Since the very first observations of the Moon from the Earth with radar in 1946, radars are more and more frequently selected to be part of the payload of exploration missions in the Solar System. They are, in fact, able to collect information on the surface structure of bodies or planets hidden by opaque atmospheres, to probe the planet subsurface or even to reveal the internal structure of a small body comet nucleus.
A brief review of radars designed for the Solar System planets and bodies' exploration is presented in the paper. This review does not aim at being exhaustive but will focus on the major results obtained. The variety of radars that have been or are currently designed in terms of frequency or operational modes will be highlighted.
Depuis les premières observations radar de la Lune depuis la Terre en 1946, les radars font de plus en plus fréquemment partie de la charge utile des missions d'exploration du système solaire. Ils sont, en effet, capables de recueillir des informations à la fois sur la structure superficielle d'un corps ou d'une planète à travers une atmosphère optiquement opaque, de sonder le sous-sol d'une planète, ou encore de révéler la structure interne d'un petit corps.
Une revue non exhaustive des radars scientifiques développés pour l'exploration des planètes et autres corps du système solaire est présentée dans cet article. Quelques résultats majeurs sont présentés. L'accent est mis sur la variété des radars qui ont été et sont actuellement conçus en terme de fréquence ou de mode opératoire en fonction des contraintes de la mission et des objectifs visés.
Mot clés : Radar, Missions spatiales, Propagation des ondes électromagnetiques
Valérie Ciarletti 1
@article{CRPHYS_2016__17_9_966_0, author = {Val\'erie Ciarletti}, title = {A variety of radars designed to explore the hidden structures and properties of the {Solar} {System's} planets and bodies}, journal = {Comptes Rendus. Physique}, pages = {966--975}, publisher = {Elsevier}, volume = {17}, number = {9}, year = {2016}, doi = {10.1016/j.crhy.2016.07.022}, language = {en}, }
TY - JOUR AU - Valérie Ciarletti TI - A variety of radars designed to explore the hidden structures and properties of the Solar System's planets and bodies JO - Comptes Rendus. Physique PY - 2016 SP - 966 EP - 975 VL - 17 IS - 9 PB - Elsevier DO - 10.1016/j.crhy.2016.07.022 LA - en ID - CRPHYS_2016__17_9_966_0 ER -
Valérie Ciarletti. A variety of radars designed to explore the hidden structures and properties of the Solar System's planets and bodies. Comptes Rendus. Physique, Volume 17 (2016) no. 9, pp. 966-975. doi : 10.1016/j.crhy.2016.07.022. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2016.07.022/
[1] The radar equation, Electronics, Volume 18 (1945), pp. 92-94
[2] Radar echoes from the moon, Electronics, Volume 19 (1946), pp. 92-98
[3] Reflection of microwaves from the moon, Hung. Acta Phys., Volume 1 (1946), pp. 1-22
[4] D.O. Muhleman, D.B. Holdridge, N. Block, Determination of the astronomical unit from velocity, range, and integrated velocity data, and the Venus–Earth ephemeris, in: W.K. Victor, R. Stevens, S.W. Golomb (Eds.), Radar Exploration of Venus: Goldstone Observatory Report for March–May 1961, pp. 83–92, Technical report 32-132.
[5] Goldstone Solar System radar observatory: Earth-based planetary mission support and unique science results, Proc. IEEE, Volume 99 (2011) no. 5, pp. 757-769 | DOI
[6] Radar determination of the rotations of Venus and Mercury, Astron. J., Volume 72 (1967) no. 3, pp. 351-359 | DOI
[7] A.F. Chicarro, Science Team, The Mars Express mission and its Beagle-2 lander, in: Sixth International Conference on Mars, 20–25 July 2003, Pasadena, CA, USA, abstract No. 3049.
[8] M.D.D. Johnston, J.E. Graf, R.W. Zurek, H.J. Eisen, B. Jai, The Mars Reconnaissance Orbiter mission, in: 2005 IEEE Aerospace Conference, 5–12 March 2005, pp. 447–464, . | DOI
[9] et al. Magellan mission summary, J. Geophys. Res., Volume 97 (1992) no. E8, pp. 13067-13090 | DOI
[10] et al. The Cassini/Huygens mission to the Saturnian System, Space Sci. Rev., Volume 104 (2002) no. 1–4, pp. 1-58 | DOI
[11] et al. Data processing and initial results of Chang'e-3 lunar penetrating radar, RAA, Volume 14 (2014) no. 12, pp. 1623-1632 | DOI
[12] Putting together an exobiology mission: the ExoMars example (G. Horneck; P. Rettberg, eds.), Complete Course in Astrobiology, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2007 | DOI
[13] et al. Comet nucleus sounding experiment by radiowave transmission, Adv. Space Res., Volume 21 (1998) no. 11, pp. 1589-1598
[14] M. Biancheri-Astier, R. Hassen-Khodja, V. Ciarletti, C. Corbel, Y. Simon, C. Caudoux, J. Faroux, F. Dolon, EISS: an HF mono and bistatic GPR for terrestrial an planetary deep sounding, Lecce, Italy, 2010, GPR2010.
[15] An imaging HF GPR using stationary antennas: experimental validation over the Antarctic ice sheet, IEEE Trans. Geosci. Remote Sens., Volume 46 (2008) no. 12, pp. 3975-3986 | DOI
[16] Bistatic sounding of the deep subsurface with a ground penetrating radar – experimental validation, Planet. Space Sci., Volume 117 (2015), pp. 177-183 | DOI
[17] et al. Polarization in bistatic radar probing of planetary surfaces: application to Mars express data, Proc. IEEE, Volume 99 (2011) no. 5 | DOI
[18] et al. The Clementine bistatic radar experiment, Science, Volume 274 (1996) no. 5292, pp. 1495-1498
[19] Viking bistatic radar observations of the Hellas basin on Mars: preliminary results, Science, Volume 203 (1979), pp. 45-46
[20] et al. The Apollo Lunar sounder radar system, Proc. IEEE, Volume 62 (1974) no. 6, pp. 769-783
[21] et al. Radar soundings of the subsurface of Mars', Science, Volume 310 ( 23 Dec. 2005 ), pp. 1925-1929
[22] et al. Mars north polar deposits: stratigraphy, age, and geodynamical response, Science, Volume 320 (2008), p. 1182 | DOI
[23] Lunar radar sounder (LRS) experiment on-board the SELENE spacecraft, Earth Planets Space, Volume 52 (2000), pp. 629-637
[24] et al. A planet rediscovered: results of Venus radar imaging from the Venera 15 and Venera 16 spacecraft, Sov. Sci. Rev., E, Astrophys. Space Phys., Volume 6 ( Aug. 1988 ) no. 1, pp. 61-101
[25] Magellan imaging radar mission to Venus, Proc. IEEE, Volume 79 (1991) no. 6, pp. 777-790 | DOI
[26] RADAR: the Cassini Titan radar mapper, Space Sci. Rev., Volume 115 (2004), pp. 71-110
[27] Cloud morphology and motions from Pioneer Venus images, J. Geophys. Res., Volume 85 (1980), pp. 8107-8128
[28] et al. Pioneer Venus radar mapper experiment, Science, Volume 203 (1979) no. 4382, pp. 806-808
[29] Pioneer Venus Radar results altimetry and surface properties, J. Geophys. Res., Volume 85 (1980) no. A13, pp. 8261-8270 | DOI
[30] et al. The geology and geomorphology of the Venus surface as revealed by the radar images obtained by Veneras 15 and 16, J. Geophys. Res., Volume 91 (1986) no. B4, p. D378-D398 (Part 2)
[31] The Magellan mission to Venus. Advances in astronautical sciences. Part 1, Aerosp. Cent., Volume 21 (1987) no. 64 (AAS 86–331)
[32] Spaceborne Radar Observations: A Guide for Magellan Radar Image Analysis, JPL Pub., 1989 (89-41, 126 p)
[33] The Magellan Venus radar mapping mission, J. Geophys. Res., Volume 95 (1990) no. B6, pp. 8339-8355
[34] et al. The lakes of Titan, Nature, Volume 445 (2007), pp. 61-64 | DOI
[35] et al. Cryovolcanism on Titan: new results from Cassini RADAR and VIMS, J. Geophys. Res., Planets, Volume 118 (2013), pp. 1-20 | DOI
[36] SAR, radiometry, scatterometry and altimetry observations of Titan's dune fields, Icarus, Volume 213 (2011), pp. 608-624
[37] Radar-bright channels on Titan, Icarus, Volume 207 (2010) no. 2, pp. 948-958 (ISSN: 0019-1035) | DOI
[38] Mountains on Titan observed by Cassini Radar, Icarus, Volume 192 (2007) no. 1, pp. 77-91
[39] Geomorphological significance of Ontario Lacus on Titan: integrated interpretation of Cassini VIMS, ISS and RADAR data and comparison with the Etosha Pan (Namibia), Icarus, Volume 218 (2012), pp. 788-806
[40] Dissolution on Titan and on Earth: toward the age of Titan's karstic landscapes, J. Geophys. Res., Planets, Volume 120 (2015), pp. 1044-1074 | DOI
[41] et al. Radar soundings of the subsurface of Mars, Science, Volume 310 (2005) no. 5756, pp. 1925-1928 | DOI
[42] et al. Performance and surface scattering models for the Mars advanced radar for subsurface and ionosphere sounding (MARSIS), Planet. Space Sci., Volume 52 (2004), pp. 149-156
[43] et al. Mars advanced radar for subsurface and ionospheric sounding (MARSIS) after nine years of operation: a summary, Planet. Space Sci., Volume 112 (2014), pp. 98-114 | DOI
[44] et al. Subsurface radar sounding of the South polar layered deposits of Mars, Science, Volume 316 (2007) no. 5821, pp. 92-95
[45] et al. Radar sounding of the Medusae Fossae Formation Mars: equatorial ice or dry, low-density deposits?, Science, Volume 318 (2007) no. 5853, p. 1125 | DOI
[46] et al. MARSIS radar sounder observations in the vicinity of Ma'adim Vallis, Mars, Icarus, Volume 201 (2009), p. 460 | DOI
[47] et al. SHARAD sounding radar on the Mars Reconnaissance Orbiter, J. Geophys. Res., Volume 112 (2007) | DOI
[48] Subsurface structure of planum Boreum from Mars Reconnaissance Orbiter Shallow Radar soundings, Icarus, Volume 204 (2009) no. 2, pp. 443-457
[49] Radar evidence for ice in lobate debris aprons in the mid-northern latitudes of Mars, Geophys. Res. Lett., Volume 36 (2009) | DOI
[50] WISDOM a GPR designed for shallow and high resolution sounding of the Martian subsurface, Proc. IEEE, Volume 99 (2011) no. 5, pp. 824-836 | DOI
[51] Performance validation of the ExoMars 2018 WISDOM GPR in ice caves, Austria, Planet. Space Sci., Volume 120 (2016), pp. 1-14
[52] S.E. Hamran, H.E.F. Amundsen, L.M. Carter, R.R. Ghent, J. Kohler, M.T. Mellon, D.A. Paige, The RIMFAX ground penetrating radar on the Mars 2020 Rover, American Geophysical Union, Fall Meeting 2014, abstract #P11A-3746.
[53] Bistatic radar measurements of topographic variations in lunar surface slopes with explorer 35, Radio Sci., Volume 5 (1970) no. 2, pp. 263-271 | DOI
[54] The Apollo lunar sounder radar system, Proc. IEEE, Volume 62 (1974), pp. 769-783
[55] Orbital radar evidence for lunar subsurface layering in Maria Serenitatis and Crisium, J. Geophys. Res., Volume 83 (1978) | DOI
[56] Detectability of subsurface interfaces in lunar maria by the LRS/SELENE sounding radar: influence of mineralogical composition, Geophys. Res. Lett., Volume 37 (2010) | DOI
[57] et al. Mini-SAR: an imaging radar experiment for the Chandrayaan-1 mission to the Moon, Curr. Sci., Volume 96 (2009) no. 4
[58] New insights into lunar processes and history from global mapping by Mini-RF radar, Lunar Planet. Sci., Volume 42 (2011), p. 2086
[59] et al. Evidence for water ice on the moon: results for anomalous polar craters from the LRO Mini-RF imaging radar, J. Geophys. Res., Planets, Volume 118 (2013) | DOI
[60] Space missions to small bodies: asteroids and cometary nuclei, Astron. Astrophys. Rev., Volume 19 (2011) no. 1, p. 48 (29 p)
[61] The New Rosetta Targets: Observations, Simulations, and Instrument Performances, Springer-Verlag, New York, 2004 (315 p)
[62] et al. The comet nucleus sounding experiment by radiowave transmission (CONSERT): a short description of the instrument and of the commissioning stages, Space Sci. Rev., Volume 128 (2007), pp. 413-432
[63] http://blogs.esa.int/rosetta/2014/11/21/homing-in-on-philaes-final-landing-site/
[64] et al. Preliminary results from CONSERT experiment on Rosetta mission, 2014 (AGU 2014, P34B-01, San Francisco, CA, USA)
[65] CONSERT suggests a change in local properties of 67P/Churyumov–Gerasimenko's nucleus at depth, Astron. Astrophys., Volume 583 (2015) | DOI
[66] et al. Science case for the asteroid impact mission (AIM): a component of the Asteroid Impact & Deflection Assessment (AIDA) mission, Adv. Space Res., Volume 57 (2016) no. 12, pp. 2529-2547 | DOI
[67] Subsurface radar sounding of the Jovian moon Ganymede, Proc. IEEE, Volume 99 (2011) no. 5
[68] et al. Jupiter icy moons explorer (JUICE): AN ESA mission to orbit Ganymede and to characterize the Jupiter system, Planet. Space Sci., Volume 78 (2013), pp. 1-21
[69] et al. RIME: radar for icy Moon exploration, EPSC Abstr., Volume 8 (2013) (EPSC2013-744-1)
[70] Europa clipper mission concept: exploring Jupiter's ocean moon, Eos, Volume 95 (2014) no. 20
[71] REASON for Europa, 2015 (AGU Fall Meeting, San Francisco)
[72] Embedding sensor visualization in Martian terrain reconstructions, Proceedings of ASTRA, 2015
Cited by Sources:
Comments - Policy