Comptes Rendus
Cat-qubits for quantum computation
[Qubits de chat pour le calcul quantique]
Comptes Rendus. Physique, Volume 17 (2016) no. 7, pp. 778-787.

Le développement des circuits quantiques Josephson a généré de grands espoirs pour le traitement fiable de l'information quantique. Alors que ces progrès se sont accompagnés de diverses expériences de principe sur des systèmes quantiques de petites tailles, il faut désormais franchir l'étape importante du passage à l'échelle supérieure en nombre de qubits pour les protocoles. Le calcul tolérant aux erreurs avec des qubits logiques protégés est cependant habituellement envisagé au prix d'un significatif surcoût en ressources matérielles. Chacun des qubits physiques impliqués devra par ailleurs toujours disposer de caractéristiques optimales (temps de cohérence, force de couplage et accordabilité). Ici, et dans le but d'explorer des approches alternatives pour dépasser ces obstacles, je passe en revue un ensemble de propositions théoriques récentes et les premières expériences correspondantes, qui rentrent dans un paradigme de protection de mémoire quantique et de calcul quantique universel qui reste peu gourmand en ressources matérielles.

The development of quantum Josephson circuits has created a strong expectation for reliable processing of quantum information. While this progress has already led to various proof-of-principle experiments on small-scale quantum systems, a major scaling step is required towards many-qubit protocols. Fault-tolerant computation with protected logical qubits usually comes at the expense of a significant overhead in the hardware. Each of the involved physical qubits still needs to satisfy the best achieved properties (coherence times, coupling strengths and tunability). Here, and in the aim of addressing alternative approaches to deal with these obstacles, I overview a series of recent theoretical proposals, and the experimental developments following these proposals, to enable a hardware-efficient paradigm for quantum memory protection and universal quantum computation.

Publié le :
DOI : 10.1016/j.crhy.2016.07.011
Keywords: Universal quantum computation, Quantum memory, Quantum error correction, Schrödinger cat states, Quantum superconducting circuits
Mot clés : Calcul quantique universel, Mémoire quantique, Correction des erreurs quantiques, États du chat de Schrödinger, Circuits quantiques supraconducteurs
Mazyar Mirrahimi 1, 2

1 Quantic research team, INRIA Paris, 2 Rue Simone Iff, 75012, Paris, France
2 Department of Applied Physics, Yale University, New Haven, CT 06520, USA
@article{CRPHYS_2016__17_7_778_0,
     author = {Mazyar Mirrahimi},
     title = {Cat-qubits for quantum computation},
     journal = {Comptes Rendus. Physique},
     pages = {778--787},
     publisher = {Elsevier},
     volume = {17},
     number = {7},
     year = {2016},
     doi = {10.1016/j.crhy.2016.07.011},
     language = {en},
}
TY  - JOUR
AU  - Mazyar Mirrahimi
TI  - Cat-qubits for quantum computation
JO  - Comptes Rendus. Physique
PY  - 2016
SP  - 778
EP  - 787
VL  - 17
IS  - 7
PB  - Elsevier
DO  - 10.1016/j.crhy.2016.07.011
LA  - en
ID  - CRPHYS_2016__17_7_778_0
ER  - 
%0 Journal Article
%A Mazyar Mirrahimi
%T Cat-qubits for quantum computation
%J Comptes Rendus. Physique
%D 2016
%P 778-787
%V 17
%N 7
%I Elsevier
%R 10.1016/j.crhy.2016.07.011
%G en
%F CRPHYS_2016__17_7_778_0
Mazyar Mirrahimi. Cat-qubits for quantum computation. Comptes Rendus. Physique, Volume 17 (2016) no. 7, pp. 778-787. doi : 10.1016/j.crhy.2016.07.011. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2016.07.011/

[1] Y. Nakamura; Y. Pashkin; J. Tsai Coherent control of macroscopic quantum states in a single-cooper-pair box, Nature, Volume 398 (1999), p. 786

[2] H. Paik; D. Schuster; L. Bishop; G. Kirchmair; G. Catelani; A. Sears; B. Johnson; M. Reagor; L. Frunzio; L. Glazman; S. Girvin; M. Devoret; R. Schoelkopf Observation of high coherence in Josephson junction qubits measured in a three-dimensional circuit QED architecture, Phys. Rev. Lett., Volume 107 (2011)

[3] C. Rigetti; S. Poletto; J. Gambetta; B. Plourde; J. Chow; A. Corcoles; J. Smolin; S. Merkel; J. Rozen; G. Keefe; M. Rothwell; M. Ketchen; M. Steffen Superconducting qubit in waveguide cavity with coherence time approaching 0.1 ms, Phys. Rev. B, Volume 86 (2012)

[4] M. Devoret; R. Schoelkopf Superconducting circuits for quantum information: an outlook, Science, Volume 339 (2013), pp. 1169-1174

[5] M. Reed; L. DiCarlo; S. Nigg; L. Sun; L. Frunzio; S. Girvin; R. Schoelkopf Realization of three-qubit quantum error correction with superconducting circuits, Nature, Volume 482 (2012), pp. 382-385

[6] L. Sun; A. Petrenko; Z. Leghtas; B. Vlastakis; G. Kirchmair; K. Sliwa; A. Narla; M. Hatridge; S. Shankar; J. Blumoff; L. Frunzio; M. Mirrahimi; M. Devoret; R. Schoelkopf Tracking photon jumps with repeated quantum non-demolition parity measurements, Nature, Volume 511 (2014), pp. 444-448

[7] A. Corcoles; E. Magesan; S. Srinivasan; A. Cross; M. Steffen; J. Gambetta; J. Chow Detecting arbitrary quantum errors via stabilizer measurements on a sublattice of the surface code, Nat. Commun., Volume 6 (2015), p. 6979

[8] D. Ristè; S. Poletto; M. Huang; A. Bruno; V. Vesterinen; O. Saira; L. DiCarlo Detecting bit-flip errors in a logical qubit using stabilizer measurements, Nat. Commun., Volume 6 (2015), p. 6983

[9] J. Kelly; R. Barends; A. Fowler; A. Megrant; E. Jeffrey; T. White; D. Sank; J. Mutus; B. Campbell; Y. Chen; Z. Chen; B. Chiaro; A. Dunsworth; I. Hoi; C. Neill; P. O'Malley; C. Quintana; P. Roushan; A. Vainsencher; J. Wenner; A. Cleland; J. Martinis State preservation by repetitive error detection in a superconducting quantum circuit, Nature, Volume 519 (2015), pp. 66-69

[10] P. Shor Scheme for reducing decoherence in quantum memory, Phys. Rev. A, Volume 52 (1995), pp. 2493-2496

[11] A. Steane Error correcting codes in quantum theory, Phys. Rev. Lett., Volume 77 (1996) no. 5

[12] Z. Leghtas; G. Kirchmair; B. Vlastakis; R. Schoelkopf; M. Devoret; M. Mirrahimi Hardware-efficient autonomous quantum memory protection, Phys. Rev. Lett., Volume 111 (2013)

[13] Z. Leghtas; G. Kirchmair; B. Vlastakis; M. Devoret; R. Schoelkopf; M. Mirrahimi Deterministic protocol for mapping a qubit to coherent state superpositions in a cavity, Phys. Rev. A, Volume 87 (2013)

[14] B. Vlastakis; G. Kirchmair; Z. Leghtas; S. Nigg; L. Frunzio; S. Girvin; M. Mirrahimi; M. Devoret; R. Schoelkopf Deterministically encoding quantum information using 100-photon Schrödinger cat states, Science, Volume 342 (2013), pp. 607-610

[15] D. Schuster; A. Houck; J. Schreier; A. Wallraff; J. Gambetta; A. Blais; L. Frunzio; J. Majer; B. Johnson; M. Devoret; S. Girvin; R.J. Schoelkopf Resolving photon number states in a superconducting circuit, Nature, Volume 445 (2007), pp. 515-518

[16] J. Koch; T. Yu; J. Gambetta; A. Houck; D. Schuster; J. Majer; A. Blais; M. Devoret; S. Girvin; R. Schoelkopf Charge-insensitive qubit design derived from the cooper pair box, Phys. Rev. A, Volume 76 (2007)

[17] M. Mirrahimi; Z. Leghtas; V. Albert; S. Touzard; R. Schoelkopf; L. Jiang; M. Devoret Dynamically protected cat-qubits: a new paradigm for universal quantum computation, New J. Phys., Volume 16 (2014)

[18] Z. Leghtas; S. Touzard; I. Pop; A. Kou; B. Vlastakis; A. Petrenko; K. Sliwa; A. Narla; S. Shankar; M. Hatridge; M. Reagor; L. Frunzio; R. Schoelkopf; M. Mirrahimi; M. Devoret Confining the state of light to a quantum manifold by engineered two-photon loss, Science, Volume 347 (2015), pp. 853-857

[19] B. Johnson; M.R. ad; A.A. Houck; D. Schuster; L.S. Bishop; E. Ginossar; J. Gambetta; L. DiCarlo; L. Frunzio; S. Girvin; R. Schoelkopf Quantum non-demolition detection of single microwave photons in a circuit, Nat. Phys., Volume 6 (2010), pp. 663-667

[20] M. Brune; S. Haroche; J.-M. Raimond; L. Davidovich; N. Zagury Manipulation of photons in a cavity by dispersive atom-field coupling: quantum-nondemolition measurements and génération of “Schrödinger cat” states, Phys. Rev. A, Volume 45 (1992) no. 7, pp. 5193-5214

[21] P. Bertet; A. Auffeves; P. Maioli; S. Osnaghi; T. Meunier; M. Brune; J. Raimond; S. Haroche Direct measurement of the Wigner function of a one-photon Fock state in a cavity, Phys. Rev. Lett., Volume 89 (2002)

[22] R. Vijay; M. Devoret; I. Siddiqi Invited review article: the Josephson bifurcation amplifier, Rev. Sci. Instrum., Volume 80 (2009), p. 111101

[23] N. Bergeal; R. Vijay; V. Manucharyan; I. Siddiqi; R. Schoelkopf; S. Girvin; M. Devoret Analog information processing at the quantum limit with a Josephson ring modulator, Nat. Phys., Volume 6 (2010), pp. 296-302

[24] N. Roch; E. Flurin; F. Nguyen; P. Morfin; P. Campagne-Ibarcq; M. Devoret; B. Huard Widely tunable, non-degenerate three-wave mixing microwave device operating near the quantum limit, Phys. Rev. Lett., Volume 108 (2012)

[25] M. Wolinsky; H. Carmichael Quantum noise in the parametric oscillator: from squeezed states to coherent-state superpositions, Phys. Rev. Lett., Volume 60 (1988), p. 1836

[26] S. Nigg; H. Paik; B. Vlastakis; G. Kirchmair; S. Shankar; L. Frunzio; M. Devoret; R. Schoelkopf; S. Girvin Black-box superconducting circuit quantization, Phys. Rev. Lett., Volume 108 (2012)

[27] H. Carmichael Statistical Methods in Quantum Optics 2: Non-Classical Fields, Springer, 2007

[28] G. Kirchmair; B. Vlastakis; Z. Leghtas; S. Nigg; H. Paik; E. Ginossar; M. Mirrahimi; L. Frunzio; S. Girvin; R. Schoelkopf Observation of quantum state collapse and revival due to the single-photon Kerr effect, Nature, Volume 495 (2013), pp. 205-209

[29] V. Albert; S. Krastanov; C. Shen; R.-B. Liu; R. Schoelkopf; M. Devoret; M. Mirrahimi; L. Jiang Holonomic quantum computing with cat-qudits, Phys. Rev. Lett., Volume 116 (2016)

Cité par Sources :

This paper, written in March 2015, is an overview of recent proposals and experiments for encoding, protecting and manipulating quantum information in so-called Schrödinger cat states of a quantum harmonic oscillator. The author acknowledges the collaboration and discussions with Zaki Leghtas, Michel H. Devoret, Robert J. Schoelkopf, and Liang Jiang, as well as many other collaborators at Yale University, the group of Benjamin Huard at the École Normale Supèrieure and the Quantronics group at CEA Saclay.

Commentaires - Politique


Ces articles pourraient vous intéresser

Quantum trajectories of superconducting qubits

Steven J. Weber; Kater W. Murch; Mollie E. Kimchi-Schwartz; ...

C. R. Phys (2016)


Towards a spin-ensemble quantum memory for superconducting qubits

Cécile Grezes; Yuimaru Kubo; Brian Julsgaard; ...

C. R. Phys (2016)