Comptes Rendus
Thermoelectric mesoscopic phenomena / Phénomènes thermo électriques mésoscopiques
Nonlinear phenomena in quantum thermoelectrics and heat
[Phénomènes non linéaires dans le transport quantique thermoélectrique et thermique]
Comptes Rendus. Physique, Mesoscopic thermoelectric phenomena / Phénomènes thermoélectriques mésoscopiques, Volume 17 (2016) no. 10, pp. 1060-1071.

Nous passons en revue les dévelopements récents relatifs au transport au travers de nanostructures et de systèmes mésoscopiques, engendré par des combinaisons de gradients de température et/ou de potentiel. Les conducteurs de basses dimensions constituent d'excellents systèmes pour étudier les dynamiques thermoélectrique et thermique au-delà de la réponse linéaire, une petite différence de température engendrant de forts gradients thermiques du fait des petites tailles. Nous présentons une théorie basée sur une approche de scattering pour illustrer les différences entre les régimes de transport linéaire et non linéaire. Nous discutons des expériences récentes sur des boîtes quantiques ou des jonctions moléculaires soumises à de fortes différences de température. Des prédictions théoriques relatives à l'effet Kondo et à la rectification du transport thermique sont brièvement examinées. Un point important est le calcul des rendements thermoélectriques en présence de non-linéarités. Nous coinsidérons aussi des effets Seebeck croisés avec du filtrage de spin non linéaire qui se produisent dans des supraconducteurs et des isolants topologiques, et le mélange des bruits de courant de charge et de chaleur. Finalement, nous discutons les directions futures possibles dans ce domaine.

We review recent developments in nonlinear quantum transport through nanostructures and mesoscopic systems driven by thermal gradients or in combination with voltage biases. Low-dimensional conductors are excellent platforms for analyzing both the thermoelectric and heat dynamics beyond the linear response because, due to their small size, a small temperature difference applied across regions gives rise to large thermal biases. We offer a theoretical discussion based on the scattering approach to highlight the differences between the linear and the nonlinear regimes of transport. We discuss recent experiments on quantum dots and molecular junctions subjected to strong temperature differences. Theoretical predictions concerning the Kondo effect and heat rectification proposals are briefly examined. An important issue is the calculation of thermoelectric efficiencies including nonlinearities. Cross Seebeck effects and nonlinear spin filtering arise in superconductors and topological insulators, while mixed noises between charge and heat currents are also considered. Finally, we provide an outlook on the possible future directions of the field.

Publié le :
DOI : 10.1016/j.crhy.2016.08.005
Keywords: Nonlinear thermoelectrics, Mesoscopic systems, Quantum heat transport
Mots-clés : Thermoélectricité non linéaire, Systèmes mésoélectriques, Transport de la chaleur en régime quantique

David Sánchez 1 ; Rosa López 1

1 Instituto de Física Interdisciplinar y Sistemas Complejos (UIB–CSIC), Campus Universitat Illes Balears, 07122 Palma de Mallorca, Spain
@article{CRPHYS_2016__17_10_1060_0,
     author = {David S\'anchez and Rosa L\'opez},
     title = {Nonlinear phenomena in quantum thermoelectrics and heat},
     journal = {Comptes Rendus. Physique},
     pages = {1060--1071},
     publisher = {Elsevier},
     volume = {17},
     number = {10},
     year = {2016},
     doi = {10.1016/j.crhy.2016.08.005},
     language = {en},
}
TY  - JOUR
AU  - David Sánchez
AU  - Rosa López
TI  - Nonlinear phenomena in quantum thermoelectrics and heat
JO  - Comptes Rendus. Physique
PY  - 2016
SP  - 1060
EP  - 1071
VL  - 17
IS  - 10
PB  - Elsevier
DO  - 10.1016/j.crhy.2016.08.005
LA  - en
ID  - CRPHYS_2016__17_10_1060_0
ER  - 
%0 Journal Article
%A David Sánchez
%A Rosa López
%T Nonlinear phenomena in quantum thermoelectrics and heat
%J Comptes Rendus. Physique
%D 2016
%P 1060-1071
%V 17
%N 10
%I Elsevier
%R 10.1016/j.crhy.2016.08.005
%G en
%F CRPHYS_2016__17_10_1060_0
David Sánchez; Rosa López. Nonlinear phenomena in quantum thermoelectrics and heat. Comptes Rendus. Physique, Mesoscopic thermoelectric phenomena / Phénomènes thermoélectriques mésoscopiques, Volume 17 (2016) no. 10, pp. 1060-1071. doi : 10.1016/j.crhy.2016.08.005. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2016.08.005/

[1] S.M. Sze Physics of Semiconductor Devices, Wiley, New York, 1981

[2] L. Esaki Phys. Rev., 109 (1958), p. 603

[3] J.B. Gunn Solid State Commun., 1 (1963), p. 88

[4] L. Onsager Phys. Rev., 38 (1931), p. 2265

[5] R. Venkatasubramanian; E. Siivola; T. Colpitts; B. O'Quinn Nature, 413 (2001), p. 597

[6] P. Reddy; S.Y. Jang; R.A. Segalman; A. Majumdar Science, 315 (2007), p. 1568

[7] C.J. Vineis; A. Shakouri; A. Majumdar; M.G. Kanatzidis Adv. Mater., 22 (2010), p. 3970

[8] Y. Dubi; M. Di Ventra Rev. Mod. Phys., 83 (2011), p. 131

[9] J.P. Heremans; M.S. Dresselhaus; L.E. Bell; D.T. Morelli Nat. Nanotechnol., 8 (2013), p. 471

[10] D. Sánchez; H. Linke New J. Phys., 16 (2014)

[11] N.A. Zimbovskaya J. Phys. Condens. Matter, 28 (2016), p. 183002

[12] Thermoelectrics Handbook. Macro to Nano (D.M. Rowe, ed.), CRC Press, Boca Raton, FL, USA, 2006

[13] M. Terraneo; M. Peyrard; G. Casati Phys. Rev. Lett., 88 (2002)

[14] D. Sánchez; R. López Phys. Rev. Lett., 110 (2013)

[15] R. López; D. Sánchez Phys. Rev. B, 88 (2013)

[16] U. Sivan; Y. Imry Phys. Rev. B, 33 (1986), p. 551

[17] P.N. Butcher J. Phys. Condens. Matter, 2 (1990), p. 4869

[18] M. Büttiker Phys. Rev. Lett., 57 (1986), p. 1761

[19] A.D. Benoit; S. Washburn; C.P. Umbach; R.B. Laibowitz; R.A. Webb Phys. Rev. Lett., 57 (1986), p. 1765

[20] D. Sánchez; L. Serra Phys. Rev. B, 84 (2011)

[21] K. Saito; G. Benenti; G. Casati; T. Prosen Phys. Rev. B, 84 (2011)

[22] K. Brandner; K. Saito; U. Seifert Phys. Rev. Lett., 110 (2013)

[23] J. Matthews; F. Battista; D. Sánchez; P. Samuelsson; H. Linke Phys. Rev. B, 90 (2014)

[24] J. Matthews; D. Sánchez; M. Larsson; H. Linke Phys. Rev. B, 85 (2012)

[25] M. Büttiker J. Phys. Condens. Matter, 5 (1993), p. 9361

[26] T. Christen; M. Büttiker Europhys. Lett., 35 (1996), p. 523

[27] J. Meair; P. Jacquod J. Phys. Condens. Matter, 25 (2013)

[28] J. Azema; P. Lombardo; A.-M. Daré Phys. Rev. B, 90 (2014)

[29] S.-Y. Hwang; D. Sánchez; M. Lee; R. López New J. Phys., 15 (2013)

[30] D. Sánchez; M. Büttiker; D. Sánchez; M. Büttiker Int. J. Quant. Chem., 93 (2004), p. 906

[31] B. Spivak; A. Zyuzin Phys. Rev. Lett., 93 (2004)

[32] C.A. Marlow; R.P. Taylor; M. Fairbanks; I. Shorubalko; H. Linke Phys. Rev. Lett., 96 (2006)

[33] R. Leturcq; D. Sánchez; G. Götz; T. Ihn; K. Ensslin; D.C. Driscoll; A.C. Gossard Phys. Rev. Lett., 96 (2006)

[34] D.M. Zumbühl; C.M. Marcus; M.P. Hanson; A.C. Gossard Phys. Rev. Lett., 96 (2006)

[35] L. Angers; E. Zakka-Bajjani; R. Deblock; S. Guéron; H. Bouchiat; A. Cavanna; U. Gennser; M. Polianksi Phys. Rev. B, 75 (2007)

[36] D. Hartmann; L. Worschech; A. Forchel Phys. Rev. B, 78 (2008)

[37] V.A. Cimmelli; A. Sellitto; D. Jou Proc. R. Soc. A, 470 (2014), p. 20140265

[38] A.A.M. Staring; L.W. Molenkamp; B.W. Alphenaar; H. van Houten; O.J.A. Buyk; M.A.A. Mabesoone; C.W.J. Beenakker; C.T. Foxon Europhys. Lett., 22 (1993), p. 57

[39] S.F. Svensson; E.A. Hoffmann; N. Nakpathomkun; P.M. Wu; H.Q. Xu; H.A. Nilsson; D. Sánchez; V. Kashcheyevs; H. Linke New J. Phys., 15 (2013)

[40] A. Svilans; A.M. Burke; S. Fahlvik Svensson; M. Leijnse; H. Linke Physica E, 82 (2016), p. 34

[41] M.A. Sierra; D. Sánchez Phys. Rev. B, 90 (2014)

[42] R. Scheibner; M. König; D. Reuter; A.D. Wieck; C. Gould; H. Buhmann; L.W. Molenkamp New J. Phys., 10 (2008)

[43] D.M.-T. Kuo; Y.-C. Chang Phys. Rev. B, 81 (2010)

[44] M. Wierzbicki; R. Świrkowicz Phys. Rev. B, 82 (2010)

[45] A.E. Stanciu; G.A. Nemnes; A. Manolescu Rom. J. Phys., 60 (2015), p. 716

[46] M.A. Sierra; M. Saiz-Bretín; F. Domínguez-Adame; D. Sánchez Phys. Rev. B, 93 (2016)

[47] D. Boese; R. Fazio Europhys. Lett., 56 (2001), p. 576

[48] B. Dong; X.L. Lei J. Phys. Condens. Matter, 14 (2002), p. 11747

[49] M. Krawiec; K.I. Wysokiński Phys. Rev. B, 75 (2007)

[50] J. Azema; A.-M. Daré; S. Schäfer; P. Lombardo Phys. Rev. B, 86 (2012)

[51] P. Dutt; K. Le Hur Phys. Rev. B, 88 (2013)

[52] N.A. Zimbovskaya J. Chem. Phys., 142 (2015)

[53] W. Lee; K. Kim; W. Jeong; L.A. Zotti; F. Pauly; J.C. Cuevas; P. Reddy Nature (London), 498 (2013), p. 209

[54] L.A. Zotti; M. Bürkle; F. Pauly; W. Lee; K. Kim; W. Jeong; Y. Asai; P. Reddy; J.C. Cuevas New J. Phys., 16 (2014)

[55] Y. Kim; W. Jeong; K. Kim; W. Lee; P. Reddy Nat. Nanotechnol., 9 (2014), p. 881

[56] J. Argüello-Luengo; D. Sánchez; R. López Phys. Rev. B, 91 (2015)

[57] T. Koch; J. Loos; H. Fehske Phys. Rev. B, 89 (2014)

[58] D. Segal; A. Nitzan J. Chem. Phys., 122 (2005)

[59] D. Segal Phys. Rev. B, 73 (2006)

[60] M. Leijnse; M.R. Wegewijs; K. Flensberg Phys. Rev. B, 82 (2010)

[61] N.A. Zimbovskaya Physica E, 74 (2015), p. 213

[62] C.W. Chang; D. Okawa; A. Majumdar; A. Zettl Science, 314 (2006), p. 1121

[63] T. Ruokola; T. Ojanen Phys. Rev. B, 83 (2011)

[64] J.-H. Jiang; M. Kulkarni; D. Segal; Y. Imry Phys. Rev. B, 92 (2015)

[65] M.A. Sierra; D. Sánchez Mater. Today Proc., 2 (2015), p. 483

[66] Y. Dubi; M. Di Ventra Nano Lett., 9 (2009), p. 97

[67] N.M. Gergs; C.B.M. Hörig; M.R. Wegewijs; D. Schuricht Phys. Rev. B, 91 (2015)

[68] K. Yamamoto; N. Hatano Phys. Rev. E, 92 (2015)

[69] A. Sellitto; V.A. Cimmelli; D. Jou Mesoscopic Theories of Heat Transport in Nanosystems, Springer, Cham, 2016

[70] I.O. Kulik J. Phys. Condens. Matter, 6 (1994), p. 9737

[71] A.N. Grigorenko; P.I. Nikitin; D.A. Jelski; Thomas F. George Phys. Rev. B, 42 (1990), p. 7405

[72] M. Zeberjadi; K. Esfarjani; A. Shakouri Appl. Phys. Lett., 91 (2007), p. 122104

[73] E.N. Bogachek; A.G. Scherbakov; U. Landman Phys. Rev. B, 60 (1999), p. 11678

[74] A.S. Dzurak; C.G. Smith; L. Martín-Moreno; M. Pepper; D.A. Ritchie; G.A.C. Jones; D.G. Hasko J. Phys. Condens. Matter, 5 (1993), p. 8055

[75] R.S. Whitney Phys. Rev. B, 88 (2013)

[76] A.F. Ioffe Semiconductor Thermoelements and Thermoelectric Cooling, Infosearch Ltd., London, 1956

[77] R.S. Whitney; R.S. Whitney Phys. Rev. B, 112 (2014)

[78] R.S. Whitney Phys. Rev. B, 87 (2013)

[79] S. Hershfield; K.A. Muttalib; B.J. Nartowt Phys. Rev. B, 88 (2013)

[80] K.A. Muttalib; S. Hershfield Phys. Rev. Appl., 3 (2015)

[81] B. Sothmann; R. Sánchez; A.N. Jordan Nanotechnology, 26 (2015)

[82] B. Szukiewicz; U. Eckern; K.I. Wysokinński New J. Phys., 18 (2016)

[83] S.-Y. Hwang; R. López; D. Sánchez Phys. Rev. B, 91 (2015)

[84] M.J. Martínez-Pérez; A. Fornieri; F. Giazotto Nat. Nanotechnol., 10 (2015), p. 303

[85] F. Giazotto; F.S. Bergeret Appl. Phys. Lett., 103 (2013), p. 242602

[86] A. Fornieri; M.J. Martínez-Pérez; F. Giazotto Appl. Phys. Lett., 104 (2014), p. 183108

[87] B.A. Bernevig; T.L. Hughes; S.-C. Zhang Science, 314 (2006), p. 1757

[88] M. König; S. Weidmann; C. Brune; A. Roth; H. Buhmann; L.W. Molenkamp; X.-L. Qi; S.-C. Zhang Science, 318 (2007), p. 766

[89] S.-Y. Hwang; R. López; M. Lee; D. Sánchez Phys. Rev. B, 90 (2014)

[90] G. Dolcetto; F. Cavaliere; D. Ferraro; M. Sassetti Phys. Rev. B, 87 (2013)

[91] R. López; S.-Y. Hwang; D. Sánchez J. Phys. Conf. Ser., 568 (2014)

[92] F. Ronetti; L. Vanucci; G. Dolcetto; M. Carrega; M. Sassetti Phys. Rev. B, 93 (2016)

[93] L. Vanucci; F. Ronetti; G. Dolcetto; M. Carrega; M. Sassetti Phys. Rev. B, 92 (2015)

[94] Ya.M. Blanter; M. Büttiker Phys. Rep., 336 (2000), p. 1

[95] R. Sánchez; B. Sothmann; A.N. Jordan; M. Büttiker New J. Phys., 15 (2013)

[96] A. Crépieux; F. Michelini J. Phys. Condens. Matter, 27 (2015)

[97] H. Förster; M. Büttiker Phys. Rev. Lett., 101 (2008)

[98] K. Saito; Y. Utsumi Phys. Rev. B, 78 (2008)

[99] D. Sánchez Phys. Rev. B, 79 (2009)

[100] M. Esposito; U. Harbola; S. Mukamel Rev. Mod. Phys., 81 (2009), p. 1665

[101] S. Nakamura; Y. Yamauchi; M. Hashisaka; K. Chida; K. Kobayashi; T. Ono; R. Leturcq; K. Ensslin; K. Saito; Y. Utsumi; A.C. Gossard; S. Nakamura; Y. Yamauchi; M. Hashisaka; K. Chida; K. Kobayashi; T. Ono; R. Leturcq; K. Ensslin; K. Saito; Y. Utsumi; A.C. Gossard Phys. Rev. B, 104 (2010)

[102] R. López; J.S. Lim; D. Sánchez Phys. Rev. Lett., 108 (2012)

[103] Y. Utsumi; O. Entin-Wohlman; A. Aharony; T. Kubo; Y. Tokura Phys. Rev. B, 89 (2014)

  • Mor Cohen Jungerman; Shachar Shmueli; Pini Shekhter; Yoram Selzer Unusually High Thermopower in Molecular Junctions from Molecularly Induced Quantized States in Their Semimetal Leads, Nano Letters, Volume 25 (2025) no. 7, p. 2756 | DOI:10.1021/acs.nanolett.4c05852
  • Anand Manaparambil; Andreas Weichselbaum; Jan von Delft; Ireneusz Weymann Nonequilibrium steady-state thermoelectrics of Kondo-correlated quantum dots, Physical Review B, Volume 111 (2025) no. 3 | DOI:10.1103/physrevb.111.035445
  • Ting-Ting Song; Ning-Xuan Yang; Rui Wang; Hui Liao; Chun-Yan Song; Xue-Yan Cheng; Xin-Ning Li Nonlinear thermoelectric transport in a graphene with O-shaped Kekulé structure, Results in Physics, Volume 71 (2025), p. 108189 | DOI:10.1016/j.rinp.2025.108189
  • S. H. Dong; K. X. Jia; X. Y. Liu; H. Geng; L. Sheng; D. Y. Xing Nonlinear Landauer formula for thermal transport of the electrons, Europhysics Letters, Volume 145 (2024) no. 5, p. 56001 | DOI:10.1209/0295-5075/ad29b4
  • Sachin Verma; Ajay Singh Seebeck Power Generation and Peltier Cooling in a Normal Metal-Quantum Dot-Superconductor Nanodevice, Journal of Low Temperature Physics, Volume 214 (2024) no. 5-6, p. 344 | DOI:10.1007/s10909-024-03047-8
  • Yuga Kodama; Nobuhiko Taniguchi Quantum coherent control of linear and nonlinear thermoelectricity in graphene nanostructure heat engines, Physical Review B, Volume 109 (2024) no. 4 | DOI:10.1103/physrevb.109.045412
  • Loris Maria Cangemi; Chitrak Bhadra; Amikam Levy Quantum engines and refrigerators, Physics Reports, Volume 1087 (2024), p. 1 | DOI:10.1016/j.physrep.2024.07.001
  • Ronald Santiago Cortes-Santamaria; J. A. Landazabal-Rodríguez; Jereson Silva-Valencia; Edwin Ramos; M. S. Figueira; Roberto Franco Peñaloza Universality and the thermoelectric transport properties of a double quantum dot system: Seeking for conditions that improve the thermoelectric efficiency, SciPost Physics Core, Volume 7 (2024) no. 3 | DOI:10.21468/scipostphyscore.7.3.058
  • Huanyi Xue; Ruijie Qian; Weikang Lu; Xue Gong; Ludi Qin; Zhenyang Zhong; Zhenghua An; Lidong Chen; Wei Lu Direct observation of hot-electron-enhanced thermoelectric effects in silicon nanodevices, Nature Communications, Volume 14 (2023) no. 1 | DOI:10.1038/s41467-023-39489-z
  • Jayasmita Behera; Salil Bedkihal; Bijay Kumar Agarwalla; Malay Bandyopadhyay Quantum coherent control of nonlinear thermoelectric transport in a triple-dot Aharonov-Bohm heat engine, Physical Review B, Volume 108 (2023) no. 16 | DOI:10.1103/physrevb.108.165419
  • Gianmichele Blasi; Francesco Giazotto; Géraldine Haack Hybrid normal-superconducting Aharonov-Bohm quantum thermal device, Quantum Science and Technology, Volume 8 (2023) no. 1, p. 015023 | DOI:10.1088/2058-9565/acacbf
  • Sachin Verma; Ajay Singh A Strongly Correlated Quantum Dot Heat Engine with Optimal Performance: A Nonequilibrium Green's Function Approach, physica status solidi (b), Volume 260 (2023) no. 6 | DOI:10.1002/pssb.202200608
  • Rongqian Wang; Chen Wang; Jincheng Lu; Jian-Hua Jiang Inelastic thermoelectric transport and fluctuations in mesoscopic systems, Advances in Physics: X, Volume 7 (2022) no. 1 | DOI:10.1080/23746149.2022.2082317
  • Kensaku Chida; Akira Fujiwara; Katsuhiko Nishiguchi Seebeck effect in a nanometer-scale dot in a Si nanowire observed with electron counting statistics, Applied Physics Letters, Volume 121 (2022) no. 18 | DOI:10.1063/5.0114584
  • Natalya A Zimbovskaya Large enhancement of thermoelectric effects in multiple quantum dots in a serial configuration due to Coulomb interactions, Journal of Physics: Condensed Matter, Volume 34 (2022) no. 25, p. 255302 | DOI:10.1088/1361-648x/ac640c
  • P A Almeida; G B Martins Thermoelectric transport properties of armchair graphene nanoribbon heterostructures, Journal of Physics: Condensed Matter, Volume 34 (2022) no. 33, p. 335302 | DOI:10.1088/1361-648x/ac76fc
  • Giuseppe Bevilacqua; Alessandro Cresti; Giuseppe Grosso; Guido Menichetti; Giuseppe Pastori Parravicini Regimes and quantum bounds of nanoscale thermoelectrics with peaked transmission function, Physica E: Low-dimensional Systems and Nanostructures, Volume 138 (2022), p. 115105 | DOI:10.1016/j.physe.2021.115105
  • M. A. Manya; G. B. Martins; M. S. Figueira Spin-orbit coupling effects on thermoelectric transport properties in quantum dots, Physical Review B, Volume 105 (2022) no. 16 | DOI:10.1103/physrevb.105.165421
  • Aabir Mukhopadhyay; Sourin Das Thermal bias induced charge current in a Josephson junction: From ballistic to disordered, Physical Review B, Volume 106 (2022) no. 7 | DOI:10.1103/physrevb.106.075421
  • Yugo Onishi; Takahiro Morimoto; Naoto Nagaosa Theory of shift heat current and its application to electron-phonon coupled systems, Physical Review B, Volume 106 (2022) no. 8 | DOI:10.1103/physrevb.106.085202
  • Géraldine Haack; Francesco Giazotto Nonlinear regime for enhanced performance of an Aharonov–Bohm heat engine, AVS Quantum Science, Volume 3 (2021) no. 4 | DOI:10.1116/5.0064936
  • Zhen Yang; Can Zhu; Ya-Jiao Ke; Xiong He; Feng Luo; Jian Wang; Jia-Fu Wang; Zhi-Gang Sun Peltier effect: From linear to nonlinear, Acta Physica Sinica, Volume 70 (2021) no. 10, p. 108402 | DOI:10.7498/aps.70.20201826
  • Peter Markoš; Khandker Muttalib Non-Linear Thermoelectric Devices with Surface-Disordered Nanowires, Applied Nano, Volume 2 (2021) no. 3, p. 162 | DOI:10.3390/applnano2030013
  • Gao-Le Dai Designing nonlinear thermal devices and metamaterials under the Fourier law: A route to nonlinear thermotics, Frontiers of Physics, Volume 16 (2021) no. 5 | DOI:10.1007/s11467-021-1048-y
  • Juan Herrera Mateos; Mariano A. Real; Christian Reichl; Alejandra Tonina; Werner Wegscheider; Werner Dietsche; Liliana Arrachea Thermoelectric cooling properties of a quantum Hall Corbino device, Physical Review B, Volume 103 (2021) no. 12 | DOI:10.1103/physrevb.103.125404
  • Gianmichele Blasi; Fabio Taddei; Liliana Arrachea; Matteo Carrega; Alessandro Braggio Nonlocal thermoelectric engines in hybrid topological Josephson junctions, Physical Review B, Volume 103 (2021) no. 23 | DOI:10.1103/physrevb.103.235434
  • D. F. Aranguren-Quintero; E. Ramos; J. Silva-Valencia; M. S. Figueira; L. N. Oliveira; R. Franco Universality and thermoelectric transport properties of quantum dot systems, Physical Review B, Volume 103 (2021) no. 8 | DOI:10.1103/physrevb.103.085112
  • Gaia Germanese; Federico Paolucci; Giampiero Marchegiani; Alessandro Braggio; Francesco Giazotto Spontaneous symmetry breaking induced thermospin effect in superconducting tunnel junctions, Physical Review B, Volume 104 (2021) no. 18 | DOI:10.1103/physrevb.104.184502
  • Yu-Chao Hua; Ti-Wei Xue; Zeng-Yuan Guo Reversible reciprocal relation of thermoelectricity, Physical Review E, Volume 103 (2021) no. 1 | DOI:10.1103/physreve.103.012107
  • Jens Schulenborg; Maarten R. Wegewijs; Janine Splettstoesser Thermovoltage in quantum dots with attractive interaction, Applied Physics Letters, Volume 116 (2020) no. 24 | DOI:10.1063/5.0008866
  • Ulrich Eckern; Karol I Wysokiński Two- and three-terminal far-from-equilibrium thermoelectric nano-devices in the Kondo regime, New Journal of Physics, Volume 22 (2020) no. 1, p. 013045 | DOI:10.1088/1367-2630/ab6874
  • Nobuhiko Taniguchi Quantum control of nonlinear thermoelectricity at the nanoscale, Physical Review B, Volume 101 (2020) no. 11 | DOI:10.1103/physrevb.101.115404
  • G. Marchegiani; A. Braggio; F. Giazotto Superconducting nonlinear thermoelectric heat engine, Physical Review B, Volume 101 (2020) no. 21 | DOI:10.1103/physrevb.101.214509
  • Fatemeh Hajiloo; Pablo Terrén Alonso; Nastaran Dashti; Liliana Arrachea; Janine Splettstoesser Detailed study of nonlinear cooling with two-terminal configurations of topological edge states, Physical Review B, Volume 102 (2020) no. 15 | DOI:10.1103/physrevb.102.155434
  • Gianmichele Blasi; Fabio Taddei; Liliana Arrachea; Matteo Carrega; Alessandro Braggio Nonlocal thermoelectricity in a topological Andreev interferometer, Physical Review B, Volume 102 (2020) no. 24 | DOI:10.1103/physrevb.102.241302
  • G. Marchegiani; A. Braggio; F. Giazotto Nonlinear Thermoelectricity with Electron-Hole Symmetric Systems, Physical Review Letters, Volume 124 (2020) no. 10 | DOI:10.1103/physrevlett.124.106801
  • Sun-Yong Hwang; Björn Sothmann Phase-coherent caloritronics with ordinary and topological Josephson junctions, The European Physical Journal Special Topics, Volume 229 (2020) no. 4, p. 683 | DOI:10.1140/epjst/e2019-900094-y
  • Francesco Vischi; Matteo Carrega; Alessandro Braggio; Pauli Virtanen; Francesco Giazotto Thermodynamics of a Phase-Driven Proximity Josephson Junction, Entropy, Volume 21 (2019) no. 10, p. 1005 | DOI:10.3390/e21101005
  • Valeriu Moldoveanu; Andrei Manolescu; Vidar Gudmundsson Generalized Master Equation Approach to Time-Dependent Many-Body Transport, Entropy, Volume 21 (2019) no. 8, p. 731 | DOI:10.3390/e21080731
  • Sara Kheradsoud; Nastaran Dashti; Maciej Misiorny; Patrick Potts; Janine Splettstoesser; Peter Samuelsson Power, Efficiency and Fluctuations in a Quantum Point Contact as Steady-State Thermoelectric Heat Engine, Entropy, Volume 21 (2019) no. 8, p. 777 | DOI:10.3390/e21080777
  • Raúl A. Bustos-Marún; Hernán L. Calvo Thermodynamics and Steady State of Quantum Motors and Pumps Far from Equilibrium, Entropy, Volume 21 (2019) no. 9, p. 824 | DOI:10.3390/e21090824
  • Francisco Domínguez-Adame; Marisol Martín-González; David Sánchez; Andrés Cantarero Nanowires: A route to efficient thermoelectric devices, Physica E: Low-dimensional Systems and Nanostructures, Volume 113 (2019), p. 213 | DOI:10.1016/j.physe.2019.03.021
  • B. Brun; F. Martins; S. Faniel; A. Cavanna; C. Ulysse; A. Ouerghi; U. Gennser; D. Mailly; P. Simon; S. Huant; M. Sanquer; H. Sellier; V. Bayot; B. Hackens Thermoelectric Scanning-Gate Interferometry on a Quantum Point Contact, Physical Review Applied, Volume 11 (2019) no. 3 | DOI:10.1103/physrevapplied.11.034069
  • David Sánchez; Rafael Sánchez; Rosa López; Björn Sothmann Nonlinear chiral refrigerators, Physical Review B, Volume 99 (2019) no. 24 | DOI:10.1103/physrevb.99.245304
  • Yair Mazal; Yigal Meir; Yonatan Dubi Nonmonotonic thermoelectric currents and energy harvesting in interacting double quantum dots, Physical Review B, Volume 99 (2019) no. 7 | DOI:10.1103/physrevb.99.075433
  • José Ramón Isern-Lozano; Jong Soo Lim; Ioan Grosu; Rosa López; Mircea Crisan; David Sánchez Thermoelectric transport through interacting quantum dots in graphene, The European Physical Journal Special Topics, Volume 227 (2019) no. 15-16, p. 1969 | DOI:10.1140/epjst/e2018-800064-8
  • Sigurdur I Erlingsson; Jens H Bardarson; Andrei Manolescu Thermoelectric current in topological insulator nanowires with impurities, Beilstein Journal of Nanotechnology, Volume 9 (2018), p. 1156 | DOI:10.3762/bjnano.9.107
  • Sun-Yong Hwang; David Sánchez Nonlinear heat transport in ferromagnetic-quantum dot-superconducting systems, Journal of Physics: Conference Series, Volume 969 (2018), p. 012139 | DOI:10.1088/1742-6596/969/1/012139
  • Miguel A. Sierra; David Sánchez Heat current through an artificial Kondo impurity beyond linear response, Journal of Physics: Conference Series, Volume 969 (2018), p. 012144 | DOI:10.1088/1742-6596/969/1/012144
  • J. Schulenborg; J. Splettstoesser; M. R. Wegewijs Duality for open fermion systems: Energy-dependent weak coupling and quantum master equations, Physical Review B, Volume 98 (2018) no. 23 | DOI:10.1103/physrevb.98.235405
  • Natalya A. Zimbovskaya; Abraham Nitzan Thermally induced charge current through long molecules, The Journal of Chemical Physics, Volume 148 (2018) no. 2 | DOI:10.1063/1.5005057
  • Jens Schulenborg; Angelo Di Marco; Joren Vanherck; Maarten R. Wegewijs; Janine Splettstoesser Thermoelectrics of Interacting Nanosystems—Exploiting Superselection Instead of Time-Reversal Symmetry, Entropy, Volume 19 (2017) no. 12, p. 668 | DOI:10.3390/e19120668
  • Hiroki Okada; Yasuhiro Utsumi Heat and Charge Current Fluctuations and the Time-Dependent Coefficient of Performance for a Nanoscale Refrigerator, Journal of the Physical Society of Japan, Volume 86 (2017) no. 2, p. 024007 | DOI:10.7566/jpsj.86.024007
  • Jian-Hua Jiang; Yoseph Imry Enhancing Thermoelectric Performance Using Nonlinear Transport Effects, Physical Review Applied, Volume 7 (2017) no. 6 | DOI:10.1103/physrevapplied.7.064001
  • Luca Vannucci; Flavio Ronetti; Jérôme Rech; Dario Ferraro; Thibaut Jonckheere; Thierry Martin; Maura Sassetti Minimal excitation states for heat transport in driven quantum Hall systems, Physical Review B, Volume 95 (2017) no. 24 | DOI:10.1103/physrevb.95.245415
  • Nicklas Walldorf; Antti-Pekka Jauho; Kristen Kaasbjerg Thermoelectrics in Coulomb-coupled quantum dots: Cotunneling and energy-dependent lead couplings, Physical Review B, Volume 96 (2017) no. 11 | DOI:10.1103/physrevb.96.115415
  • Miguel A. Sierra; Rosa López; David Sánchez Fate of the spin- 12 Kondo effect in the presence of temperature gradients, Physical Review B, Volume 96 (2017) no. 8 | DOI:10.1103/physrevb.96.085416
  • Sigurdur I. Erlingsson; Andrei Manolescu; George Alexandru Nemnes; Jens H. Bardarson; David Sanchez Reversal of Thermoelectric Current in Tubular Nanowires, Physical Review Letters, Volume 119 (2017) no. 3 | DOI:10.1103/physrevlett.119.036804
  • Sun-Yong Hwang; David Sánchez; Rosa López Nonlinear electric and thermoelectric Andreev transport through a hybrid quantum dot coupled to ferromagnetic and superconducting leads, The European Physical Journal B, Volume 90 (2017) no. 10 | DOI:10.1140/epjb/e2017-80242-1
  • Natalya A. Zimbovskaya Length-dependent Seebeck effect in single-molecule junctions beyond linear response regime, The Journal of Chemical Physics, Volume 146 (2017) no. 18 | DOI:10.1063/1.4983130

Cité par 60 documents. Sources : Crossref

Commentaires - Politique