[Phénomènes non linéaires dans le transport quantique thermoélectrique et thermique]
Nous passons en revue les dévelopements récents relatifs au transport au travers de nanostructures et de systèmes mésoscopiques, engendré par des combinaisons de gradients de température et/ou de potentiel. Les conducteurs de basses dimensions constituent d'excellents systèmes pour étudier les dynamiques thermoélectrique et thermique au-delà de la réponse linéaire, une petite différence de température engendrant de forts gradients thermiques du fait des petites tailles. Nous présentons une théorie basée sur une approche de scattering pour illustrer les différences entre les régimes de transport linéaire et non linéaire. Nous discutons des expériences récentes sur des boîtes quantiques ou des jonctions moléculaires soumises à de fortes différences de température. Des prédictions théoriques relatives à l'effet Kondo et à la rectification du transport thermique sont brièvement examinées. Un point important est le calcul des rendements thermoélectriques en présence de non-linéarités. Nous coinsidérons aussi des effets Seebeck croisés avec du filtrage de spin non linéaire qui se produisent dans des supraconducteurs et des isolants topologiques, et le mélange des bruits de courant de charge et de chaleur. Finalement, nous discutons les directions futures possibles dans ce domaine.
We review recent developments in nonlinear quantum transport through nanostructures and mesoscopic systems driven by thermal gradients or in combination with voltage biases. Low-dimensional conductors are excellent platforms for analyzing both the thermoelectric and heat dynamics beyond the linear response because, due to their small size, a small temperature difference applied across regions gives rise to large thermal biases. We offer a theoretical discussion based on the scattering approach to highlight the differences between the linear and the nonlinear regimes of transport. We discuss recent experiments on quantum dots and molecular junctions subjected to strong temperature differences. Theoretical predictions concerning the Kondo effect and heat rectification proposals are briefly examined. An important issue is the calculation of thermoelectric efficiencies including nonlinearities. Cross Seebeck effects and nonlinear spin filtering arise in superconductors and topological insulators, while mixed noises between charge and heat currents are also considered. Finally, we provide an outlook on the possible future directions of the field.
Mots-clés : Thermoélectricité non linéaire, Systèmes mésoélectriques, Transport de la chaleur en régime quantique
David Sánchez 1 ; Rosa López 1
@article{CRPHYS_2016__17_10_1060_0, author = {David S\'anchez and Rosa L\'opez}, title = {Nonlinear phenomena in quantum thermoelectrics and heat}, journal = {Comptes Rendus. Physique}, pages = {1060--1071}, publisher = {Elsevier}, volume = {17}, number = {10}, year = {2016}, doi = {10.1016/j.crhy.2016.08.005}, language = {en}, }
David Sánchez; Rosa López. Nonlinear phenomena in quantum thermoelectrics and heat. Comptes Rendus. Physique, Mesoscopic thermoelectric phenomena / Phénomènes thermoélectriques mésoscopiques, Volume 17 (2016) no. 10, pp. 1060-1071. doi : 10.1016/j.crhy.2016.08.005. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2016.08.005/
[1] Physics of Semiconductor Devices, Wiley, New York, 1981
[2] Phys. Rev., 109 (1958), p. 603
[3] Solid State Commun., 1 (1963), p. 88
[4] Phys. Rev., 38 (1931), p. 2265
[5] Nature, 413 (2001), p. 597
[6] Science, 315 (2007), p. 1568
[7] Adv. Mater., 22 (2010), p. 3970
[8] Rev. Mod. Phys., 83 (2011), p. 131
[9] Nat. Nanotechnol., 8 (2013), p. 471
[10] New J. Phys., 16 (2014)
[11] J. Phys. Condens. Matter, 28 (2016), p. 183002
[12] Thermoelectrics Handbook. Macro to Nano (D.M. Rowe, ed.), CRC Press, Boca Raton, FL, USA, 2006
[13] Phys. Rev. Lett., 88 (2002)
[14] Phys. Rev. Lett., 110 (2013)
[15] Phys. Rev. B, 88 (2013)
[16] Phys. Rev. B, 33 (1986), p. 551
[17] J. Phys. Condens. Matter, 2 (1990), p. 4869
[18] Phys. Rev. Lett., 57 (1986), p. 1761
[19] Phys. Rev. Lett., 57 (1986), p. 1765
[20] Phys. Rev. B, 84 (2011)
[21] Phys. Rev. B, 84 (2011)
[22] Phys. Rev. Lett., 110 (2013)
[23] Phys. Rev. B, 90 (2014)
[24] Phys. Rev. B, 85 (2012)
[25] J. Phys. Condens. Matter, 5 (1993), p. 9361
[26] Europhys. Lett., 35 (1996), p. 523
[27] J. Phys. Condens. Matter, 25 (2013)
[28] Phys. Rev. B, 90 (2014)
[29] New J. Phys., 15 (2013)
[30] Int. J. Quant. Chem., 93 (2004), p. 906
[31] Phys. Rev. Lett., 93 (2004)
[32] Phys. Rev. Lett., 96 (2006)
[33] Phys. Rev. Lett., 96 (2006)
[34] Phys. Rev. Lett., 96 (2006)
[35] Phys. Rev. B, 75 (2007)
[36] Phys. Rev. B, 78 (2008)
[37] Proc. R. Soc. A, 470 (2014), p. 20140265
[38] Europhys. Lett., 22 (1993), p. 57
[39] New J. Phys., 15 (2013)
[40] Physica E, 82 (2016), p. 34
[41] Phys. Rev. B, 90 (2014)
[42] New J. Phys., 10 (2008)
[43] Phys. Rev. B, 81 (2010)
[44] Phys. Rev. B, 82 (2010)
[45] Rom. J. Phys., 60 (2015), p. 716
[46] Phys. Rev. B, 93 (2016)
[47] Europhys. Lett., 56 (2001), p. 576
[48] J. Phys. Condens. Matter, 14 (2002), p. 11747
[49] Phys. Rev. B, 75 (2007)
[50] Phys. Rev. B, 86 (2012)
[51] Phys. Rev. B, 88 (2013)
[52] J. Chem. Phys., 142 (2015)
[53] Nature (London), 498 (2013), p. 209
[54] New J. Phys., 16 (2014)
[55] Nat. Nanotechnol., 9 (2014), p. 881
[56] Phys. Rev. B, 91 (2015)
[57] Phys. Rev. B, 89 (2014)
[58] J. Chem. Phys., 122 (2005)
[59] Phys. Rev. B, 73 (2006)
[60] Phys. Rev. B, 82 (2010)
[61] Physica E, 74 (2015), p. 213
[62] Science, 314 (2006), p. 1121
[63] Phys. Rev. B, 83 (2011)
[64] Phys. Rev. B, 92 (2015)
[65] Mater. Today Proc., 2 (2015), p. 483
[66] Nano Lett., 9 (2009), p. 97
[67] Phys. Rev. B, 91 (2015)
[68] Phys. Rev. E, 92 (2015)
[69] Mesoscopic Theories of Heat Transport in Nanosystems, Springer, Cham, 2016
[70] J. Phys. Condens. Matter, 6 (1994), p. 9737
[71] Phys. Rev. B, 42 (1990), p. 7405
[72] Appl. Phys. Lett., 91 (2007), p. 122104
[73] Phys. Rev. B, 60 (1999), p. 11678
[74] J. Phys. Condens. Matter, 5 (1993), p. 8055
[75] Phys. Rev. B, 88 (2013)
[76] Semiconductor Thermoelements and Thermoelectric Cooling, Infosearch Ltd., London, 1956
[77] Phys. Rev. B, 112 (2014)
[78] Phys. Rev. B, 87 (2013)
[79] Phys. Rev. B, 88 (2013)
[80] Phys. Rev. Appl., 3 (2015)
[81] Nanotechnology, 26 (2015)
[82] New J. Phys., 18 (2016)
[83] Phys. Rev. B, 91 (2015)
[84] Nat. Nanotechnol., 10 (2015), p. 303
[85] Appl. Phys. Lett., 103 (2013), p. 242602
[86] Appl. Phys. Lett., 104 (2014), p. 183108
[87] Science, 314 (2006), p. 1757
[88] Science, 318 (2007), p. 766
[89] Phys. Rev. B, 90 (2014)
[90] Phys. Rev. B, 87 (2013)
[91] J. Phys. Conf. Ser., 568 (2014)
[92] Phys. Rev. B, 93 (2016)
[93] Phys. Rev. B, 92 (2015)
[94] Phys. Rep., 336 (2000), p. 1
[95] New J. Phys., 15 (2013)
[96] J. Phys. Condens. Matter, 27 (2015)
[97] Phys. Rev. Lett., 101 (2008)
[98] Phys. Rev. B, 78 (2008)
[99] Phys. Rev. B, 79 (2009)
[100] Rev. Mod. Phys., 81 (2009), p. 1665
[101] Phys. Rev. B, 104 (2010)
[102] Phys. Rev. Lett., 108 (2012)
[103] Phys. Rev. B, 89 (2014)
- Unusually High Thermopower in Molecular Junctions from Molecularly Induced Quantized States in Their Semimetal Leads, Nano Letters, Volume 25 (2025) no. 7, p. 2756 | DOI:10.1021/acs.nanolett.4c05852
- Nonequilibrium steady-state thermoelectrics of Kondo-correlated quantum dots, Physical Review B, Volume 111 (2025) no. 3 | DOI:10.1103/physrevb.111.035445
- Nonlinear thermoelectric transport in a graphene with O-shaped Kekulé structure, Results in Physics, Volume 71 (2025), p. 108189 | DOI:10.1016/j.rinp.2025.108189
- Nonlinear Landauer formula for thermal transport of the electrons, Europhysics Letters, Volume 145 (2024) no. 5, p. 56001 | DOI:10.1209/0295-5075/ad29b4
- Seebeck Power Generation and Peltier Cooling in a Normal Metal-Quantum Dot-Superconductor Nanodevice, Journal of Low Temperature Physics, Volume 214 (2024) no. 5-6, p. 344 | DOI:10.1007/s10909-024-03047-8
- Quantum coherent control of linear and nonlinear thermoelectricity in graphene nanostructure heat engines, Physical Review B, Volume 109 (2024) no. 4 | DOI:10.1103/physrevb.109.045412
- Quantum engines and refrigerators, Physics Reports, Volume 1087 (2024), p. 1 | DOI:10.1016/j.physrep.2024.07.001
- Universality and the thermoelectric transport properties of a double quantum dot system: Seeking for conditions that improve the thermoelectric efficiency, SciPost Physics Core, Volume 7 (2024) no. 3 | DOI:10.21468/scipostphyscore.7.3.058
- Direct observation of hot-electron-enhanced thermoelectric effects in silicon nanodevices, Nature Communications, Volume 14 (2023) no. 1 | DOI:10.1038/s41467-023-39489-z
- Quantum coherent control of nonlinear thermoelectric transport in a triple-dot Aharonov-Bohm heat engine, Physical Review B, Volume 108 (2023) no. 16 | DOI:10.1103/physrevb.108.165419
- Hybrid normal-superconducting Aharonov-Bohm quantum thermal device, Quantum Science and Technology, Volume 8 (2023) no. 1, p. 015023 | DOI:10.1088/2058-9565/acacbf
- A Strongly Correlated Quantum Dot Heat Engine with Optimal Performance: A Nonequilibrium Green's Function Approach, physica status solidi (b), Volume 260 (2023) no. 6 | DOI:10.1002/pssb.202200608
- Inelastic thermoelectric transport and fluctuations in mesoscopic systems, Advances in Physics: X, Volume 7 (2022) no. 1 | DOI:10.1080/23746149.2022.2082317
- Seebeck effect in a nanometer-scale dot in a Si nanowire observed with electron counting statistics, Applied Physics Letters, Volume 121 (2022) no. 18 | DOI:10.1063/5.0114584
- Large enhancement of thermoelectric effects in multiple quantum dots in a serial configuration due to Coulomb interactions, Journal of Physics: Condensed Matter, Volume 34 (2022) no. 25, p. 255302 | DOI:10.1088/1361-648x/ac640c
- Thermoelectric transport properties of armchair graphene nanoribbon heterostructures, Journal of Physics: Condensed Matter, Volume 34 (2022) no. 33, p. 335302 | DOI:10.1088/1361-648x/ac76fc
- Regimes and quantum bounds of nanoscale thermoelectrics with peaked transmission function, Physica E: Low-dimensional Systems and Nanostructures, Volume 138 (2022), p. 115105 | DOI:10.1016/j.physe.2021.115105
- Spin-orbit coupling effects on thermoelectric transport properties in quantum dots, Physical Review B, Volume 105 (2022) no. 16 | DOI:10.1103/physrevb.105.165421
- Thermal bias induced charge current in a Josephson junction: From ballistic to disordered, Physical Review B, Volume 106 (2022) no. 7 | DOI:10.1103/physrevb.106.075421
- Theory of shift heat current and its application to electron-phonon coupled systems, Physical Review B, Volume 106 (2022) no. 8 | DOI:10.1103/physrevb.106.085202
- Nonlinear regime for enhanced performance of an Aharonov–Bohm heat engine, AVS Quantum Science, Volume 3 (2021) no. 4 | DOI:10.1116/5.0064936
- Peltier effect: From linear to nonlinear, Acta Physica Sinica, Volume 70 (2021) no. 10, p. 108402 | DOI:10.7498/aps.70.20201826
- Non-Linear Thermoelectric Devices with Surface-Disordered Nanowires, Applied Nano, Volume 2 (2021) no. 3, p. 162 | DOI:10.3390/applnano2030013
- Designing nonlinear thermal devices and metamaterials under the Fourier law: A route to nonlinear thermotics, Frontiers of Physics, Volume 16 (2021) no. 5 | DOI:10.1007/s11467-021-1048-y
- Thermoelectric cooling properties of a quantum Hall Corbino device, Physical Review B, Volume 103 (2021) no. 12 | DOI:10.1103/physrevb.103.125404
- Nonlocal thermoelectric engines in hybrid topological Josephson junctions, Physical Review B, Volume 103 (2021) no. 23 | DOI:10.1103/physrevb.103.235434
- Universality and thermoelectric transport properties of quantum dot systems, Physical Review B, Volume 103 (2021) no. 8 | DOI:10.1103/physrevb.103.085112
- Spontaneous symmetry breaking induced thermospin effect in superconducting tunnel junctions, Physical Review B, Volume 104 (2021) no. 18 | DOI:10.1103/physrevb.104.184502
- Reversible reciprocal relation of thermoelectricity, Physical Review E, Volume 103 (2021) no. 1 | DOI:10.1103/physreve.103.012107
- Thermovoltage in quantum dots with attractive interaction, Applied Physics Letters, Volume 116 (2020) no. 24 | DOI:10.1063/5.0008866
- Two- and three-terminal far-from-equilibrium thermoelectric nano-devices in the Kondo regime, New Journal of Physics, Volume 22 (2020) no. 1, p. 013045 | DOI:10.1088/1367-2630/ab6874
- Quantum control of nonlinear thermoelectricity at the nanoscale, Physical Review B, Volume 101 (2020) no. 11 | DOI:10.1103/physrevb.101.115404
- Superconducting nonlinear thermoelectric heat engine, Physical Review B, Volume 101 (2020) no. 21 | DOI:10.1103/physrevb.101.214509
- Detailed study of nonlinear cooling with two-terminal configurations of topological edge states, Physical Review B, Volume 102 (2020) no. 15 | DOI:10.1103/physrevb.102.155434
- Nonlocal thermoelectricity in a topological Andreev interferometer, Physical Review B, Volume 102 (2020) no. 24 | DOI:10.1103/physrevb.102.241302
- Nonlinear Thermoelectricity with Electron-Hole Symmetric Systems, Physical Review Letters, Volume 124 (2020) no. 10 | DOI:10.1103/physrevlett.124.106801
- Phase-coherent caloritronics with ordinary and topological Josephson junctions, The European Physical Journal Special Topics, Volume 229 (2020) no. 4, p. 683 | DOI:10.1140/epjst/e2019-900094-y
- Thermodynamics of a Phase-Driven Proximity Josephson Junction, Entropy, Volume 21 (2019) no. 10, p. 1005 | DOI:10.3390/e21101005
- Generalized Master Equation Approach to Time-Dependent Many-Body Transport, Entropy, Volume 21 (2019) no. 8, p. 731 | DOI:10.3390/e21080731
- Power, Efficiency and Fluctuations in a Quantum Point Contact as Steady-State Thermoelectric Heat Engine, Entropy, Volume 21 (2019) no. 8, p. 777 | DOI:10.3390/e21080777
- Thermodynamics and Steady State of Quantum Motors and Pumps Far from Equilibrium, Entropy, Volume 21 (2019) no. 9, p. 824 | DOI:10.3390/e21090824
- Nanowires: A route to efficient thermoelectric devices, Physica E: Low-dimensional Systems and Nanostructures, Volume 113 (2019), p. 213 | DOI:10.1016/j.physe.2019.03.021
- Thermoelectric Scanning-Gate Interferometry on a Quantum Point Contact, Physical Review Applied, Volume 11 (2019) no. 3 | DOI:10.1103/physrevapplied.11.034069
- Nonlinear chiral refrigerators, Physical Review B, Volume 99 (2019) no. 24 | DOI:10.1103/physrevb.99.245304
- Nonmonotonic thermoelectric currents and energy harvesting in interacting double quantum dots, Physical Review B, Volume 99 (2019) no. 7 | DOI:10.1103/physrevb.99.075433
- Thermoelectric transport through interacting quantum dots in graphene, The European Physical Journal Special Topics, Volume 227 (2019) no. 15-16, p. 1969 | DOI:10.1140/epjst/e2018-800064-8
- Thermoelectric current in topological insulator nanowires with impurities, Beilstein Journal of Nanotechnology, Volume 9 (2018), p. 1156 | DOI:10.3762/bjnano.9.107
- Nonlinear heat transport in ferromagnetic-quantum dot-superconducting systems, Journal of Physics: Conference Series, Volume 969 (2018), p. 012139 | DOI:10.1088/1742-6596/969/1/012139
- Heat current through an artificial Kondo impurity beyond linear response, Journal of Physics: Conference Series, Volume 969 (2018), p. 012144 | DOI:10.1088/1742-6596/969/1/012144
- Duality for open fermion systems: Energy-dependent weak coupling and quantum master equations, Physical Review B, Volume 98 (2018) no. 23 | DOI:10.1103/physrevb.98.235405
- Thermally induced charge current through long molecules, The Journal of Chemical Physics, Volume 148 (2018) no. 2 | DOI:10.1063/1.5005057
- Thermoelectrics of Interacting Nanosystems—Exploiting Superselection Instead of Time-Reversal Symmetry, Entropy, Volume 19 (2017) no. 12, p. 668 | DOI:10.3390/e19120668
- Heat and Charge Current Fluctuations and the Time-Dependent Coefficient of Performance for a Nanoscale Refrigerator, Journal of the Physical Society of Japan, Volume 86 (2017) no. 2, p. 024007 | DOI:10.7566/jpsj.86.024007
- Enhancing Thermoelectric Performance Using Nonlinear Transport Effects, Physical Review Applied, Volume 7 (2017) no. 6 | DOI:10.1103/physrevapplied.7.064001
- Minimal excitation states for heat transport in driven quantum Hall systems, Physical Review B, Volume 95 (2017) no. 24 | DOI:10.1103/physrevb.95.245415
- Thermoelectrics in Coulomb-coupled quantum dots: Cotunneling and energy-dependent lead couplings, Physical Review B, Volume 96 (2017) no. 11 | DOI:10.1103/physrevb.96.115415
- Fate of the spin- 12 Kondo effect in the presence of temperature gradients, Physical Review B, Volume 96 (2017) no. 8 | DOI:10.1103/physrevb.96.085416
- Reversal of Thermoelectric Current in Tubular Nanowires, Physical Review Letters, Volume 119 (2017) no. 3 | DOI:10.1103/physrevlett.119.036804
- Nonlinear electric and thermoelectric Andreev transport through a hybrid quantum dot coupled to ferromagnetic and superconducting leads, The European Physical Journal B, Volume 90 (2017) no. 10 | DOI:10.1140/epjb/e2017-80242-1
- Length-dependent Seebeck effect in single-molecule junctions beyond linear response regime, The Journal of Chemical Physics, Volume 146 (2017) no. 18 | DOI:10.1063/1.4983130
Cité par 60 documents. Sources : Crossref
Commentaires - Politique