The sea-ice thickness, a key parameter in Arctic studies, is derived from radar altimeter height measurements of the freeboard, taking into account not only snow load, but also the penetration depth of the electromagnetic waves inside the snow—this is the not generally the case. Within the framework of the small slope approximation method, we study in Ku-band (, in the air) the electromagnetic signature of an air/snow/sea ice rough layered medium. The snow is inhomogeneous and is represented as a stack of several layers with different relative permittivities. We show that the electromagnetic response is very sensitive to the isotropy factor of the air/snow interface and to the cross-correlation parameters of interfaces.
L'épaisseur des glaces de mer est un paramètre clé pour l'étude du fonctionnement de la zone arctique. Cette grandeur est obtenue à l'aide de mesures faites depuis un altimètre radar spatial du bord franc de la banquise. Mais ceci suppose que non seulement la charge de neige qui recouvre la glace de mer, mais aussi la distance de pénétration de l'onde dans le milieu soient connues, ce qui n'est en général pas le cas. Dans ce contexte, nous étudions à l'aide de la méthode des faibles pentes la signature radar en bande Ku (, dans l'air) d'une mer gelée enneigée sous la forme d'une configuration air/neige/glace/mer. La couche de neige est inhomogène et représentée comme un empilement de plusieurs couches ayant des permittivités relatives différentes. Nous mettons en évidence l'influence combinée sur la signature radar du facteur d'isotropie de l'interface air/neige et des facteurs de corrélation entre les différentes interfaces.
Mot clés : Modèle des faibles pentes, Milieu multicouches, Intensité diffractée
Richard Dusséaux 1; Saddek Afifi 2; Monique Dechambre 1
@article{CRPHYS_2016__17_9_995_0, author = {Richard Duss\'eaux and Saddek Afifi and Monique Dechambre}, title = {Scattering properties of a stratified air/snow/sea ice medium. {Small} slope approximation}, journal = {Comptes Rendus. Physique}, pages = {995--1002}, publisher = {Elsevier}, volume = {17}, number = {9}, year = {2016}, doi = {10.1016/j.crhy.2016.07.017}, language = {en}, }
TY - JOUR AU - Richard Dusséaux AU - Saddek Afifi AU - Monique Dechambre TI - Scattering properties of a stratified air/snow/sea ice medium. Small slope approximation JO - Comptes Rendus. Physique PY - 2016 SP - 995 EP - 1002 VL - 17 IS - 9 PB - Elsevier DO - 10.1016/j.crhy.2016.07.017 LA - en ID - CRPHYS_2016__17_9_995_0 ER -
%0 Journal Article %A Richard Dusséaux %A Saddek Afifi %A Monique Dechambre %T Scattering properties of a stratified air/snow/sea ice medium. Small slope approximation %J Comptes Rendus. Physique %D 2016 %P 995-1002 %V 17 %N 9 %I Elsevier %R 10.1016/j.crhy.2016.07.017 %G en %F CRPHYS_2016__17_9_995_0
Richard Dusséaux; Saddek Afifi; Monique Dechambre. Scattering properties of a stratified air/snow/sea ice medium. Small slope approximation. Comptes Rendus. Physique, Volume 17 (2016) no. 9, pp. 995-1002. doi : 10.1016/j.crhy.2016.07.017. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2016.07.017/
[1] CryoSat: a mission to determine the fluctuations in Earth's land and marine ice fields, Adv. Space Res., Volume 37 (2006), pp. 841-871
[2] Using the interferometric capabilities of the ESA CryoSat-2 mission to improve the accuracy of sea ice freeboard retrievals, IEEE Trans. Geosci. Remote Sens., Volume 52 (2014), pp. 529-536
[3] Inverse electromagnetic scattering models for sea ice, IEEE Trans. Geosci. Remote Sens., Volume 36 (1998), pp. 1675-1704
[4] Electromagnetic wave scattering from rough boundaries interfacing inhomogeneous media and application to snow-covered sea ice, Prog. Electromagn. Res., Volume 144 (2014), pp. 201-219
[5] A Monte Carlo method for simulating scattering from sea ice using FVTD, IEEE Trans. Geosci. Remote Sens., Volume 50 (2012), pp. 2658-2668
[6] Full-physics 3-D heterogeneous simulations of electromagnetic induction fields on level and deformed sea ice, Ann. Glaciol., Volume 56 (2015), pp. 405-414
[7] Wave Scattering from Rough Surfaces, Springer, Berlin, 1994
[8] Theoretical model for scattering of radar signals in Ku- and C-bands from a Rough Sea Surface with breaking waves, Waves Random Media, Volume 11 (2001), pp. 247-269
[9] Small-slope approximation method: a further study of vector wave scattering from two dimensional surfaces and comparison with experimental data, Prog. Electromagn. Res., Volume 37 (2003), pp. 51-87
[10] Theory of Wave Scattering from Random Rough Surfaces, Adam Hilger, Bristol, 1991
[11] The Scattering of Electromagnetic Waves from Rough Surfaces, Pergamon Press, Oxford, UK, 1963
[12] The small-slope approximation method applied to a three-dimensional slab with rough boundaries, Prog. Electromagn. Res., Volume 73 (2007), pp. 131-211
[13] Electromagnetic wave scattering from rough layered interfaces: analysis with the small perturbation method and the small slope approximation, Prog. Electromagn. Res. B, Volume 57 (2014), pp. 177-190
[14] Electromagnetic wave scattering from 3D layered structures with randomly rough interfaces: analysis with the small perturbation method and the small slope approximation, IEEE Trans. Antennas Propag., Volume 62 (2014) no. 10, pp. 5200-5208
[15] Simulations of the altimetric signal intensity from 2D layered air/snow/sea-ice rough interfaces, Venice, Italy (ESA SP), Volume 710 (2012)
[16] Simulation of satellite radar altimeter sea ice thickness retrieval uncertainty, Cryosph. Discuss., Volume 3 (2009), pp. 513-559
[17] Copolarized and cross-polarized enhanced backscattering from two-dimensional very rough surfaces at millimeter wave frequencies, Radio Sci., Volume 29 (1994) no. 5, pp. 1275-1291
[18] On the co-polarized phase difference of rough layered surfaces: formulas derived from the small perturbation method, IEEE Trans. Antennas Propag., Volume 59 (2011) no. 7, pp. 2607-2618
[19] Scattering by anisotropic rough layered 2D interfaces, IEEE Trans. Antennas Propag., Volume 60 (2012) no. 11, pp. 5315-5328
[20]
, IGARSS, Anchorage, AK, USA (2004), pp. 3012-3017[21] Scattering of Electromagnetic Waves – Numerical Simulations, Wiley–Interscience, New York, 2001
Cited by Sources:
Comments - Policy