[La magnonique des quanta : Le magnon rencontre le qubit supraconducteur]
Nous appliquons les techniques de l'optique quantique micro-onde aux excitations collectives des spins d'une sphère macroscopique d'un isolant ferromagnétique. Nous mettons en évidence, dans la limite d'une unique excitation magnonique, le couplage fort entre un mode magnétostatique de la sphère et un mode d'une cavité micro-onde. En outre, nous avons ajouté un bit quantique supraconducteur à la cavité, ce qui permet de coupler ce bit quantique au mode de magnon, via l'échange virtuel d'un photon. Nous observons ainsi un anticroisement des fréquences de résonance du magnon et de la cavité. Cette plateforme hybride permet la création et la caratérisation d'états non classiques de magnons.
The techniques of microwave quantum optics are applied to collective spin excitations in a macroscopic sphere of a ferromagnetic insulator. We demonstrate, in the single-magnon limit, strong coupling between a magnetostatic mode in the sphere and a microwave cavity mode. Moreover, we introduce a superconducting qubit in the cavity and couple the qubit with the magnon excitation via the virtual photon excitation. We observe the magnon–vacuum-induced Rabi splitting. The hybrid quantum system enables generation and characterization of non-classical quantum states of magnons.
Mot clés : Magnon, Ferromagnétisme, Grenat de fer et d'yttrium, Bits quantiques supraconducteurs, Micro-ondes, Optique quantique
Yutaka Tabuchi 1 ; Seiichiro Ishino 1 ; Atsushi Noguchi 1 ; Toyofumi Ishikawa 1 ; Rekishu Yamazaki 1 ; Koji Usami 1 ; Yasunobu Nakamura 1, 2
@article{CRPHYS_2016__17_7_729_0, author = {Yutaka Tabuchi and Seiichiro Ishino and Atsushi Noguchi and Toyofumi Ishikawa and Rekishu Yamazaki and Koji Usami and Yasunobu Nakamura}, title = {Quantum magnonics: {The} magnon meets the superconducting qubit}, journal = {Comptes Rendus. Physique}, pages = {729--739}, publisher = {Elsevier}, volume = {17}, number = {7}, year = {2016}, doi = {10.1016/j.crhy.2016.07.009}, language = {en}, }
TY - JOUR AU - Yutaka Tabuchi AU - Seiichiro Ishino AU - Atsushi Noguchi AU - Toyofumi Ishikawa AU - Rekishu Yamazaki AU - Koji Usami AU - Yasunobu Nakamura TI - Quantum magnonics: The magnon meets the superconducting qubit JO - Comptes Rendus. Physique PY - 2016 SP - 729 EP - 739 VL - 17 IS - 7 PB - Elsevier DO - 10.1016/j.crhy.2016.07.009 LA - en ID - CRPHYS_2016__17_7_729_0 ER -
%0 Journal Article %A Yutaka Tabuchi %A Seiichiro Ishino %A Atsushi Noguchi %A Toyofumi Ishikawa %A Rekishu Yamazaki %A Koji Usami %A Yasunobu Nakamura %T Quantum magnonics: The magnon meets the superconducting qubit %J Comptes Rendus. Physique %D 2016 %P 729-739 %V 17 %N 7 %I Elsevier %R 10.1016/j.crhy.2016.07.009 %G en %F CRPHYS_2016__17_7_729_0
Yutaka Tabuchi; Seiichiro Ishino; Atsushi Noguchi; Toyofumi Ishikawa; Rekishu Yamazaki; Koji Usami; Yasunobu Nakamura. Quantum magnonics: The magnon meets the superconducting qubit. Comptes Rendus. Physique, Volume 17 (2016) no. 7, pp. 729-739. doi : 10.1016/j.crhy.2016.07.009. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2016.07.009/
[1] Wiring up quantum systems, Nature, Volume 451 (2008), pp. 664-669
[2] Atomic physics and quantum optics using superconducting circuits, Nature, Volume 474 (2011), pp. 589-597
[3] Superconducting circuits for quantum information: an outlook, Science, Volume 339 (2013), pp. 1169-1174
[4] Deterministic entanglement of superconducting qubits by parity measurement and feedback, Nature, Volume 502 (2013), pp. 350-354
[5] Mapping the optimal route between two quantum states, Nature, Volume 511 (2014), pp. 570-573
[6] State preservation by repetitive error detection in a superconducting quantum circuit, Nature, Volume 519 (2015), pp. 66-69
[7] Synthesizing arbitrary quantum states in a superconducting resonator, Nature, Volume 459 (2009), pp. 546-549
[8] Generating entangled microwave radiation over two transmission lines, Phys. Rev. Lett., Volume 109 (2012)
[9] Correlations, indistinguishability and entanglement in Hong-Ou-Mandel experiments at microwave frequencies, Nat. Phys., Volume 9 (2013), pp. 345-348
[10] Confining the state of light to a quantum manifold by engineered two-photon loss, Science, Volume 347 (2015), pp. 853-857
[11] Coherent coupling of a superconducting flux qubit to an electron spin ensemble in diamond, Nature, Volume 478 (2011), pp. 221-224
[12] Hybrid quantum circuit with a superconducting qubit coupled to a spin ensemble, Phys. Rev. Lett., Volume 107 (2011)
[13] Quantum ground state and single-phonon control of a mechanical resonator, Nature, Volume 464 (2010), pp. 697-703
[14] Hybrid circuit cavity quantum electrodynamics with a micromechanical resonator, Nature, Volume 494 (2013), pp. 211-215
[15] Propagating phonons coupled to an artificial atom, Science, Volume 346 (2014), pp. 207-211
[16] Hybridizing ferromagnetic magnons and microwave photons in the quantum limit, Phys. Rev. Lett., Volume 113 (2014)
[17] Coherent coupling between ferromagnetic magnon and superconducting qubit | arXiv
[18] Field dependence of the intrinsic domain magnetization of a ferromagnet, Phys. Rev., Volume 58 (1940), pp. 1098-1113
[19] Magnetostatic modes in ferromagnetic resonance, Phys. Rev., Volume 105 (1957), pp. 390-399
[20] Resonant modes of ferromagnetic spheroids, J. Appl. Phys., Volume 29 (1958), pp. 318-323
[21] Ferrimagnetic resonance modes in spheres, J. Appl. Phys., Volume 30 (1959), pp. 687-698
[22] Ferromagnetic-Relaxation Theory, McGraw–Hill, 1964
[23] Magnetization Oscillations and Waves, CRC Press, 1996
[24] Relaxation mechanisms in ferromagnetic resonance, Phys. Rev. Lett., Volume 6 (1961), pp. 223-225
[25] Ytterbium-ion relaxation in ferrimagnetic resonance, Phys. Lett., Volume 1 (1962), pp. 298-300
[26] Ferrimagnetic resonance of rare-earth-doped iron garnets, J. Appl. Phys., Volume 35 (1964), pp. 882-888
[27] Ferromagnetic relaxation. I. Theory of relaxation of uniform precession and degenerate spectrum in insulators at low temperatures, Phys. Rev., Volume 122 (1961), pp. 791-803
[28] High cooperativity in coupled microwave resonator ferrimagnetic insulator hybrids, Phys. Rev. Lett., Volume 111 (2013)
[29] Strongly coupled magnons and cavity microwave photons, Phys. Rev. Lett., Volume 113 (2014)
[30] High-cooperativity cavity QED with magnons at microwave frequencies, Phys. Rev. Appl., Volume 2 (2014)
[31] The saga of YIG: spectra, thermodynamics, interaction and relaxation of magnons in a complex magnet, Phys. Rep., Volume 229 (1993), pp. 81-144
[32] Bose–Einstein condensation of quasi-equilibrium magnons at room temperature under pumping, Nature, Volume 443 (2006), pp. 430-433
[33] Spin Seebeck insulator, Nat. Matter., Volume 9 (2010), pp. 894-897
[34] Transmission of electrical signals by spin–wave interconversion in a magnetic insulator, Nature, Volume 464 (2010), pp. 262-266
[35] Microwave dielectric loss at single photon energies and millikelvin temperatures, Appl. Phys. Lett., Volume 92 (2008)
[36] The physics of superconducting microwave resonators, 2008 http://thesis.library.caltech.edu/2530/ (PhD dissertation, Pasadena, CA, USA)
[37] Operator-based floquet theory in solid-state NMR, Solid State Nucl. Magn., Volume 37 (2010), pp. 39-59
[38] Cavity QED based on collective magnetic dipole coupling: spin ensembles as hybrid two-level systems, Phys. Rev. Lett., Volume 102 (2009)
[39] Stopped light with storage times greater than one second using electromagnetically induced transparency in a solid, Phys. Rev. Lett., Volume 95 (2005)
[40] Quantum interface between light and atomic ensembles, Rev. Mod. Phys., Volume 82 (2010), pp. 1041-1093
Cité par Sources :
Commentaires - Politique