Comptes Rendus
Quantum Zeno dynamics in atoms and cavities
[Dynamique de Zénon quantique avec des atomes et des cavités]
Comptes Rendus. Physique, Volume 17 (2016) no. 7, pp. 685-692.

La dynamique de Zénon quantique permet de confiner l'évolution d'un système à un sous-espace choisi de son espace de Hilbert par la mesure répétitive d'une observable convenable. Cette dynamique restreinte peut être très contre-intuitive et conduire à la préparation d'états non classiques. Nous décrivons une expérience réalisant cette dynamique dans une multiplicité de Rydberg et proposons une méthode pour l'observer dans le contexte de l'électrodynamique quantique en cavité. Dans les deux cas, la dynamique de Zénon ouvre des perspectives intéressantes pour la métrologie quantique et l'étude de la décohérence.

Quantum Zeno Dynamics restricts the evolution of a system in a tailorable subspace of the Hilbert space by repeated measurements of a proper observable. This restricted dynamics can be counterintuitive and lead to the generation of interesting nonclassical states. We describe an experiment implementing the Zeno dynamics in an atomic Rydberg level manifold, and we propose an implementation in the cavity quantum electrodynamics context. Both systems open promising perspectives for quantum-enabled metrology and decoherence studies.

Publié le :
DOI : 10.1016/j.crhy.2016.07.005
Keywords: Cavity quantum electrodynamics, Quantum Zeno dynamics, Rydberg atoms, Nonclassical states
Mot clés : Électrodynamique en cavité, Dynamique de Zénon quantique, Atomes de Rydberg, Etats non-classiques
Sébastien Gleyzes 1 ; Jean-Michel Raimond 1

1 Laboratoire Kastler Brossel, Collège de France, CNRS, ENS–PSL Research University, UPMC–Sorbonne Universités, 11, place Marcelin-Berthelot, 75005 Paris, France
@article{CRPHYS_2016__17_7_685_0,
     author = {S\'ebastien Gleyzes and Jean-Michel Raimond},
     title = {Quantum {Zeno} dynamics in atoms and cavities},
     journal = {Comptes Rendus. Physique},
     pages = {685--692},
     publisher = {Elsevier},
     volume = {17},
     number = {7},
     year = {2016},
     doi = {10.1016/j.crhy.2016.07.005},
     language = {en},
}
TY  - JOUR
AU  - Sébastien Gleyzes
AU  - Jean-Michel Raimond
TI  - Quantum Zeno dynamics in atoms and cavities
JO  - Comptes Rendus. Physique
PY  - 2016
SP  - 685
EP  - 692
VL  - 17
IS  - 7
PB  - Elsevier
DO  - 10.1016/j.crhy.2016.07.005
LA  - en
ID  - CRPHYS_2016__17_7_685_0
ER  - 
%0 Journal Article
%A Sébastien Gleyzes
%A Jean-Michel Raimond
%T Quantum Zeno dynamics in atoms and cavities
%J Comptes Rendus. Physique
%D 2016
%P 685-692
%V 17
%N 7
%I Elsevier
%R 10.1016/j.crhy.2016.07.005
%G en
%F CRPHYS_2016__17_7_685_0
Sébastien Gleyzes; Jean-Michel Raimond. Quantum Zeno dynamics in atoms and cavities. Comptes Rendus. Physique, Volume 17 (2016) no. 7, pp. 685-692. doi : 10.1016/j.crhy.2016.07.005. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2016.07.005/

[1] W. Zurek Quantum Darwinism, classical reality and the randomness of quantum jumps, Phys. Today, Volume 67 (2014) no. 10, p. 50

[2] M.A. Nielsen; I.L. Chuang Quantum Computation and Quantum Information, Cambridge University Press, Cambridge, UK, 2000

[3] R. Blatt; C.F. Roos Quantum simulations with trapped ions, Nat. Phys., Volume 8 (2012), pp. 277-284

[4] I. Bloch; J. Dalibard; S. Nascimbene Quantum simulations with ultracold quantum gases, Nat. Phys., Volume 8 (2012), pp. 267-276

[5] A.A. Houck; H.E. Tureci; J. Koch On-chip quantum simulation with superconducting circuits, Nat. Phys., Volume 8 (2012), pp. 292-299

[6] V. Giovanetti; S. Lloyd; L. Marcone Quantum-enhanced measurements: beating the standard quantum limit, Science, Volume 306 (2004), p. 1330

[7] S. Haroche; J.-M. Raimond Exploring the Quantum: Atoms, Cavities and Photons, Oxford University Press, Oxford, UK, 2006

[8] E.M. Purcell Spontaneous emission probabilities at radio frequencies, Phys. Rev., Volume 69 (1946), p. 681

[9] A. Reiserer; N. Kalb; G. Rempe; S. Ritter A quantum gate between a flying optical photon and a single trapped atom, Nature, Volume 508 (2014), pp. 237-240

[10] K. Hennessy; A. Badolato; M. Winger; D. Gerace; M. Atature; S. Gulde; S. Falt; E.L. Hu; A. Imamoglu Quantum nature of a strongly coupled single quantum dot–cavity system, Nature, Volume 445 (2007), pp. 896-899

[11] M.H. Devoret; R.J. Schoelkopf Superconducting circuits for quantum information: an outlook, Science, Volume 339 (2013) no. 6124, pp. 1169-1174

[12] S. Deléglise; I. Dotsenko; C. Sayrin; J. Bernu; M. Brune; J.-M. Raimond; S. Haroche Reconstruction of non-classical cavity field states with snapshots of their decoherence, Nature (London), Volume 455 (2008), p. 510

[13] B. Vlastakis; G. Kirchmair; Z. Leghtas; S.E. Nigg; L. Frunzio; S.M. Girvin; M. Mirrahimi; M.H. Devoret; R.J. Schoelkopf Deterministically encoding quantum information using 100-photon Schrödinger cat states, Science, Volume 342 (2013) no. 6158, pp. 607-610

[14] P. Facchi; S. Pascazio Quantum Zeno subspaces, Phys. Rev. Lett., Volume 89 (2002)

[15] B. Misra; E.C.G. Sudarshan Zenos paradox in quantum-theory, J. Math. Phys., Volume 18 (1977), p. 756

[16] W.M. Itano; D.J. Heinzen; J.J. Bollinger; D.J. Wineland Quantum Zeno effect, Phys. Rev. A, Volume 41 (1990), p. 2295

[17] C. Balzer; R. Huesmann; W. Neuhauser; P. Toschek The quantum Zeno effect – evolution of an atom impeded by measurement, Opt. Commun., Volume 180 (2000) no. 1–3, pp. 115-120

[18] O. Hosten; M.T. Rakher; J.T. Barreiro; N.A. Peters; P.G. Kwiat Conterfactual quantum computation through quantum interrogation, Nature (London), Volume 439 (2006), p. 949

[19] J. Bernu; C. Deléglise; C. Sayrin; S. Kuhr; I. Dotsenko; M. Brune; J.-M. Raimond; S. Haroche Freezing coherent field growth in a cavity by the quantum Zeno effect, Phys. Rev. Lett., Volume 101 (2008)

[20] J.-M. Raimond; C. Sayrin; S. Gleyzes; I. Dotsenko; M. Brune; S. Haroche; P. Facchi; S. Pascazio Phase space tweezers for tailoring cavity fields by quantum Zeno dynamics, Phys. Rev. Lett., Volume 105 (2010)

[21] J.M. Raimond; P. Facchi; B. Peaudecerf; S. Pascazio; C. Sayrin; I. Dotsenko; S. Gleyzes; M. Brune; S. Haroche Quantum Zeno dynamics of a field in a cavity, Phys. Rev. A, Volume 86 (2012)

[22] P. Facchi; D. Lidar; S. Pascazio Unification of dynamical decoupling and the quantum Zeno effect, Phys. Rev. A, Volume 69 (2004)

[23] H. Nakazato; M. Unoki; K. Yuasa Preparation and entanglement purification of qubits through Zeno-like measurements, Phys. Rev. A, Volume 70 (2004)

[24] X.-Q. Shao; H.-F. Wang; L. Chen; S. Zhang; Y.-F. Zhao; K.-H. Yeon Distributed CNOT gate via quantum Zeno dynamics, J. Opt. Soc. Am. B, Volume 26 (2009), pp. 2440-2444

[25] A. Signoles; A. Facon; D. Grosso; I. Dotsenko; S. Haroche; J.-M. Raimond; M. Brune; S. Gleyzes Confined quantum Zeno dynamics of a watched atomic arrow, Nat. Phys., Volume 10 (2014), pp. 715-719

[26] F. Schäfer; I. Herrera; S. Cherukattil; C. Lovecchio; F. Cataliotti; F. Caruso; A. Smerzi Experimental realization of quantum Zeno dynamics, Nat. Commun., Volume 5 (2014), p. 3194

[27] L. Viola; S. Lloyd Dynamical suppression of decoherence in two-state quantum systems, Phys. Rev. A, Volume 58 (1998), pp. 2733-2744

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Many-body quantum electrodynamics networks: Non-equilibrium condensed matter physics with light

Karyn Le Hur; Loïc Henriet; Alexandru Petrescu; ...

C. R. Phys (2016)


Cavity QED effects with single quantum dots

Antonio Badolato; Martin Winger; Kevin J. Hennessy; ...

C. R. Phys (2008)