Single-photon detectors are fundamental tools of investigation in quantum optics and play a central role in measurement theory and quantum informatics. Photodetectors based on different technologies exist at optical frequencies and much effort is currently being spent on pushing their efficiencies to meet the demands coming from the quantum computing and quantum communication proposals. In the microwave regime, however, a single-photon detector has remained elusive, although several theoretical proposals have been put forth. In this article, we review these recent proposals, especially focusing on non-destructive detectors of propagating microwave photons. These detection schemes using superconducting artificial atoms can reach detection efficiencies of 90% with the existing technologies and are ripe for experimental investigations.
Les détecteurs de photons uniques sont des outils fondamentaux en optique quantique et tiennent un rôle central dans la théorie de la mesure et l'informatique quantique. Dans le domaine optique, plusieurs types de photo-détecteurs sont opérationnels et, pour répondre aux exigences du calcul et de la communication quantiques, un effort considérable est actuellement porté sur l'amélioration de leurs efficacités. Cependant, dans le domaine des micro-ondes, la détection de photons uniques reste un défi à relever, bien que plusieurs propositions théoriques aient été faites. Dans cet article, nous passerons en revue ces récentes propositions, avec un accent particulier sur la détection non destructive de photons mico-ondes propagatifs. Ces schémas de détection basés sur des atomes artificiels supraconducteurs peuvent atteindre des efficacités de détection de 90% avec des technologies existantes et sont prêts pour l'expérimentation.
Mot clés : Détection de photons uniques, Mesure quantique non destructive, Circuits supraconducteurs, Photons micro-ondes
Sankar Raman Sathyamoorthy 1; Thomas M. Stace 2; Göran Johansson 1
@article{CRPHYS_2016__17_7_756_0, author = {Sankar Raman Sathyamoorthy and Thomas M. Stace and G\"oran Johansson}, title = {Detecting itinerant single microwave photons}, journal = {Comptes Rendus. Physique}, pages = {756--765}, publisher = {Elsevier}, volume = {17}, number = {7}, year = {2016}, doi = {10.1016/j.crhy.2016.07.010}, language = {en}, }
Sankar Raman Sathyamoorthy; Thomas M. Stace; Göran Johansson. Detecting itinerant single microwave photons. Comptes Rendus. Physique, Volume 17 (2016) no. 7, pp. 756-765. doi : 10.1016/j.crhy.2016.07.010. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2016.07.010/
[1] Concerning an heuristic point of view toward the emission and transformation of light, Ann. Phys., Volume 17 (1905), p. 132
[2] Secure quantum key distribution, Nat. Photonics, Volume 8 (2014), p. 595
[3] et al. Bell violation using entangled photons without the fair-sampling assumption, Nature, Volume 497 (2013), p. 227
[4] A scheme for efficient quantum computation with linear optics, Nature, Volume 409 (2001), p. 46
[5] Single-photon generation and detection, Meas. Sci. Technol., Volume 21 (2010), p. 12002
[6] et al. Invited review article: single-photon sources and detectors, Rev. Sci. Instrum., Volume 82 (2011)
[7] et al. On-chip microwave Fock states and quantum homodyne measurements, 2005 (Preprint) | arXiv
[8] et al. Schemes for the observation of photon correlation functions in circuit QED with linear detectors, Phys. Rev. A, Volume 82 (2010)
[9] Quantum-mechanical limitations in macroscopic experiments and modern experimental technique, Sov. Phys. Usp., Volume 17 (1975), p. 644
[10] Quantum singularities of a ponderomotive meter of electromagnetic energy, J. Exp. Theor. Phys., Volume 46 (1977), pp. 705-706
[11] et al. Quantum nondemolition measurements of harmonic oscillators, Phys. Rev. Lett., Volume 40 (1978), pp. 667-671
[12] Quantum nondemolition and gravity-wave detection, Phys. Rev. B, Volume 19 (1979), pp. 2888-2896
[13] Quantum nondemolition measurements, Science, Volume 209 (1980), pp. 547-557
[14] Quantum non-demolition measurements in optics, Nature, Volume 396 (1998), p. 537
[15] Error-correcting codes in quantum theory, Phys. Rev. Lett., Volume 77 (1996), p. 793
[16] Entanglement of solid-state qubits by measurement, Phys. Rev. B, Volume 67 (1993)
[17] et al. Proposal for generating and detecting multi-qubit GHZ states in circuit QED, New J. Phys., Volume 11 (2009)
[18] One-way quantum computer, Phys. Rev. Lett., Volume 86 (2001), p. 5188
[19] et al. Seeing a single photon without destroying it, Nature, Volume 400 (1999), p. 239
[20] et al. Resolving photon number states in a superconducting circuit, Nature, Volume 445 (2007), p. 515
[21] et al. Progressive field-state collapse and quantum non-demolition photon counting, Nature, Volume 448 (2007), p. 889
[22] et al. Measurement of the decay of a Fock states in a superconducting circuit, Phys. Rev. Lett., Volume 101 (2008)
[23] et al. Quantum non-demolition detection of single microwave photons in a circuit, Nat. Phys., Volume 6 (2010), p. 663
[24] et al. Catch and release of microwave photon states, Phys. Rev. Lett., Volume 110 (2013)
[25] et al. Catching time-reversed microwave coherent state photons with 99.4% absorption efficiency, Phys. Rev. Lett., Volume 112 (2014)
[26] et al. Superconducting quantum node for entanglement and storage of microwave radiation, Phys. Rev. Lett., Volume 114 (2015)
[27] Microwave photon detector in circuit QED, Phys. Rev. Lett., Volume 102 (2009)
[28] Photodetection of propagating quantum microwaves in circuit QED, Phys. Scr., Volume 2009 (2009), p. 14004
[29] et al. Approaching perfect microwave photodetection in circuit QED, Phys. Rev. A, Volume 84 (2011)
[30] et al. Microwave photon counter based on Josephson junctions, Phys. Rev. Lett., Volume 107 (2011)
[31] Quantum efficiency of a microwave photon detector based on a current-biased Josephson junction, Phys. Rev. B, Volume 86 (2012)
[32] et al. Theory of Josephson photomultipliers: optimal working conditions and back action, Phys. Rev. A, Volume 86 (2012)
[33] et al. High-fidelity qubit measurement with a microwave-photon counter, Phys. Rev. A, Volume 90 (2014)
[34] Theory of microwave single-photon detection using an impedance-matched Λ system, Phys. Rev. A, Volume 91 (2015)
[35] Dressed-state engineering for continuous detection of itinerant microwave photons, Phys. Rev. A, Volume 93 (2016)
[36] et al. Single microwave-photon detector using an artificial Λ-type three-level system, 2016 (Preprint) | arXiv
[37] et al. Charge-insensitive qubit design derived from the Cooper pair box, Phys. Rev. A, Volume 76 (2007)
[38] et al. Giant cross Kerr effect for propagating microwaves induced by an artificial atom, Phys. Rev. Lett., Volume 111 (2013)
[39] et al. Breakdown of the cross-Kerr scheme for photon counting, Phys. Rev. Lett., Volume 110 (2013)
[40] et al. Quantum nondemolition detection of a propagating microwave photon, Phys. Rev. Lett., Volume 112 (2014)
[41] et al. Nonabsorbing high-efficiency counter for itinerant microwave photons, Phys. Rev. B, Volume 90 (2014)
[42] Quantum filtering for systems driven by fields in single-photon states or superposition of coherent states, Phys. Rev. A, Volume 86 (2012)
[43] Quantum noise, IV: quantum theory of noise sources, Phys. Rev., Volume 145 (1966), p. 110
[44] Quantum Measurement and Control, Cambridge University Press, 2010
[45] An Open Systems Approach to Quantum Optics, Springer-Verlag, 1993
[46] Quantum feedback networks: Hamiltonian formulation, Commun. Math. Phys., Volume 287 (2009), p. 1109
[47] The series product and its application to quantum feedforward and feedback networks, IEEE Trans. Autom. Control, Volume 54 (2009), p. 2530
[48] et al. Time-reversal-symmetry breaking in circuit-QED based photon lattices, Phys. Rev. A, Volume 82 (2012)
[49] et al. On-chip superconducting microwave circulator from synthetic rotation, Rev. Phys. Appl., Volume 4 (2015), p. 34002
[50] et al. Reconfigurable Josephson circulator/directional amplifier, Phys. Rev., Volume X 5 (2015), p. 41020
[51] et al. On-chip microwave quantum Hall circulator, 2016 (Preprint) | arXiv
[52] Mesoscopic one-way channels for quantum state transfer via the quantum Hall effect, Phys. Rev. Lett., Volume 93 (2004)
Cited by Sources:
Comments - Policy