://link.aps.org/doi/10.1103/PhysRevLett.115.063601 | DOI

[76] M. Scheibner; T. Schmidt; L. Worschech; A. Forchel; G. Bacher; T. Passow; D. Hommel Superradiance of quantum dots, Nat. Phys., Volume 3 (2007), p. 106 | DOI

[77] H. Fidder; J. Knoester; D.A. Wiersma Superradiant emission and optical dephasing in j-aggregates, Chem. Phys. Lett., Volume 171 (1990) no. 5–6, pp. 529-536 http://www.sciencedirect.com/science/article/pii/000926149085258E | DOI

[78] A.F. van Loo; A. Fedorov; K. Lalumière; B.C. Sanders; A. Blais; A. Wallraff Photon-mediated interactions between distant artificial atoms, Science, Volume 342 (2013) no. 6165, pp. 1494-1496 http://science.sciencemag.org/content/342/6165/1494.full.pdf http://science.sciencemag.org/content/342/6165/1494 (arXiv:) | DOI

[79] Q. Zhang; T. Arikawa; E. Kato; J.L. Reno; W. Pan; J.D. Watson; M.J. Manfra; M.A. Zudov; M. Tokman; M. Erukhimova; A. Belyanin; J. Kono Superradiant decay of cyclotron resonance of two-dimensional electron gases, Phys. Rev. Lett., Volume 113 (2014) http://link.aps.org/doi/10.1103/PhysRevLett.113.047601 | DOI

[80] S. Huppert; A. Vasanelli; T. Laurent; Y. Todorov; G. Pegolotti; G. Beaudoin; I. Sagnes; C. Sirtori Radiatively broadened incandescent sources, ACS Photonics, Volume 2 (2015) no. 12, pp. 1663-1668 | DOI

[81] S. Morina; O.V. Kibis; A.A. Pervishko; I.A. Shelykh Transport properties of a two-dimensional electron gas dressed by light, Phys. Rev. B, Volume 91 (2015) http://link.aps.org/doi/10.1103/PhysRevB.91.155312 | DOI

[82] C.S. Colley; J.C. Hebden; D.T. Delpy; A.D. Cambrey; R.A. Brown; E.A. Zibik; W.H. Ng; L.R. Wilson; J.W. Cockburn Mid-infrared optical coherence tomography, Rev. Sci. Instrum., Volume 78 (2007), p. 123108 | DOI

[83] R. Colombelli; C. Ciuti; Y. Chassagneux; C. Sirtori Quantum cascade intersubband polariton light emitters, Semicond. Sci. Technol., Volume 20 (2005), p. 985

[84] J. Faist; F. Capasso; D.L. Sivco; C. Sirtori; A.L. Hutchinson; A.Y. Cho Quantum cascade laser, Science, Volume 264 (1994), p. 553 | DOI

[85] S. Fathololoumi; E. Dupont; C. Chan; Z. Wasilewski; S. Laframboise; D. Ban; A. Mátyás; C. Jirauschek; Q. Hu; H.C. Liu Terahertz quantum cascade lasers operating up to ≈200 K with optimized oscillator strength and improved injection tunneling, Opt. Express, Volume 20 (2012), p. 3866

Cited by Sources:

Comments - Policy