[Trajectoires quantiques de qubits supraconducteurs]
Dans ce compte rendu, nous présentons des expériences récentes permettant d'observer l'évolution d'un qubit supraconducteur pendant une mesure. Nous couvrons de manière pégagogique le processus de mesure dans le cas où le qubit est couplé dispersivement à une cavité micro-ondes de manière à ce que son état soit encodé dans la phase d'un ton micro-onde sondant la cavité. Un enregistrement étalé dans le temps est utilisé pour reconstruire les trajectoires quantiques individuelles de l'état du qubit, et la précision de ces trajectoires est vérifiée par une tomographie d'état quantique. De plus, nous discutons les ensembles de trajectoires, l'évolution symmétrique par renversement du temps, les trajectoires à deux qubits et les applications potentielles en correction d'erreur quantique basée sur la mesure.
In this review, we discuss recent experiments that investigate how the quantum sate of a superconducting qubit evolves during measurement. We provide a pedagogical overview of the measurement process, when the qubit is dispersively coupled to a microwave frequency cavity, and the qubit state is encoded in the phase of a microwave tone that probes the cavity. A continuous measurement record is used to reconstruct the individual quantum trajectories of the qubit state, and quantum state tomography is performed to verify that the state has been tracked accurately. Furthermore, we discuss ensembles of trajectories, time-symmetric evolution, two-qubit trajectories, and potential applications in measurement-based quantum error correction.
Mot clés : Mesure quantique, Processus d'information quantique, Optique quantique au régime micro-onde, Qubits supraconducteurs, Amplificateurs paramétriques
Steven J. Weber 1 ; Kater W. Murch 2 ; Mollie E. Kimchi-Schwartz 1 ; Nicolas Roch 3 ; Irfan Siddiqi 1
@article{CRPHYS_2016__17_7_766_0, author = {Steven J. Weber and Kater W. Murch and Mollie E. Kimchi-Schwartz and Nicolas Roch and Irfan Siddiqi}, title = {Quantum trajectories of superconducting qubits}, journal = {Comptes Rendus. Physique}, pages = {766--777}, publisher = {Elsevier}, volume = {17}, number = {7}, year = {2016}, doi = {10.1016/j.crhy.2016.07.007}, language = {en}, }
TY - JOUR AU - Steven J. Weber AU - Kater W. Murch AU - Mollie E. Kimchi-Schwartz AU - Nicolas Roch AU - Irfan Siddiqi TI - Quantum trajectories of superconducting qubits JO - Comptes Rendus. Physique PY - 2016 SP - 766 EP - 777 VL - 17 IS - 7 PB - Elsevier DO - 10.1016/j.crhy.2016.07.007 LA - en ID - CRPHYS_2016__17_7_766_0 ER -
%0 Journal Article %A Steven J. Weber %A Kater W. Murch %A Mollie E. Kimchi-Schwartz %A Nicolas Roch %A Irfan Siddiqi %T Quantum trajectories of superconducting qubits %J Comptes Rendus. Physique %D 2016 %P 766-777 %V 17 %N 7 %I Elsevier %R 10.1016/j.crhy.2016.07.007 %G en %F CRPHYS_2016__17_7_766_0
Steven J. Weber; Kater W. Murch; Mollie E. Kimchi-Schwartz; Nicolas Roch; Irfan Siddiqi. Quantum trajectories of superconducting qubits. Comptes Rendus. Physique, Volume 17 (2016) no. 7, pp. 766-777. doi : 10.1016/j.crhy.2016.07.007. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2016.07.007/
[1] An Open Systems Approach to Quantum Optics, Springer, Berlin, 1993
[2] Quantum Noise, Springer, 2004
[3] Wave-function approach to dissipative processes in quantum optics, Phys. Rev. Lett., Volume 68 (1992), pp. 580-583 | DOI
[4] Wave-function quantum stochastic differential equations and quantum-jump simulation methods, Phys. Rev. A, Volume 46 (1992), pp. 4363-4381 | DOI
[5] Quantum state diffusion, localization and computation, J. Phys. A, Volume 28 (1995), pp. 5401-5413
[6] Quantum Measurement and Control, Cambridge University Press, 2010
[7] A simple model of quantum trajectories, Am. J. Phys., Volume 70 (2002), p. 7
[8] Quantum measurements and stochastic processes, Phys. Rev. Lett., Volume 52 (1984) no. 19, pp. 1657-1660 | DOI
[9] Quantum stochastic processes as models for state vector reduction, J. Phys. A, Math. Gen., Volume 21 (1988) no. 13, pp. 2885-2898 | DOI
[10] The quantum-state diffusion model applied to open systems, J. Phys. A, Math. Gen., Volume 25 (1992) no. 21, pp. 5677-5691 | DOI
[11] Consistent histories and the interpretation of quantum mechanics, J. Stat. Phys., Volume 36 (1984) no. 1–2, pp. 219-272 | DOI
[12] Shelved optical electron amplifier: observation of quantum jumps, Phys. Rev. Lett., Volume 56 (1986) no. 26, pp. 2797-2799 | DOI
[13] Observation of quantum jumps, Phys. Rev. Lett., Volume 57 (1986) no. 14, pp. 1696-1698 | DOI
[14] Observation of quantum jumps in a single atom, Phys. Rev. Lett., Volume 57 (1986) no. 14, pp. 1699-1702 | DOI
[15] Observation of quantum jumps in a superconducting artificial atom, Phys. Rev. Lett., Volume 106 (2011) no. 11 | DOI
[16] Progressive field-state collapse and quantum non-demolition photon counting, Nature, Volume 448 (2007) no. 7156, pp. 889-893 | DOI
[17] The atom-cavity microscope: single atoms bound in orbit by single photons, Science, Volume 287 (2000) no. 5457, pp. 1447-1453 | DOI
[18] Continuous quantum measurement of a double dot, Phys. Rev. B, Volume 60 (1999) no. 8, pp. 5737-5742 | DOI
[19] Continuous quantum measurement of two coupled quantum dots using a point contact: a quantum trajectory approach, Phys. Rev. B, Volume 63 (2001) no. 12 | DOI
[20] Conditional statistics of electron transport in interacting nanoscale conductors, Nat. Phys., Volume 3 (2007) no. 4, pp. 243-247 | DOI
[21] Quantum trajectory approach to circuit QED: quantum jumps and the Zeno effect, Phys. Rev. A, At. Molec. Opt. Phys., Volume 77 (2008) no. 1 | DOI
[22] Quantum Bayesian approach to circuit QED measurement, 2011 | arXiv
[23] Quantum back-action of an individual variable-strength measurement, Science, Volume 339 (2013), pp. 178-181 | DOI
[24] Observing interferences between past and future quantum states in resonance fluorescence, Phys. Rev. Lett., Volume 112 (2014) no. 18 | DOI
[25] Observing single quantum trajectories of a superconducting quantum bit, Nature, Volume 502 (2013) no. 7470, pp. 211-214 | DOI
[26] Mapping the optimal route between two quantum states, Nature, Volume 511 (2014), pp. 570-573 | DOI
[27] Observation of measurement-induced entanglement and quantum trajectories of remote superconducting qubits, Phys. Rev. Lett., Volume 112 (2014) no. 17 | DOI
[28] Prediction and retrodiction for a continuously monitored superconducting qubit, 2014 | arXiv
[29] Real-time quantum feedback prepares and stabilizes photon number states, Nature, Volume 477 (2011) no. 7362, pp. 73-77 | DOI
[30] Stabilizing Rabi oscillations in a superconducting qubit using quantum feedback, Nature, Volume 490 (2012) no. 7418, pp. 77-80 | DOI
[31] Reversing quantum trajectories with analog feedback, Phys. Rev. Lett., Volume 112 (2014) no. 8 | DOI
[32] Partial-measurement backaction and nonclassical weak values in a superconducting circuit, Phys. Rev. Lett., Volume 111 (2016) | DOI
[33] Manipulating a qubit through the backaction of sequential partial measurements and real-time feedback, Nat. Phys., Volume 10 (2014) no. 3, pp. 189-193 | DOI
[34] Charge-insensitive qubit design derived from the Cooper pair box, Phys. Rev. A, Volume 76 (2007) no. 4 | DOI
[35] Planar superconducting resonators with internal quality factors above one million, Appl. Phys. Lett., Volume 100 (2012) no. 11, p. 113510 | DOI
[36] Improved superconducting qubit coherence using titanium nitride, Appl. Phys. Lett., Volume 103 (2013) no. 1 | DOI
[37] Observation of high coherence in Josephson Junction qubits measured in a three-dimensional circuit QED architecture, Phys. Rev. Lett., Volume 107 (2011) no. 24 | DOI
[38] Cavity quantum electrodynamics for superconducting electrical circuits: an architecture for quantum computation, Phys. Rev. A, Volume 69 (2004) no. 6 | DOI
[39] Qunatum Measurement, Cambridge University Press, 1992
[40] Phase-preserving amplification near the quantum limit with a Josephson ring modulator, Nature, Volume 465 (2010) no. 7294, pp. 64-68 | DOI
[41] Quantum limits on noise in linear amplifiers, Phys. Rev. D, Volume 26 (1982) no. 8, pp. 1817-1839 | DOI
[42] Dispersive magnetometry with a quantum limited SQUID parametric amplifier, Phys. Rev. B, Volume 83 (2011) no. 13 | DOI
[43] A straightforward introduction to continuous quantum measurement, Contemp. Phys., Volume 47 (2006), p. 279
[44] Action principle for continuous quantum measurement, Phys. Rev. A, Volume 88 (2013) no. 4 | DOI
[45] Weak values, quantum trajectories, and the cavity-QED experiment on wave-particle correlation, Phys. Rev. A, Volume 65 (2002) | DOI
[46] Past quantum states of a monitored system, Phys. Rev. Lett., Volume 111 (2013) | DOI
[47] Time-symmetric quantum theory of smoothing, Phys. Rev. Lett., Volume 102 (2009) | DOI
[48] Optimal waveform estimation for classical and quantum systems via time-symmetric smoothing, Phys. Rev. A, Volume 80 (2009) | DOI
[49] Fundamental quantum limit to waveform estimation, Phys. Rev. Lett., Volume 106 (2011) | DOI
[50] Spontaneous dressed-state polarization in the strong driving regime of cavity QED, Phys. Rev. Lett., Volume 103 (2009) | DOI
[51] Adaptive optical phase estimation using time-symmetric quantum smoothing, Phys. Rev. Lett., Volume 104 (2010) | DOI
[52] Past quantum state analysis of the photon number evolution in a cavity, 2014 | arXiv
[53] Entanglement genesis under continuous parity measurement, Phys. Rev. A, Volume 78 (2008) no. 6
[54] Quantum state reconstruction via continuous measurement, Phys. Rev. Lett., Volume 95 (2005) no. 3 | DOI
[55] Quantum state tomography by continuous measurement and compressed sensing, Phys. Rev. A, Volume 87 (2013) no. 3 | DOI
[56] Heralded state preparation in a superconducting qubit, Phys. Rev. Lett., Volume 109 (2012) no. 5 | DOI
[57] Feedback control of a solid-state qubit using high-fidelity projective measurement, Phys. Rev. Lett., Volume 109 (2012) no. 24 | DOI
[58] Persistent control of a superconducting qubit by stroboscopic measurement feedback, Phys. Rev. X, Volume 3 (2013) no. 2 | DOI
[59] Quantum codes on a lattice with boundary, 1998 | arXiv
[60] Implementing a strand of a scalable fault-tolerant quantum computing fabric, Nat. Commun., Volume 5 (2014), p. 4015 | DOI
[61] Superconducting quantum circuits at the surface code threshold for fault tolerance, Nature, Volume 508 (2014) no. 7497, pp. 500-503 | DOI
[62] State preservation by repetitive error detection in a superconducting quantum circuit, 2014 | arXiv
Cité par Sources :
Commentaires - Politique