Quantum Zeno Dynamics restricts the evolution of a system in a tailorable subspace of the Hilbert space by repeated measurements of a proper observable. This restricted dynamics can be counterintuitive and lead to the generation of interesting nonclassical states. We describe an experiment implementing the Zeno dynamics in an atomic Rydberg level manifold, and we propose an implementation in the cavity quantum electrodynamics context. Both systems open promising perspectives for quantum-enabled metrology and decoherence studies.
La dynamique de Zénon quantique permet de confiner l'évolution d'un système à un sous-espace choisi de son espace de Hilbert par la mesure répétitive d'une observable convenable. Cette dynamique restreinte peut être très contre-intuitive et conduire à la préparation d'états non classiques. Nous décrivons une expérience réalisant cette dynamique dans une multiplicité de Rydberg et proposons une méthode pour l'observer dans le contexte de l'électrodynamique quantique en cavité. Dans les deux cas, la dynamique de Zénon ouvre des perspectives intéressantes pour la métrologie quantique et l'étude de la décohérence.
Mot clés : Électrodynamique en cavité, Dynamique de Zénon quantique, Atomes de Rydberg, Etats non-classiques
Sébastien Gleyzes 1; Jean-Michel Raimond 1
@article{CRPHYS_2016__17_7_685_0, author = {S\'ebastien Gleyzes and Jean-Michel Raimond}, title = {Quantum {Zeno} dynamics in atoms and cavities}, journal = {Comptes Rendus. Physique}, pages = {685--692}, publisher = {Elsevier}, volume = {17}, number = {7}, year = {2016}, doi = {10.1016/j.crhy.2016.07.005}, language = {en}, }
Sébastien Gleyzes; Jean-Michel Raimond. Quantum Zeno dynamics in atoms and cavities. Comptes Rendus. Physique, Volume 17 (2016) no. 7, pp. 685-692. doi : 10.1016/j.crhy.2016.07.005. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2016.07.005/
[1] Quantum Darwinism, classical reality and the randomness of quantum jumps, Phys. Today, Volume 67 (2014) no. 10, p. 50
[2] Quantum Computation and Quantum Information, Cambridge University Press, Cambridge, UK, 2000
[3] Quantum simulations with trapped ions, Nat. Phys., Volume 8 (2012), pp. 277-284
[4] Quantum simulations with ultracold quantum gases, Nat. Phys., Volume 8 (2012), pp. 267-276
[5] On-chip quantum simulation with superconducting circuits, Nat. Phys., Volume 8 (2012), pp. 292-299
[6] Quantum-enhanced measurements: beating the standard quantum limit, Science, Volume 306 (2004), p. 1330
[7] Exploring the Quantum: Atoms, Cavities and Photons, Oxford University Press, Oxford, UK, 2006
[8] Spontaneous emission probabilities at radio frequencies, Phys. Rev., Volume 69 (1946), p. 681
[9] A quantum gate between a flying optical photon and a single trapped atom, Nature, Volume 508 (2014), pp. 237-240
[10] Quantum nature of a strongly coupled single quantum dot–cavity system, Nature, Volume 445 (2007), pp. 896-899
[11] Superconducting circuits for quantum information: an outlook, Science, Volume 339 (2013) no. 6124, pp. 1169-1174
[12] Reconstruction of non-classical cavity field states with snapshots of their decoherence, Nature (London), Volume 455 (2008), p. 510
[13] Deterministically encoding quantum information using 100-photon Schrödinger cat states, Science, Volume 342 (2013) no. 6158, pp. 607-610
[14] Quantum Zeno subspaces, Phys. Rev. Lett., Volume 89 (2002)
[15] Zenos paradox in quantum-theory, J. Math. Phys., Volume 18 (1977), p. 756
[16] Quantum Zeno effect, Phys. Rev. A, Volume 41 (1990), p. 2295
[17] The quantum Zeno effect – evolution of an atom impeded by measurement, Opt. Commun., Volume 180 (2000) no. 1–3, pp. 115-120
[18] Conterfactual quantum computation through quantum interrogation, Nature (London), Volume 439 (2006), p. 949
[19] Freezing coherent field growth in a cavity by the quantum Zeno effect, Phys. Rev. Lett., Volume 101 (2008)
[20] Phase space tweezers for tailoring cavity fields by quantum Zeno dynamics, Phys. Rev. Lett., Volume 105 (2010)
[21] Quantum Zeno dynamics of a field in a cavity, Phys. Rev. A, Volume 86 (2012)
[22] Unification of dynamical decoupling and the quantum Zeno effect, Phys. Rev. A, Volume 69 (2004)
[23] Preparation and entanglement purification of qubits through Zeno-like measurements, Phys. Rev. A, Volume 70 (2004)
[24] Distributed CNOT gate via quantum Zeno dynamics, J. Opt. Soc. Am. B, Volume 26 (2009), pp. 2440-2444
[25] Confined quantum Zeno dynamics of a watched atomic arrow, Nat. Phys., Volume 10 (2014), pp. 715-719
[26] Experimental realization of quantum Zeno dynamics, Nat. Commun., Volume 5 (2014), p. 3194
[27] Dynamical suppression of decoherence in two-state quantum systems, Phys. Rev. A, Volume 58 (1998), pp. 2733-2744
Cited by Sources:
Comments - Policy