Comptes Rendus
Probing matter with electromagnetic waves / Sonder la matière par les ondes électromagnétiques
Combined complex-source beam and spherical-multipole analysis for the electromagnetic probing of conical structures
Comptes Rendus. Physique, Volume 17 (2016) no. 9, pp. 960-965.

The paper addresses the combination of the spherical-multipole analysis in sphero-conal coordinates with a uniform complex-source beam (CSB) in order to analyze the scattering of a localized electromagnetic plane wave by any desired part of a perfectly conducting elliptic cone. The concept of uniform CSB is introduced and rigorously applied to the diffraction by a semi-infinite elliptic cone. The analysis takes into account the fact that the incident CSB does not satisfy the radiation condition. A new modal form of the Green's function for the elliptic cone is derived based on the principle that there is no energy loss to infinity. The numerical evaluation includes the scattered far fields of a CSB incident on the corner of a plane angular sector with different opening angles.

Cet article présente la combinaison de l'analyse de multipôles sphériques en coordonnées sphéro-coniques avec une faisceau de source complexe (Complex Source Beam, CSB) dans le but d'analyser la diffusion localisée par un cône elliptique parfaitement conducteur d'une onde plane électromagnétique. Le concept de CSB est introduit au travers de la diffraction par un cône elliptique semi-infini. L'analyse prend en compte le fait que l'onde CSB incidente ne satisfait pas les conditions de radiation. Un nouveau modèle de la fonction de Green pour un cône elliptique est développé en faisant l'hypothèse qu'il n'y a pas de pertes d'énergie à l'infini. Le modèle numérique inclut la diffusion en champ lointain d'une source CSB sur le coin d'un secteur angulaire avec différents angles d'ouverture.

Published online:
DOI: 10.1016/j.crhy.2016.07.018
Keywords: Complex-source beam, Spherical-multipole analysis, Conical structures, Green's functions, Radiation condition
Mot clés : Faisceau source complexe, Analyse multipôle sphérique, Structure conique, Fonction de Green, Condition de radiation

Ludger Klinkenbusch 1; Hendrik Brüns 1

1 Kiel University, Kaiserstr. 2, 24143 Kiel, Germany
@article{CRPHYS_2016__17_9_960_0,
     author = {Ludger Klinkenbusch and Hendrik Br\"uns},
     title = {Combined complex-source beam and spherical-multipole analysis for the electromagnetic probing of conical structures},
     journal = {Comptes Rendus. Physique},
     pages = {960--965},
     publisher = {Elsevier},
     volume = {17},
     number = {9},
     year = {2016},
     doi = {10.1016/j.crhy.2016.07.018},
     language = {en},
}
TY  - JOUR
AU  - Ludger Klinkenbusch
AU  - Hendrik Brüns
TI  - Combined complex-source beam and spherical-multipole analysis for the electromagnetic probing of conical structures
JO  - Comptes Rendus. Physique
PY  - 2016
SP  - 960
EP  - 965
VL  - 17
IS  - 9
PB  - Elsevier
DO  - 10.1016/j.crhy.2016.07.018
LA  - en
ID  - CRPHYS_2016__17_9_960_0
ER  - 
%0 Journal Article
%A Ludger Klinkenbusch
%A Hendrik Brüns
%T Combined complex-source beam and spherical-multipole analysis for the electromagnetic probing of conical structures
%J Comptes Rendus. Physique
%D 2016
%P 960-965
%V 17
%N 9
%I Elsevier
%R 10.1016/j.crhy.2016.07.018
%G en
%F CRPHYS_2016__17_9_960_0
Ludger Klinkenbusch; Hendrik Brüns. Combined complex-source beam and spherical-multipole analysis for the electromagnetic probing of conical structures. Comptes Rendus. Physique, Volume 17 (2016) no. 9, pp. 960-965. doi : 10.1016/j.crhy.2016.07.018. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2016.07.018/

[1] C.A. Balanis Advanced Engineering Electromagnetics, John Wiley & Sons, 1989

[2] P. Moon; D.E. Spencer Field Theory Handbook, Springer Verlag, Berlin, Heidelberg, New York, 1971

[3] S. Blume; L. Klinkenbusch Spherical-multipole analysis in electromagnetics (D.H. Werner; R. Mittra, eds.), Frontiers in Electromagnetics, IEEE Press and Wiley, New York, 1999

[4] L.B. Felsen Complex-source-point solutions of the field equations and their relation to the propagation and scattering of Gaussian beams, Symposia Matematica, vol. XVIII, Academic Press, London, 1976, pp. 40-56

[5] M. Couture; P.-A. Belanger From Gaussian beam to complex-source-point spherical wave, Phys. Rev. A, Volume 24 (1981), pp. 355-359

[6] L. Klinkenbusch; H. Brüns Diffraction of a uniform complex-source beam by a circular cone, ICEAA14, Palm Beach, Aruba (2014), pp. 470-472

[7] A. Sommerfeld Lectures on Theoretical Physics, Part VI: Partial Differential Equations in Physics, Harri Deutsch, Thun, Frankfurt/Main, Germany, 1978 (reprint of the 6th ed.; in German)

[8] C.-T. Tai Dyadic Green's Functions in Electromagnetic Theory, Scantron: Intext Educational Publishers, 1971

[9] H. Brüns; L. Klinkenbusch Electromagnetic diffraction and scattering of a complex-source beam by a semi-infinite circular cone, Adv. Radio Sci., Volume 11 (2013), pp. 31-36 | DOI

[10] M. Katsav; E. Heyman; L. Klinkenbusch Complex-source beam diffraction by an acoustically soft or hard circular cone, ICEAA12, Cape Town, South Africa (2012), pp. 135-138

[11] L. Klinkenbusch Electromagnetic scattering by semi-infinite circular and elliptic cones, Radio Sci., Volume 42 (2007)

Cited by Sources:

Comments - Policy