Comets are considered as the most primitive objects in the Solar System. Their composition provides information on the composition of the primitive solar nebula, 4.6 Gyr ago. The radio domain is a privileged tool to study the composition of cometary ices. Observations of the OH radical at 18 cm wavelength allow us to measure the water production rate. A wealth of molecules (and some of their isotopologues) coming from the sublimation of ices in the nucleus have been identified by observations in the millimetre and submillimetre domains. We present an historical review on radio observations of comets, focusing on the results from our group, and including recent observations with the Nançay radio telescope, the IRAM antennas, the Odin satellite, the Herschel space observatory, ALMA, and the MIRO instrument aboard the Rosetta space probe.
Les comètes sont considérées comme les vestiges les mieux préservés du système solaire primitif. Leur composition nous renseigne sur la composition de la nébuleuse primitive il y a 4,6 milliards d'années, fournissant des contraintes sur la formation du système solaire. La radioastronomie est un outil privilégié pour l'étude des glaces cométaires. Le domaine décimétrique permet de mesurer la production en eau, par l'observation du radical OH à 18 cm de longueur d'onde. Le domaine millimétrique et submillimétrique permet d'observer de nombreuses molécules provenant de la sublimation des glaces du noyau, ainsi que leurs isotopologues. Nous présentons un panorama historique des découvertes sur les comètes faites en radioastronomie, mettant l'accent sur les résultats de notre groupe, et incluant des observations récentes faites avec le radiotélescope de Nançay, les antennes de l'IRAM, le satellite Odin, l'observatoire spatial Herschel, ALMA et l'instrument MIRO de la sonde spatiale Rosetta.
Mot clés : Comètes, Composition chimique, Formation du système solaire, Radioastronomie
Jacques Crovisier 1; Dominique Bockelée-Morvan 1; Pierre Colom 1; Nicolas Biver 1
@article{CRPHYS_2016__17_9_985_0, author = {Jacques Crovisier and Dominique Bockel\'ee-Morvan and Pierre Colom and Nicolas Biver}, title = {Comets at radio wavelengths}, journal = {Comptes Rendus. Physique}, pages = {985--994}, publisher = {Elsevier}, volume = {17}, number = {9}, year = {2016}, doi = {10.1016/j.crhy.2016.07.020}, language = {en}, }
Jacques Crovisier; Dominique Bockelée-Morvan; Pierre Colom; Nicolas Biver. Comets at radio wavelengths. Comptes Rendus. Physique, Volume 17 (2016) no. 9, pp. 985-994. doi : 10.1016/j.crhy.2016.07.020. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2016.07.020/
[1] et al. OH observations of comet Kohoutek (1973f) at 18 cm wavelength, Astron. Astrophys., Volume 34 (1974), pp. 163-166
[2] Il y a 40 ans, la radioastronomie cométaire prenait son essor à Nançay, L'Astronomie, Volume 66 (2013), pp. 34-41
[3] Observations at Nançay of the OH 18-cm lines in comets: the data base. Observations made from 1982 to 1999, Astron. Astrophys., Volume 393 (2002), pp. 1053-1064 http://www.lesia.obspm.fr/planeto/cometes/basecom/
[4] The study of comets at radio wavelengths (R.L. Newburn; M. Neugebauer; J. Rahe, eds.), Comets in the Post-Halley Era, Kluwer Academic Publishers, 1991, pp. 149-173
[5] A review of radio interferometric imaging of comets (R.L. Newburn; M. Neugebauer; J. Rahe, eds.), Comets in the Post-Halley Era, Kluwer Academic Publishers, 1991, pp. 175-207
[6] et al. Observations of hydrogen cyanide in comet Halley, Astron. Astrophys., Volume 160 (1986), p. L11-L12
[7] Microwave detection of hydrogen sulfide and methanol in comet Austin (1989c1), Nature, Volume 350 (1991), pp. 318-320
[8] et al. The 1995–2002 long-term monitoring of comet C/1995 O1 (Hale–Bopp) at radio wavelengths, Earth Moon Planets, Volume 90 (2002), pp. 5-14
[9] The composition of cometary volatiles (M.C. Festou; H.U. Keller; H.A. Weaver, eds.), Comets II, Univ. Arizona Press, 2005, pp. 391-423
[10] et al. Ethylene glycol in comet C/1995 O1 (Hale–Bopp), Astron. Astrophys., Volume 418 (2004), p. L35-L38
[11] et al. Radio detection of ammonia in comet Hale–Bopp, Astron. Astrophys., Volume 325 (1997), p. L5-L8
[12] et al. Complex organic molecules in comets C/2012 F6 (Lemmon) and C/2013 R1 (Lovejoy): detection of ethylene glycol and formamide, Astron. Astrophys., Volume 566 (2014)
[13] et al. Ethyl alcohol and sugar in comet C/2014 Q2 (Lovejoy), Sci. Adv., Volume 1 (2015)
[14] et al. Interferometric imaging of the sulfur-bearing molecules H2S, SO and CS in comet C/1995 O1 (Hale–Bopp), Astron. Astrophys., Volume 475 (2007), pp. 1131-1144
[15] et al. Interferometric imaging of carbon monoxide in comet C/1995 O1 (Hale–Bopp): evidence of a strong rotating jet, Astron. Astrophys., Volume 505 (2009), pp. 825-843
[16] et al. Interferometric mapping of the 3.3-mm continuum emission of comet 17P/Holmes after its 2007 outburst, Astron. Astrophys., Volume 542 (2012)
[17] et al. Gas and dust productions of comet 103P/Hartley 2 from millimetre observations: interpreting rotation-induced time variations, Icarus, Volume 228 (2014), pp. 197-216
[18] et al. Mapping the release of volatiles in the inner comae of comets C/2012 F6 (Lemmon) and C/2012 S1 (ISON) using the Atacama Large Millimeter/submillimeter Array, Astrophys. J., Volume 792 (2014)
[19] et al. Observations of the 557 GHz water line in comets with the Odin satellite, Astron. Astrophys., Volume 402 (2003), p. L55-L58
[20] et al. Submillimetre observations of comets with Odin: 2001–2005, Planet. Space Sci., Volume 55 (2007), pp. 1058-1068
[21] et al. HIFI observations of water in the atmosphere of comet C/2008 Q3 (Garradd), Astron. Astrophys., Volume 518 (2010) (Herschel: the first science highlights)
[22] et al. Ocean-like water in the Jupiter-family comet 103P/Hartley 2, Nature, Volume 478 (2011), pp. 218-220
[23] et al. Herschel measurements of the D/H and 16O/18O ratios in water in the Oort-cloud comet C/2009 P1 (Garradd), Astron. Astrophys., Volume 544 (2012)
[24] et al. MIRO: Microwave Instrument for Rosetta Orbiter, Space Sci. Rev., Volume 128 (2007), pp. 561-597
[25] et al. Subsurface properties and early activity of comet 67P/Churyumov–Gerasimenko, Science, Volume 347 (2015) (aaa0709)
[26] et al. Radio continuum observations of Comet P/Halley at 250 GHz, Astron. Astrophys., Volume 222 (1986), pp. 323-328
[27] Radar studies of comet nuclei and grain comae (M.C. Festou; H.U. Keller; H.A. Weaver, eds.), Comets II, Univ. Arizona Press, 2005, pp. 265-279
[28] Global solar-wind interaction and ionospheric dynamics (M.C. Festou; H.U. Keller; H.A. Weaver, eds.), Comets II, Univ. Arizona Press, 2005, pp. 605-629
[29] et al. A homogeneous nucleus for comet 67P/Churyumov–Gerasimenko from its gravity field, Nature, Volume 530 (2016), pp. 63-65
[30] et al. Properties of the 67P/Churyumov–Gerasimenko interior revealed by CONSERT radar, Science, Volume 349 (2015)
[31] Permittivity of porous granular matter, in relation with Rosetta cometary mission, Planet. Space Sci., Volume 103 (2014), pp. 143-152
[32] et al. 67P/Churyumov–Gerasimenko, a Jupiter family comet with a high D/H ratio, Science, Volume 347 (2015), p. 1261952
Cited by Sources:
Comments - Policy