When a fiber Bragg grating strain sensor is embedded inside a structure, the interaction of the sensor with the host material can lead to spurious results if the radial strain is neglected. In this article, we use numerical simulations to show that the axial and radial strains can be simultaneously measured with a single fiber in which a Bragg grating and a long-period grating are superimposed. Moreover, we present an optimal architecture of the sensor.
Une nouvelle architecture de capteur de déformations à fibre optique basée sur la superposition d'un réseau de Bragg et d'un réseau longue période est proposée afin de mesurer, à partir de deux signaux linéairement indépendants, les déformations transverse et longitudinale dans un milieu hôte. Un dimensionnement du capteur est réalisé par résolution numérique des conditions de résonance des réseaux ; il est démontré la possibilité d'évaluer simultanément ces déformations sans altération de la précision des mesures par rapport aux capteurs de déformation à fibre optique classiques.
Mot clés : Déformation, Capteurs enfouis, Réseaux fibrés
Romain Guyard 1; Dominique Leduc 1; Yann Lecieux 1; Cyril Lupi 1
@article{CRPHYS_2016__17_9_1027_0, author = {Romain Guyard and Dominique Leduc and Yann Lecieux and Cyril Lupi}, title = {Superposition of fiber {Bragg} and {LPG} gratings for embedded strain measurement}, journal = {Comptes Rendus. Physique}, pages = {1027--1037}, publisher = {Elsevier}, volume = {17}, number = {9}, year = {2016}, doi = {10.1016/j.crhy.2016.07.014}, language = {en}, }
TY - JOUR AU - Romain Guyard AU - Dominique Leduc AU - Yann Lecieux AU - Cyril Lupi TI - Superposition of fiber Bragg and LPG gratings for embedded strain measurement JO - Comptes Rendus. Physique PY - 2016 SP - 1027 EP - 1037 VL - 17 IS - 9 PB - Elsevier DO - 10.1016/j.crhy.2016.07.014 LA - en ID - CRPHYS_2016__17_9_1027_0 ER -
%0 Journal Article %A Romain Guyard %A Dominique Leduc %A Yann Lecieux %A Cyril Lupi %T Superposition of fiber Bragg and LPG gratings for embedded strain measurement %J Comptes Rendus. Physique %D 2016 %P 1027-1037 %V 17 %N 9 %I Elsevier %R 10.1016/j.crhy.2016.07.014 %G en %F CRPHYS_2016__17_9_1027_0
Romain Guyard; Dominique Leduc; Yann Lecieux; Cyril Lupi. Superposition of fiber Bragg and LPG gratings for embedded strain measurement. Comptes Rendus. Physique, Volume 17 (2016) no. 9, pp. 1027-1037. doi : 10.1016/j.crhy.2016.07.014. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2016.07.014/
[1] Fiber Bragg grating sensors for structural health monitoring of Tsing Ma bridge: background and experimental observation, Eng. Struct., Volume 28 (2006) no. 5, pp. 648-659
[2] Using embedded fiber Bragg grating (FBG) sensors in smart aircraft structure materials, Proc. Eng., Volume 41 (2012), pp. 600-606
[3] Study of reliability of fibre Bragg grating fibre optic strain sensors for field-test applications, Sens. Actuators A, Phys., Volume 185 (2012), pp. 8-16
[4] Integration and assessment of fibre Bragg grating sensors in an all-fibre reinforced polymer composite road bridge, Sens. Actuators A, Phys., Volume 118 (2005) no. 1, pp. 78-85
[5] Pantograph–catenary monitoring by means of fibre Bragg grating sensors: results from tests in an underground line, Mech. Syst. Signal Process., Volume 41 (2013) no. 1–2, pp. 226-238
[6] Analysis of induced-birefringence effects on fiber Bragg gratings, Opt. Fiber Technol., Volume 6 (2000) no. 3, pp. 299-323
[7] Analytical coherency matrix treatment of shear strained fiber Bragg gratings, Opt. Express, Volume 17 (2009), p. 22624
[8] Discrimination between strain and temperature effects using dual-wavelength fibre grating sensors, Electron. Lett., Volume 30 (1994) no. 13, pp. 1085-1087
[9] Review of multi-parameter fiber grating sensors, Optics East 2007, International Society for Optics and Photonics, 2007
[10] A multi-parameter Bragg grating fiber optic sensor and triaxial strain measurement, Smart Mater. Struct., Volume 17 (2008) no. 3
[11] Simultaneous strain and temperature measurement using a superstructure fiber Bragg grating, IEEE Photonics Technol. Lett., Volume 12 (2000) no. 6, pp. 675-677
[12] Simultaneous measurement of axial strain, temperature, and transverse load by a superstructure fiber grating, Opt. Lett., Volume 26 ( Dec 2001 ) no. 24, pp. 1949-1951
[13] Développement d'un capteur à fibre optique à base de réseaux de Bragg superposés de courtes et de longues périodes : application à la mesure discriminée de température et de déformation, 2010 (PhD thesis, Saint-Étienne, France)
[14] Architecture of optical fiber sensor for the simultaneous measurement of axial and radial strains, Smart Mater. Struct., Volume 22 (2013) no. 7
[15] Properties and sensing applications of long-period gratings, 1996 (PhD thesis, Virginia Tech. Blackburg, VA, USA)
[16] Theory of Elasticity, McGraw-Hill, 1969
[17] Strain monitoring in thermoplastic composites with optical fiber sensors: embedding process, visualization with micro-tomography, and fatigue results, J. Thermoplast. Compos. Mater., Volume 20 (2007) no. 5, pp. 453-472
[18] Determination of the individual strain-optic coefficients in single-mode optical fibers, J. Lightwave Technol., Volume 6 (1988) no. 17
[19] Direct measurement of the axial Poisson's ratio of single carbon fibres, Compos. Sci. Technol., Volume 41 (1991) no. 1, pp. 1-12
[20] Investigation of process-induced strains development by fibre Bragg grating sensors in resin transfer moulded composites, Composites, Part A, Appl. Sci. Manuf., Volume 42 (2011) no. 3, pp. 274-282
[21] Discriminated measures of strain and temperature in metallic specimen with embedded superimposed long and short fibre Bragg gratings, Meas. Sci. Technol., Volume 22 (2011) no. 1
[22] Cladding-mode resonances in short- and long-period fiber grating filters, J. Opt. Soc. Am. A, Volume 14 (1997), pp. 1760-1773
[23] Theory of dielectric waveguides, Integrated Optics, Springer, 1975, pp. 13-81
Cited by Sources:
Comments - Policy