This article reviews efforts to build a new type of quantum device, which combines an ensemble of electronic spins with long coherence times, and a small-scale superconducting quantum processor. The goal is to store over long times arbitrary qubit states in orthogonal collective modes of the spin-ensemble, and to retrieve them on-demand. We first present the protocol devised for such a multi-mode quantum memory. We then describe a series of experimental results using NV (as in nitrogen vacancy) center spins in diamond, which demonstrate its main building blocks: the transfer of arbitrary quantum states from a qubit into the spin ensemble, and the multi-mode retrieval of classical microwave pulses down to the single-photon level with a Hahn-echo like sequence. A reset of the spin memory is implemented in-between two successive sequences using optical repumping of the spins.
Cet article porte sur la réalisation d'un nouveau type de dispositif quantique, dans lequel un ensemble de spins électroniques avec des temps de cohérence longs est associé à un processeur quantique supraconducteur à quelques qubits. Le but est de stocker les états des qubits dans les degrés de liberté collectifs de l'ensemble de spins, et de les récupérer à la demande, bénéficiant ainsi d'une meilleure protection contre la décohérence. En première partie, nous présentons le protocole mis au point pour une telle mémoire quantique multi-mode. Nous décrivons ensuite une série de résultats expérimentaux utilisant des centres NV dans le diamant, démontrant les briques de base de ce protocole : le transfert d'états quantiques arbitraires d'un qubit vers l'ensemble de spins, et la récupération de champs micro-ondes classiques au niveau du photon unique par application d'une séquence de refocalisation de type écho de Hahn. La réinitialisation de la mémoire entre deux séquences successives est réalisée par repompage optique des spins.
Mot clés : Mémoire quantique, Qubits supraconducteurs, Centres NV du diamant, Qubits de spin
Cécile Grezes 1, 2; Yuimaru Kubo 1, 3; Brian Julsgaard 4; Takahide Umeda 5; Junichi Isoya 6; Hitoshi Sumiya 7; Hiroshi Abe 8; Shinobu Onoda 8; Takeshi Ohshima 8; Kazuo Nakamura 9; Igor Diniz 10; Alexia Auffeves 10; Vincent Jacques 11, 12; Jean-François Roch 11; Denis Vion 1; Daniel Esteve 1; Klaus Moelmer 4; Patrice Bertet 1
@article{CRPHYS_2016__17_7_693_0, author = {C\'ecile Grezes and Yuimaru Kubo and Brian Julsgaard and Takahide Umeda and Junichi Isoya and Hitoshi Sumiya and Hiroshi Abe and Shinobu Onoda and Takeshi Ohshima and Kazuo Nakamura and Igor Diniz and Alexia Auffeves and Vincent Jacques and Jean-Fran\c{c}ois Roch and Denis Vion and Daniel Esteve and Klaus Moelmer and Patrice Bertet}, title = {Towards a spin-ensemble quantum memory for superconducting qubits}, journal = {Comptes Rendus. Physique}, pages = {693--704}, publisher = {Elsevier}, volume = {17}, number = {7}, year = {2016}, doi = {10.1016/j.crhy.2016.07.006}, language = {en}, }
TY - JOUR AU - Cécile Grezes AU - Yuimaru Kubo AU - Brian Julsgaard AU - Takahide Umeda AU - Junichi Isoya AU - Hitoshi Sumiya AU - Hiroshi Abe AU - Shinobu Onoda AU - Takeshi Ohshima AU - Kazuo Nakamura AU - Igor Diniz AU - Alexia Auffeves AU - Vincent Jacques AU - Jean-François Roch AU - Denis Vion AU - Daniel Esteve AU - Klaus Moelmer AU - Patrice Bertet TI - Towards a spin-ensemble quantum memory for superconducting qubits JO - Comptes Rendus. Physique PY - 2016 SP - 693 EP - 704 VL - 17 IS - 7 PB - Elsevier DO - 10.1016/j.crhy.2016.07.006 LA - en ID - CRPHYS_2016__17_7_693_0 ER -
%0 Journal Article %A Cécile Grezes %A Yuimaru Kubo %A Brian Julsgaard %A Takahide Umeda %A Junichi Isoya %A Hitoshi Sumiya %A Hiroshi Abe %A Shinobu Onoda %A Takeshi Ohshima %A Kazuo Nakamura %A Igor Diniz %A Alexia Auffeves %A Vincent Jacques %A Jean-François Roch %A Denis Vion %A Daniel Esteve %A Klaus Moelmer %A Patrice Bertet %T Towards a spin-ensemble quantum memory for superconducting qubits %J Comptes Rendus. Physique %D 2016 %P 693-704 %V 17 %N 7 %I Elsevier %R 10.1016/j.crhy.2016.07.006 %G en %F CRPHYS_2016__17_7_693_0
Cécile Grezes; Yuimaru Kubo; Brian Julsgaard; Takahide Umeda; Junichi Isoya; Hitoshi Sumiya; Hiroshi Abe; Shinobu Onoda; Takeshi Ohshima; Kazuo Nakamura; Igor Diniz; Alexia Auffeves; Vincent Jacques; Jean-François Roch; Denis Vion; Daniel Esteve; Klaus Moelmer; Patrice Bertet. Towards a spin-ensemble quantum memory for superconducting qubits. Comptes Rendus. Physique, Volume 17 (2016) no. 7, pp. 693-704. doi : 10.1016/j.crhy.2016.07.006. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2016.07.006/
[1] Coherent Josephson qubit suitable for scalable quantum integrated circuits, Phys. Rev. Lett., Volume 111 (2013)
[2] Hybrid quantum circuits: superconducting circuits interacting with other quantum systems, Rev. Mod. Phys., Volume 85 (2013), pp. 623-653
[3] Quantum technologies with hybrid systems, Proc. Natl. Acad. Sci. USA, Volume 112 (2015) no. 13, pp. 3866-3873
[4] Optical quantum memory, Nat. Photonics, Volume 3 (2009), pp. 706-714
[5] Proposal for a coherent quantum memory for propagating microwave photons, New J. Phys., Volume 15 (2013) no. 6
[6] Storage of multiple coherent microwave excitations in an electron spin ensemble, Phys. Rev. Lett., Volume 105 (2010)
[7] Solid-state electronic spin coherence time approaching one second, Nat. Commun., Volume 4 (2013), p. 1743
[8] Nitrogen-vacancy center in diamond: model of the electronic structure and associated dynamics, Phys. Rev. B, Volume 74 (2006)
[9] Quantum memory for microwave photons in an inhomogeneously broadened spin ensemble, Phys. Rev. Lett., Volume 110 (2013)
[10] Revival of silenced echo and quantum memory for light, New J. Phys., Volume 13 (2011)
[11] Photon-echo quantum memories in inhomogeneously broadened two-level atoms, Phys. Rev. A, Volume 84 (2011)
[12] Quantum computing with an electron spin ensemble, Phys. Rev. Lett., Volume 103 (2009)
[13] Synthesizing arbitrary quantum states in a superconducting resonator, Nature, Volume 459 (2009) no. 7246, pp. 546-549
[14] Tunable resonators for quantum circuits, J. Low Temp. Phys., Volume 151 (2008), p. 1034
[15] Tuning the field in a microwave resonator faster than the photon lifetime, Appl. Phys. Lett., Volume 92 (2008) no. 20, pp. 203501-203503
[16] Catch and release of microwave photon states, Phys. Rev. Lett., Volume 110 (2013)
[17] Catching time-reversed microwave coherent state photons with 99.4 absorption efficiency, Phys. Rev. Lett., Volume 112 (2014)
[18] Coherence in spontaneous radiation processes, Phys. Rev., Volume 93 (1954), p. 99
[19] Storage and retrieval of a microwave field in a spin ensemble, Phys. Rev. A, Volume 85 (2012)
[20] Spin echoes, Phys. Rev., Volume 80 (1950), pp. 580-594
[21] Why the two-pulse photon echo is not a good quantum memory protocol, Phys. Rev. A, Volume 79 (2009)
[22] Fundamental limitations in spin-ensemble quantum memories for cavity fields, Phys. Rev. A, Volume 88 (2013)
[23] Dynamical evolution of an inverted spin ensemble in a cavity: inhomogeneous broadening as a stabilizing mechanism, Phys. Rev. A, Volume 86 (2012)
[24] Scanning confocal optical microscopy and magnetic resonance on single defect centers, Science, Volume 276 (1997) no. 5321, pp. 2012-2014
[25] Excited-state spectroscopy of single nv defects in diamond using optically detected magnetic resonance, New J. Phys., Volume 11 (2009) no. 1
[26] Hybrid quantum circuit with a superconducting qubit coupled to a spin ensemble, Phys. Rev. Lett., Volume 107 (2011)
[27] High-fidelity projective read-out of a solid-state spin quantum register, Nature, Volume 477 (2011), p. 574
[28] The dependences of esr line widths and spin–spin relaxation times of single nitrogen defects on the concentration of nitrogen defects in diamond, J. Phys. D, Appl. Phys., Volume 30 (1997) no. 12, p. 1790
[29] Decoherence and dynamical decoupling control of nitrogen vacancy center electron spins in nuclear spin baths, Phys. Rev. B, Volume 85 (2012)
[30] Room-temperature quantum bit memory exceeding one second, Science, Volume 336 (2012), p. 1283
[31] Ultralong spin coherence time in isotopically engineered diamond, Nat. Mater., Volume 8 (2009), p. 383
[32] Strong coupling of a spin ensemble to a superconducting resonator, Phys. Rev. Lett., Volume 105 (2010)
[33] Towards a spin-ensemble quantum memory for superconducting qubits, Springer International Publishing, 2014 (PhD thesis, Université Pierre-et-Marie-Curie)
[34] Cavity qed with magnetically coupled collective spin states, Phys. Rev. Lett., Volume 107 (2011)
[35] High-cooperativity coupling of electron-spin ensembles to superconducting cavities, Phys. Rev. Lett., Volume 105 (2010)
[36] Probing dynamics of an electron-spin ensemble via a superconducting resonator, Phys. Rev. Lett., Volume 110 (2013)
[37] Anisotropic rare-earth spin ensemble strongly coupled to a superconducting resonator, Phys. Rev. Lett., Volume 110 (2013)
[38] High cooperativity in coupled microwave resonator ferrimagnetic insulator hybrids, Phys. Rev. Lett., Volume 111 (2013)
[39] Hybridizing ferromagnetic magnons and microwave photons in the quantum limit, Phys. Rev. Lett., Volume 113 (2014)
[40] Single-shot qubit readout in circuit quantum electrodynamics, Nat. Phys., Volume 5 (2009) no. 11, pp. 791-795
[41] Electron spin resonance detected by a superconducting qubit, Phys. Rev. B, Volume 86 (2012)
[42] Spectroscopic properties of inhomogeneously broadened spin ensembles in a cavity, Phys. Rev. A, Volume 83 (2011)
[43] Strongly coupling a cavity to inhomogeneous ensembles of emitters: potential for long-lived solid-state quantum memories, Phys. Rev. A, Volume 84 (2011)
[44] Coherent coupling of a superconducting flux qubit to an electron spin ensemble in diamond, Nature, Volume 478 (2011) no. 7368, pp. 221-224
[45] Towards realizing a quantum memory for a superconducting qubit: storage and retrieval of quantum states, Phys. Rev. Lett., Volume 111 (2013)
[46] Coherent coupling between a ferromagnetic magnon and a superconducting qubit, Science, Volume 349 (2015), pp. 405-408
[47] Spin echo serial storage memory, J. Appl. Phys., Volume 26 (1955), p. 1324
[48] Microwave multimode memory with an erbium spin ensemble, Phys. Rev. B, Volume 92 (2015)
[49] Multimode storage and retrieval of microwave fields in a spin ensemble, Phys. Rev. X, Volume 4 (2014)
[50] Storage and retrieval of microwave fields at the single-photon level in a spin ensemble, Phys. Rev. A, Volume 92 (2015)
[51] Reflectivity and transmissivity of a cavity coupled to two-level systems: coherence properties and the influence of phase decay, Phys. Rev. A, Volume 85 (2012)
[52] Controlling spin relaxation with a cavity, Nature, Volume 531 (2016), p. 74
[53] Reaching the quantum limit of sensitivity in electron spin resonance, Nat. Nanotechnol., Volume 11 (2015), pp. 253-257
[54] Approach to high-resolution nmr in solids, Phys. Rev. Lett., Volume 20 (1968), pp. 180-182
[55] Atomic clock transitions in silicon-based spin qubits, Nat. Nanotechnol., Volume 8 (2013) no. 8, pp. 561-564
[56] Optically addressable nuclear spins in a solid with a six-hour coherence time, Nature, Volume 517 (2015) no. 7533, pp. 177-180
[57] et al. Electric-field sensing using single diamond spins, Nat. Phys., Volume 7 (2011) no. 6, pp. 459-463
[58] Fidelity of Fock-state-encoded qubits subjected to continuous-variable Gaussian processes, Phys. Rev. A, Volume 89 (2014)
Cited by Sources:
Comments - Policy