Comptes Rendus
Probing matter with electromagnetic waves / Sonder la matière par les ondes électromagnétiques
Superposition of fiber Bragg and LPG gratings for embedded strain measurement
Comptes Rendus. Physique, Volume 17 (2016) no. 9, pp. 1027-1037.

When a fiber Bragg grating strain sensor is embedded inside a structure, the interaction of the sensor with the host material can lead to spurious results if the radial strain is neglected. In this article, we use numerical simulations to show that the axial and radial strains can be simultaneously measured with a single fiber in which a Bragg grating and a long-period grating are superimposed. Moreover, we present an optimal architecture of the sensor.

Une nouvelle architecture de capteur de déformations à fibre optique basée sur la superposition d'un réseau de Bragg et d'un réseau longue période est proposée afin de mesurer, à partir de deux signaux linéairement indépendants, les déformations transverse et longitudinale dans un milieu hôte. Un dimensionnement du capteur est réalisé par résolution numérique des conditions de résonance des réseaux ; il est démontré la possibilité d'évaluer simultanément ces déformations sans altération de la précision des mesures par rapport aux capteurs de déformation à fibre optique classiques.

Published online:
DOI: 10.1016/j.crhy.2016.07.014
Keywords: Strain, Embedded sensors, Optical fiber gratings
Mot clés : Déformation, Capteurs enfouis, Réseaux fibrés

Romain Guyard 1; Dominique Leduc 1; Yann Lecieux 1; Cyril Lupi 1

1 Institut de génie civil et de mécanique (GeM), l'UNAM Université, Université de Nantes, UMR CNRS 6183, 2, rue de la Houssinière, 44322 Nantes, France
@article{CRPHYS_2016__17_9_1027_0,
     author = {Romain Guyard and Dominique Leduc and Yann Lecieux and Cyril Lupi},
     title = {Superposition of fiber {Bragg} and {LPG} gratings for embedded strain measurement},
     journal = {Comptes Rendus. Physique},
     pages = {1027--1037},
     publisher = {Elsevier},
     volume = {17},
     number = {9},
     year = {2016},
     doi = {10.1016/j.crhy.2016.07.014},
     language = {en},
}
TY  - JOUR
AU  - Romain Guyard
AU  - Dominique Leduc
AU  - Yann Lecieux
AU  - Cyril Lupi
TI  - Superposition of fiber Bragg and LPG gratings for embedded strain measurement
JO  - Comptes Rendus. Physique
PY  - 2016
SP  - 1027
EP  - 1037
VL  - 17
IS  - 9
PB  - Elsevier
DO  - 10.1016/j.crhy.2016.07.014
LA  - en
ID  - CRPHYS_2016__17_9_1027_0
ER  - 
%0 Journal Article
%A Romain Guyard
%A Dominique Leduc
%A Yann Lecieux
%A Cyril Lupi
%T Superposition of fiber Bragg and LPG gratings for embedded strain measurement
%J Comptes Rendus. Physique
%D 2016
%P 1027-1037
%V 17
%N 9
%I Elsevier
%R 10.1016/j.crhy.2016.07.014
%G en
%F CRPHYS_2016__17_9_1027_0
Romain Guyard; Dominique Leduc; Yann Lecieux; Cyril Lupi. Superposition of fiber Bragg and LPG gratings for embedded strain measurement. Comptes Rendus. Physique, Volume 17 (2016) no. 9, pp. 1027-1037. doi : 10.1016/j.crhy.2016.07.014. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2016.07.014/

[1] T.H.T. Chan; L. Yu; H.Y. Tam; Y.Q. Ni; S.Y. Liu; W.H. Chung; L.K. Cheng Fiber Bragg grating sensors for structural health monitoring of Tsing Ma bridge: background and experimental observation, Eng. Struct., Volume 28 (2006) no. 5, pp. 648-659

[2] R. Ramly; W. Kuntjoro; M.K. Abd Rahman Using embedded fiber Bragg grating (FBG) sensors in smart aircraft structure materials, Proc. Eng., Volume 41 (2012), pp. 600-606

[3] F. Surre; R.H. Scott; P. Banerji; P.A.M. Basheer; T. Sun; K.T.V. Grattan Study of reliability of fibre Bragg grating fibre optic strain sensors for field-test applications, Sens. Actuators A, Phys., Volume 185 (2012), pp. 8-16

[4] Y.M. Gebremichael; W. Li; W.J.O. Boyle; B.T. Meggitt; K.T.V. Grattan; B. McKinley; G.F. Fernando; G. Kister; D. Winter; L. Canning; S. Luke Integration and assessment of fibre Bragg grating sensors in an all-fibre reinforced polymer composite road bridge, Sens. Actuators A, Phys., Volume 118 (2005) no. 1, pp. 78-85

[5] M. Bocciolone; G. Bucca; A. Collina; L. Comolli Pantograph–catenary monitoring by means of fibre Bragg grating sensors: results from tests in an underground line, Mech. Syst. Signal Process., Volume 41 (2013) no. 1–2, pp. 226-238

[6] R. Gafsi; M.A. El-Sherif Analysis of induced-birefringence effects on fiber Bragg gratings, Opt. Fiber Technol., Volume 6 (2000) no. 3, pp. 299-323

[7] M.S. Müller; C.D.A. Schnarr Analytical coherency matrix treatment of shear strained fiber Bragg gratings, Opt. Express, Volume 17 (2009), p. 22624

[8] M.G. Xu; J.-L. Archambault; L. Reekie; J.P. Dakin Discrimination between strain and temperature effects using dual-wavelength fibre grating sensors, Electron. Lett., Volume 30 (1994) no. 13, pp. 1085-1087

[9] E. Udd Review of multi-parameter fiber grating sensors, Optics East 2007, International Society for Optics and Photonics, 2007

[10] T. Mawatari; D. Nelson A multi-parameter Bragg grating fiber optic sensor and triaxial strain measurement, Smart Mater. Struct., Volume 17 (2008) no. 3

[11] B.-O. Guan; H.-Y. Tam; X.-M. Tao; X.-Y. Dong Simultaneous strain and temperature measurement using a superstructure fiber Bragg grating, IEEE Photonics Technol. Lett., Volume 12 (2000) no. 6, pp. 675-677

[12] H. Chi; X.-M. Tao; D.-X. Yang; K.-S. Chen Simultaneous measurement of axial strain, temperature, and transverse load by a superstructure fiber grating, Opt. Lett., Volume 26 ( Dec 2001 ) no. 24, pp. 1949-1951

[13] S. Triollet Développement d'un capteur à fibre optique à base de réseaux de Bragg superposés de courtes et de longues périodes : application à la mesure discriminée de température et de déformation, 2010 (PhD thesis, Saint-Étienne, France)

[14] D. Leduc; Y. Lecieux; P.-A. Morvan; C. Lupi Architecture of optical fiber sensor for the simultaneous measurement of axial and radial strains, Smart Mater. Struct., Volume 22 (2013) no. 7

[15] V. Bhatia Properties and sensing applications of long-period gratings, 1996 (PhD thesis, Virginia Tech. Blackburg, VA, USA)

[16] S. Timoshenko; J.N. Goodier Theory of Elasticity, McGraw-Hill, 1969

[17] I. De Baere; E. Voet; W. Van Paepegem; J. Vlekken; V. Cnudde; B. Masschaele; J. Degrieck Strain monitoring in thermoplastic composites with optical fiber sensors: embedding process, visualization with micro-tomography, and fatigue results, J. Thermoplast. Compos. Mater., Volume 20 (2007) no. 5, pp. 453-472

[18] A. Bertholds; R. Dandliker Determination of the individual strain-optic coefficients in single-mode optical fibers, J. Lightwave Technol., Volume 6 (1988) no. 17

[19] I. Krucinska; T. Stypka Direct measurement of the axial Poisson's ratio of single carbon fibres, Compos. Sci. Technol., Volume 41 (1991) no. 1, pp. 1-12

[20] L. Khoun; R. Oliveira; V. Michaud; P. Hubert Investigation of process-induced strains development by fibre Bragg grating sensors in resin transfer moulded composites, Composites, Part A, Appl. Sci. Manuf., Volume 42 (2011) no. 3, pp. 274-282

[21] S. Triollet; L. Robert; E. Marin; Y. Ouerdane Discriminated measures of strain and temperature in metallic specimen with embedded superimposed long and short fibre Bragg gratings, Meas. Sci. Technol., Volume 22 (2011) no. 1

[22] T. Erdogan Cladding-mode resonances in short- and long-period fiber grating filters, J. Opt. Soc. Am. A, Volume 14 (1997), pp. 1760-1773

[23] H. Kogelnik Theory of dielectric waveguides, Integrated Optics, Springer, 1975, pp. 13-81

Cited by Sources:

Comments - Policy