Comptes Rendus
Probing matter with electromagnetic waves / Sonder la matière par les ondes électromagnétiques
Scattering properties of a stratified air/snow/sea ice medium. Small slope approximation
[Diffusion par un milieu stratifié air/neige/mer glacée. Modèle des faibles pentes]
Comptes Rendus. Physique, Volume 17 (2016) no. 9, pp. 995-1002.

L'épaisseur des glaces de mer est un paramètre clé pour l'étude du fonctionnement de la zone arctique. Cette grandeur est obtenue à l'aide de mesures faites depuis un altimètre radar spatial du bord franc de la banquise. Mais ceci suppose que non seulement la charge de neige qui recouvre la glace de mer, mais aussi la distance de pénétration de l'onde dans le milieu soient connues, ce qui n'est en général pas le cas. Dans ce contexte, nous étudions à l'aide de la méthode des faibles pentes la signature radar en bande Ku (f=13 GHz, λ=2.31 cm dans l'air) d'une mer gelée enneigée sous la forme d'une configuration air/neige/glace/mer. La couche de neige est inhomogène et représentée comme un empilement de plusieurs couches ayant des permittivités relatives différentes. Nous mettons en évidence l'influence combinée sur la signature radar du facteur d'isotropie de l'interface air/neige et des facteurs de corrélation entre les différentes interfaces.

The sea-ice thickness, a key parameter in Arctic studies, is derived from radar altimeter height measurements of the freeboard, taking into account not only snow load, but also the penetration depth of the electromagnetic waves inside the snow—this is the not generally the case. Within the framework of the small slope approximation method, we study in Ku-band (f=13 GHz, λ=2.31 cm in the air) the electromagnetic signature of an air/snow/sea ice rough layered medium. The snow is inhomogeneous and is represented as a stack of several layers with different relative permittivities. We show that the electromagnetic response is very sensitive to the isotropy factor of the air/snow interface and to the cross-correlation parameters of interfaces.

Publié le :
DOI : 10.1016/j.crhy.2016.07.017
Keywords: Small slope approximation, Layered medium, Scattered intensity
Mot clés : Modèle des faibles pentes, Milieu multicouches, Intensité diffractée

Richard Dusséaux 1 ; Saddek Afifi 2 ; Monique Dechambre 1

1 Université de Versailles Saint-Quentin-en-Yvelines, LATMOS/IPSL, 10–12, av. de l'Europe, 78140 Vélizy, France
2 Département d'Électronique, Université Badji Mokhtar Annaba, P.O. Box 12, 23000 Annaba, Algeria
@article{CRPHYS_2016__17_9_995_0,
     author = {Richard Duss\'eaux and Saddek Afifi and Monique Dechambre},
     title = {Scattering properties of a stratified air/snow/sea ice medium. {Small} slope approximation},
     journal = {Comptes Rendus. Physique},
     pages = {995--1002},
     publisher = {Elsevier},
     volume = {17},
     number = {9},
     year = {2016},
     doi = {10.1016/j.crhy.2016.07.017},
     language = {en},
}
TY  - JOUR
AU  - Richard Dusséaux
AU  - Saddek Afifi
AU  - Monique Dechambre
TI  - Scattering properties of a stratified air/snow/sea ice medium. Small slope approximation
JO  - Comptes Rendus. Physique
PY  - 2016
SP  - 995
EP  - 1002
VL  - 17
IS  - 9
PB  - Elsevier
DO  - 10.1016/j.crhy.2016.07.017
LA  - en
ID  - CRPHYS_2016__17_9_995_0
ER  - 
%0 Journal Article
%A Richard Dusséaux
%A Saddek Afifi
%A Monique Dechambre
%T Scattering properties of a stratified air/snow/sea ice medium. Small slope approximation
%J Comptes Rendus. Physique
%D 2016
%P 995-1002
%V 17
%N 9
%I Elsevier
%R 10.1016/j.crhy.2016.07.017
%G en
%F CRPHYS_2016__17_9_995_0
Richard Dusséaux; Saddek Afifi; Monique Dechambre. Scattering properties of a stratified air/snow/sea ice medium. Small slope approximation. Comptes Rendus. Physique, Volume 17 (2016) no. 9, pp. 995-1002. doi : 10.1016/j.crhy.2016.07.017. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2016.07.017/

[1] D.J. Wingham; C.R. Francis; S. Baker; C. Bouzinac; D. Brockley; R. Cullen; P. de Château-Thierry; S.W. Laxon; U. Mallow; C. Mavrocordatos; L. Phalippou; G. Ratier; L. Rey; F. Rostan; P. Viau; D.W. Wallis CryoSat: a mission to determine the fluctuations in Earth's land and marine ice fields, Adv. Space Res., Volume 37 (2006), pp. 841-871

[2] T.W.K. Armitage; M.W.J. Davidson Using the interferometric capabilities of the ESA CryoSat-2 mission to improve the accuracy of sea ice freeboard retrievals, IEEE Trans. Geosci. Remote Sens., Volume 52 (2014), pp. 529-536

[3] K.M. Golden; D. Borup; M. Cheney; E. Cherkaeva; M.S. Dawson; D. Kung-Hau; A.K. Fung; D. Isaacson; S.A. Johnson; A.K. Jordan; J.A. Kong; R. Kwok; S.V. Nghiem; R.G. Onstott; J. Sylvester; D.P. Winebrenner; I.H.H. Zabel Inverse electromagnetic scattering models for sea ice, IEEE Trans. Geosci. Remote Sens., Volume 36 (1998), pp. 1675-1704

[4] A.S. Komarov; L. Shafai; D.G. Barber Electromagnetic wave scattering from rough boundaries interfacing inhomogeneous media and application to snow-covered sea ice, Prog. Electromagn. Res., Volume 144 (2014), pp. 201-219

[5] D. Isleifson; I. Jeffrey; L. Shafai; J. LoVetri; D.G. Barber A Monte Carlo method for simulating scattering from sea ice using FVTD, IEEE Trans. Geosci. Remote Sens., Volume 50 (2012), pp. 2658-2668

[6] J.P. Samluk; C.A. Geiger; C.J. Weiss Full-physics 3-D heterogeneous simulations of electromagnetic induction fields on level and deformed sea ice, Ann. Glaciol., Volume 56 (2015), pp. 405-414

[7] A.G. Voronovich Wave Scattering from Rough Surfaces, Springer, Berlin, 1994

[8] A.G. Voronovich; V.U. Zavorotny Theoretical model for scattering of radar signals in Ku- and C-bands from a Rough Sea Surface with breaking waves, Waves Random Media, Volume 11 (2001), pp. 247-269

[9] G. Berginc Small-slope approximation method: a further study of vector wave scattering from two dimensional surfaces and comparison with experimental data, Prog. Electromagn. Res., Volume 37 (2003), pp. 51-87

[10] J.A. Ogilvy Theory of Wave Scattering from Random Rough Surfaces, Adam Hilger, Bristol, 1991

[11] P. Beckmann; A. Spizzichino The Scattering of Electromagnetic Waves from Rough Surfaces, Pergamon Press, Oxford, UK, 1963

[12] C. Berginc; C. Bourrely The small-slope approximation method applied to a three-dimensional slab with rough boundaries, Prog. Electromagn. Res., Volume 73 (2007), pp. 131-211

[13] A. Berrouk; R. Dusséaux; S. Afifi Electromagnetic wave scattering from rough layered interfaces: analysis with the small perturbation method and the small slope approximation, Prog. Electromagn. Res. B, Volume 57 (2014), pp. 177-190

[14] S. Afifi; R. Dusséaux; A. Berrouk Electromagnetic wave scattering from 3D layered structures with randomly rough interfaces: analysis with the small perturbation method and the small slope approximation, IEEE Trans. Antennas Propag., Volume 62 (2014) no. 10, pp. 5200-5208

[15] R. Dusséaux; S. Afifi; M. Dechambre; B. Legresy Simulations of the altimetric signal intensity from 2D layered air/snow/sea-ice rough interfaces, Venice, Italy (ESA SP), Volume 710 (2012)

[16] R.T. Tonboe; L.T. Pedersen; C. Haas Simulation of satellite radar altimeter sea ice thickness retrieval uncertainty, Cryosph. Discuss., Volume 3 (2009), pp. 513-559

[17] P. Phu; A. Ishimaru; Y. Kuga Copolarized and cross-polarized enhanced backscattering from two-dimensional very rough surfaces at millimeter wave frequencies, Radio Sci., Volume 29 (1994) no. 5, pp. 1275-1291

[18] S. Afifi; R. Dusséaux On the co-polarized phase difference of rough layered surfaces: formulas derived from the small perturbation method, IEEE Trans. Antennas Propag., Volume 59 (2011) no. 7, pp. 2607-2618

[19] S. Afifi; R. Dusséaux Scattering by anisotropic rough layered 2D interfaces, IEEE Trans. Antennas Propag., Volume 60 (2012) no. 11, pp. 5315-5328

[20] Z.A. Hussein; Y. Kuga; A. Ishimaru; S. Jaruwatanadilok; K. Pak, IGARSS, Anchorage, AK, USA (2004), pp. 3012-3017

[21] J.A. Kong; K.H. Ding; C.O. Ao Scattering of Electromagnetic Waves – Numerical Simulations, Wiley–Interscience, New York, 2001

Cité par Sources :

Commentaires - Politique