Comptes Rendus
Detecting itinerant single microwave photons
Comptes Rendus. Physique, Volume 17 (2016) no. 7, pp. 756-765.

Single-photon detectors are fundamental tools of investigation in quantum optics and play a central role in measurement theory and quantum informatics. Photodetectors based on different technologies exist at optical frequencies and much effort is currently being spent on pushing their efficiencies to meet the demands coming from the quantum computing and quantum communication proposals. In the microwave regime, however, a single-photon detector has remained elusive, although several theoretical proposals have been put forth. In this article, we review these recent proposals, especially focusing on non-destructive detectors of propagating microwave photons. These detection schemes using superconducting artificial atoms can reach detection efficiencies of 90% with the existing technologies and are ripe for experimental investigations.

Les détecteurs de photons uniques sont des outils fondamentaux en optique quantique et tiennent un rôle central dans la théorie de la mesure et l'informatique quantique. Dans le domaine optique, plusieurs types de photo-détecteurs sont opérationnels et, pour répondre aux exigences du calcul et de la communication quantiques, un effort considérable est actuellement porté sur l'amélioration de leurs efficacités. Cependant, dans le domaine des micro-ondes, la détection de photons uniques reste un défi à relever, bien que plusieurs propositions théoriques aient été faites. Dans cet article, nous passerons en revue ces récentes propositions, avec un accent particulier sur la détection non destructive de photons mico-ondes propagatifs. Ces schémas de détection basés sur des atomes artificiels supraconducteurs peuvent atteindre des efficacités de détection de 90% avec des technologies existantes et sont prêts pour l'expérimentation.

Published online:
DOI: 10.1016/j.crhy.2016.07.010
Keywords: Single-photon detection, Quantum nondemolition, Superconducting circuits, Microwave photons
Mot clés : Détection de photons uniques, Mesure quantique non destructive, Circuits supraconducteurs, Photons micro-ondes

Sankar Raman Sathyamoorthy 1; Thomas M. Stace 2; Göran Johansson 1

1 Department of Microtechnology and Nanoscience, MC2, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
2 Centre for Engineered Quantum Systems, School of Physical Sciences, University of Queensland, Saint Lucia, Queensland 4072, Australia
@article{CRPHYS_2016__17_7_756_0,
     author = {Sankar Raman Sathyamoorthy and Thomas M. Stace and G\"oran Johansson},
     title = {Detecting itinerant single microwave photons},
     journal = {Comptes Rendus. Physique},
     pages = {756--765},
     publisher = {Elsevier},
     volume = {17},
     number = {7},
     year = {2016},
     doi = {10.1016/j.crhy.2016.07.010},
     language = {en},
}
TY  - JOUR
AU  - Sankar Raman Sathyamoorthy
AU  - Thomas M. Stace
AU  - Göran Johansson
TI  - Detecting itinerant single microwave photons
JO  - Comptes Rendus. Physique
PY  - 2016
SP  - 756
EP  - 765
VL  - 17
IS  - 7
PB  - Elsevier
DO  - 10.1016/j.crhy.2016.07.010
LA  - en
ID  - CRPHYS_2016__17_7_756_0
ER  - 
%0 Journal Article
%A Sankar Raman Sathyamoorthy
%A Thomas M. Stace
%A Göran Johansson
%T Detecting itinerant single microwave photons
%J Comptes Rendus. Physique
%D 2016
%P 756-765
%V 17
%N 7
%I Elsevier
%R 10.1016/j.crhy.2016.07.010
%G en
%F CRPHYS_2016__17_7_756_0
Sankar Raman Sathyamoorthy; Thomas M. Stace; Göran Johansson. Detecting itinerant single microwave photons. Comptes Rendus. Physique, Volume 17 (2016) no. 7, pp. 756-765. doi : 10.1016/j.crhy.2016.07.010. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2016.07.010/

[1] A. Einstein Concerning an heuristic point of view toward the emission and transformation of light, Ann. Phys., Volume 17 (1905), p. 132

[2] H.-K. Lo; M. Curty; K. Tamaki Secure quantum key distribution, Nat. Photonics, Volume 8 (2014), p. 595

[3] M. Giustina et al. Bell violation using entangled photons without the fair-sampling assumption, Nature, Volume 497 (2013), p. 227

[4] E. Knill; R. Laflamme; G.J. Milburn A scheme for efficient quantum computation with linear optics, Nature, Volume 409 (2001), p. 46

[5] G.S. Buller; R.J. Collins Single-photon generation and detection, Meas. Sci. Technol., Volume 21 (2010), p. 12002

[6] M.D. Eisaman et al. Invited review article: single-photon sources and detectors, Rev. Sci. Instrum., Volume 82 (2011)

[7] M. Mariantoni et al. On-chip microwave Fock states and quantum homodyne measurements, 2005 (Preprint) | arXiv

[8] M.P. da Silva et al. Schemes for the observation of photon correlation functions in circuit QED with linear detectors, Phys. Rev. A, Volume 82 (2010)

[9] V.B. Braginskii; Y.I. Vorontsov Quantum-mechanical limitations in macroscopic experiments and modern experimental technique, Sov. Phys. Usp., Volume 17 (1975), p. 644

[10] V.B. Braginskii; Y.I. Vorontsov; F.Y. Khalili Quantum singularities of a ponderomotive meter of electromagnetic energy, J. Exp. Theor. Phys., Volume 46 (1977), pp. 705-706

[11] K.S. Thorne et al. Quantum nondemolition measurements of harmonic oscillators, Phys. Rev. Lett., Volume 40 (1978), pp. 667-671

[12] W.G. Unruh Quantum nondemolition and gravity-wave detection, Phys. Rev. B, Volume 19 (1979), pp. 2888-2896

[13] V.B. Braginskii; Y.I. Vorontsov; K.S. Thorne Quantum nondemolition measurements, Science, Volume 209 (1980), pp. 547-557

[14] P. Grangier; J.A. Levenson; J.-P. Poizat Quantum non-demolition measurements in optics, Nature, Volume 396 (1998), p. 537

[15] A.M. Steane Error-correcting codes in quantum theory, Phys. Rev. Lett., Volume 77 (1996), p. 793

[16] R. Ruskov; A.N. Korotkov Entanglement of solid-state qubits by measurement, Phys. Rev. B, Volume 67 (1993)

[17] L.S. Bishop et al. Proposal for generating and detecting multi-qubit GHZ states in circuit QED, New J. Phys., Volume 11 (2009)

[18] R. Raussendorf; H.J. Briegel One-way quantum computer, Phys. Rev. Lett., Volume 86 (2001), p. 5188

[19] G. Nogues et al. Seeing a single photon without destroying it, Nature, Volume 400 (1999), p. 239

[20] D.I. Schuster et al. Resolving photon number states in a superconducting circuit, Nature, Volume 445 (2007), p. 515

[21] C. Guerlin et al. Progressive field-state collapse and quantum non-demolition photon counting, Nature, Volume 448 (2007), p. 889

[22] H. Wang et al. Measurement of the decay of a Fock states in a superconducting circuit, Phys. Rev. Lett., Volume 101 (2008)

[23] B.R. Johnson et al. Quantum non-demolition detection of single microwave photons in a circuit, Nat. Phys., Volume 6 (2010), p. 663

[24] Y. Yin et al. Catch and release of microwave photon states, Phys. Rev. Lett., Volume 110 (2013)

[25] J. Wenner et al. Catching time-reversed microwave coherent state photons with 99.4% absorption efficiency, Phys. Rev. Lett., Volume 112 (2014)

[26] E. Flurin et al. Superconducting quantum node for entanglement and storage of microwave radiation, Phys. Rev. Lett., Volume 114 (2015)

[27] G. Romero; J.J. García-Ripoll; E. Solano Microwave photon detector in circuit QED, Phys. Rev. Lett., Volume 102 (2009)

[28] G. Romero; J.J. García-Ripoll; E. Solano Photodetection of propagating quantum microwaves in circuit QED, Phys. Scr., Volume 2009 (2009), p. 14004

[29] B. Peropadre et al. Approaching perfect microwave photodetection in circuit QED, Phys. Rev. A, Volume 84 (2011)

[30] Y.F. Chen et al. Microwave photon counter based on Josephson junctions, Phys. Rev. Lett., Volume 107 (2011)

[31] A. Poudel; R. McDermott; M.G. Vavilov Quantum efficiency of a microwave photon detector based on a current-biased Josephson junction, Phys. Rev. B, Volume 86 (2012)

[32] L.C.G. Govia et al. Theory of Josephson photomultipliers: optimal working conditions and back action, Phys. Rev. A, Volume 86 (2012)

[33] L.C.G. Govia et al. High-fidelity qubit measurement with a microwave-photon counter, Phys. Rev. A, Volume 90 (2014)

[34] K. Koshino; K. Inomata; Z. Lin; Y. Nakamura; T. Yamamoto Theory of microwave single-photon detection using an impedance-matched Λ system, Phys. Rev. A, Volume 91 (2015)

[35] K. Koshino; Z. Lin; K. Inomata; T. Yamamoto; Y. Nakamura Dressed-state engineering for continuous detection of itinerant microwave photons, Phys. Rev. A, Volume 93 (2016)

[36] K. Inomata et al. Single microwave-photon detector using an artificial Λ-type three-level system, 2016 (Preprint) | arXiv

[37] J. Koch et al. Charge-insensitive qubit design derived from the Cooper pair box, Phys. Rev. A, Volume 76 (2007)

[38] I.-C. Hoi et al. Giant cross Kerr effect for propagating microwaves induced by an artificial atom, Phys. Rev. Lett., Volume 111 (2013)

[39] B. Fan et al. Breakdown of the cross-Kerr scheme for photon counting, Phys. Rev. Lett., Volume 110 (2013)

[40] S.R. Sathyamoorthy et al. Quantum nondemolition detection of a propagating microwave photon, Phys. Rev. Lett., Volume 112 (2014)

[41] B. Fan et al. Nonabsorbing high-efficiency counter for itinerant microwave photons, Phys. Rev. B, Volume 90 (2014)

[42] J.E. Gough; M.R. James; H.I. Nurdin; J. Combes Quantum filtering for systems driven by fields in single-photon states or superposition of coherent states, Phys. Rev. A, Volume 86 (2012)

[43] M. Lax Quantum noise, IV: quantum theory of noise sources, Phys. Rev., Volume 145 (1966), p. 110

[44] H.M. Wiseman; G.J. Milburn Quantum Measurement and Control, Cambridge University Press, 2010

[45] H.J. Carmichael An Open Systems Approach to Quantum Optics, Springer-Verlag, 1993

[46] J. Gough; M.R. James Quantum feedback networks: Hamiltonian formulation, Commun. Math. Phys., Volume 287 (2009), p. 1109

[47] J. Gough; M.R. James The series product and its application to quantum feedforward and feedback networks, IEEE Trans. Autom. Control, Volume 54 (2009), p. 2530

[48] J. Koch et al. Time-reversal-symmetry breaking in circuit-QED based photon lattices, Phys. Rev. A, Volume 82 (2012)

[49] J. Kerckhoff et al. On-chip superconducting microwave circulator from synthetic rotation, Rev. Phys. Appl., Volume 4 (2015), p. 34002

[50] K.M. Sliwa et al. Reconfigurable Josephson circulator/directional amplifier, Phys. Rev., Volume X 5 (2015), p. 41020

[51] A.C. Mahoney et al. On-chip microwave quantum Hall circulator, 2016 (Preprint) | arXiv

[52] T.M. Stace; C.H.W. Barnes; G.J. Milburn Mesoscopic one-way channels for quantum state transfer via the quantum Hall effect, Phys. Rev. Lett., Volume 93 (2004)

Cited by Sources:

Comments - Policy