Comptes Rendus
Electrostatic vibration energy harvester with 2.4-GHz Cockcroft–Walton rectenna start-up
[Dispositif de récupération d'énergie vibratoire par transduction électrostatique, pré-chargé par une rectenna Cockcroft–Walton à 2,4 GHz]
Comptes Rendus. Physique, Volume 18 (2017) no. 2, pp. 98-106.

Cet article propose la conception, la réalisation et les mesures d'un transducteur électrostatique, à base d'une capacité macroscopique, pré-chargé par une rectenna de type Cockcroft–Walton à 2,4 GHz. La rectenna est conçue et optimisée pour fonctionner à des niveaux de puissance faibles et fournir des tensions élevées : 0,5 V à 0,76 μW/cm2 et 1 V à 1,53 μW/cm2. Le transducteur électrostatique utilise le circuit de conditionnement de Bennet. Les mesures du système complet montrent des tensions supérieures à 23 V aux bornes du transducteur, lorsqu'il est excité à 25 Hz et avec une accélération externe de 1,5g. Une énergie cumulée de 275 μJ et une puissance disponible de 0,4 μW ont pu être obtenues.

In this paper, we propose the design, fabrication and experiments of a macro-scale electrostatic vibration energy harvester (e-VEH), pre-charged wirelessly for the first time with a 2.4-GHz Cockcroft–Walton rectenna. The rectenna is designed and optimized to operate at low power densities and provide high voltage levels: 0.5 V at 0.76 μW/cm2 and 1 V at 1.53 μW/cm2. The e-VEH uses a Bennet doubler as a conditioning circuit. Experiments show a 23-V voltage across the transducer terminal, when the harvester is excited at 25 Hz by 1.5g of external acceleration. An accumulated energy of 275 μJ and a maximum available power of 0.4 μW are achieved.

Publié le :
DOI : 10.1016/j.crhy.2016.12.001
Keywords: Rectenna, Cockcroft–Walton rectifier, Energy harvesting, Electrostatic transduction, Bennet's doubler
Mot clés : Rectenna, Circuit de rectification Cockcroft–Walton, Récupération d'énergie, Transduction électrostatique, Doubleur de tension de Bennet

Hakim Takhedmit 1 ; Zied Saddi 1 ; Armine Karami 2 ; Philippe Basset 1 ; Laurent Cirio 1

1 Université Paris-Est, ESYCOM (EA 2552), UPEM, ESIEE-Paris, CNAM, 77454 Marne-la-Vallée, France
2 Laboratoire d'informatique de Paris 6 (LIP6), Université Paris 6, Paris 75005, France
@article{CRPHYS_2017__18_2_98_0,
     author = {Hakim Takhedmit and Zied Saddi and Armine Karami and Philippe Basset and Laurent Cirio},
     title = {Electrostatic vibration energy harvester with {2.4-GHz} {Cockcroft{\textendash}Walton} rectenna start-up},
     journal = {Comptes Rendus. Physique},
     pages = {98--106},
     publisher = {Elsevier},
     volume = {18},
     number = {2},
     year = {2017},
     doi = {10.1016/j.crhy.2016.12.001},
     language = {en},
}
TY  - JOUR
AU  - Hakim Takhedmit
AU  - Zied Saddi
AU  - Armine Karami
AU  - Philippe Basset
AU  - Laurent Cirio
TI  - Electrostatic vibration energy harvester with 2.4-GHz Cockcroft–Walton rectenna start-up
JO  - Comptes Rendus. Physique
PY  - 2017
SP  - 98
EP  - 106
VL  - 18
IS  - 2
PB  - Elsevier
DO  - 10.1016/j.crhy.2016.12.001
LA  - en
ID  - CRPHYS_2017__18_2_98_0
ER  - 
%0 Journal Article
%A Hakim Takhedmit
%A Zied Saddi
%A Armine Karami
%A Philippe Basset
%A Laurent Cirio
%T Electrostatic vibration energy harvester with 2.4-GHz Cockcroft–Walton rectenna start-up
%J Comptes Rendus. Physique
%D 2017
%P 98-106
%V 18
%N 2
%I Elsevier
%R 10.1016/j.crhy.2016.12.001
%G en
%F CRPHYS_2017__18_2_98_0
Hakim Takhedmit; Zied Saddi; Armine Karami; Philippe Basset; Laurent Cirio. Electrostatic vibration energy harvester with 2.4-GHz Cockcroft–Walton rectenna start-up. Comptes Rendus. Physique, Volume 18 (2017) no. 2, pp. 98-106. doi : 10.1016/j.crhy.2016.12.001. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2016.12.001/

[1] P. Glynne-Jones; M.J. Tudor; S.P. Beeby; N.M. White An electromagnetic, vibration-powered generator for intelligent sensor systems, Sens. Actuators A, Phys., Volume 110 (2004) no. 1–3, pp. 344-349

[2] X. Cao; W.-J. Chiang; Y.-C. King; Y.-K. Lee Electromagnetic energy harvesting circuit with feedforward and feedback DC–DC PWM boost converter for vibration power generator system, IEEE Trans. Power Electron., Volume 22 (2007) no. 2, pp. 679-685

[3] L.-C.J. Blystad; E. Halvorsen; S. Husa Piezoelectric MEMS energy harvesting systems driven by harmonic and random vibrations, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, Volume 57 (2010) no. 4, pp. 908-919

[4] P.D. Mitcheson; E.M. Yeatman; G.K. Rao; A.S. Holmes; T.C. Green Energy harvesting from human and machine motion for wireless electronic devices, Proc. IEEE, Volume 96 (2008) no. 9, pp. 1457-1486

[5] Y. Lu; F. Cottone; S. Boisseau; F. Marty; D. Galayko; P. Basset A nonlinear MEMS electrostatic kinetic energy harvester for human-powered biomedical devices, Appl. Phys. Lett., Volume 107 (2015), p. 253902

[6] Y. Suzuki; D. Miki; M. Edamoto; M. Honzumi A MEMS electret generator with electrostatic levitation for vibration-driven energy harvesting applications, J. Micromech. Microeng., Volume 20 (2010) no. 10 ([8 pp.])

[7] Y. Lu; E. O'Riordan; F. Cottone; S. Boisseau; D. Galayko; E. Blokhina; F. Marty; P. Basset A batch-fabricated electret-biased wideband MEMS vibration energy harvester with frequency-up conversion behavior powering a UHF wireless sensor node, J. Micromech. Microeng., Volume 26 (2016) no. 12, p. 124004 | DOI

[8] A. Dudka; P. Basset; F. Cottone; E. Blokhina; D. Galayko Wideband electrostatic vibration energy harvester (e-veh) having a low start-up voltage employing a high-voltage integrated interface, J. Phys. Conf. Ser., Volume 476 (2013), p. [1-5]

[9] A. Kempitiya; D. Borca-Tasciuc; M.M. Hella Low-power ASIC for microwatt electrostatic energy harvesters, IEEE Trans. Ind. Electron., Volume 60 (2013) no. 12, pp. 5639-5647

[10] S. Meninger; J. Mur-Miranda; R. Amirtharajah; A. Chandrakasan; J. Lang Vibration-to-electric energy conversion, IEEE Trans. Very Large Scale Integr. (VLSI) Syst., Volume 9 (2001) no. 1, pp. 64-76

[11] E.O. Torres; G.A. Rinćon-Mora Electrostatic energy-harvesting and battery-charging CMOS system prototype, IEEE Trans. Circuits Syst. I, Regul. Pap., Volume 56 (2009) no. 9, pp. 1938-1948

[12] S. Roundy; P.K. Wright; J. Rabaey; B.C. Yen; J.H. Lang A variable-capacitance vibration-to-electric energy harvester, IEEE Trans. Circuits Syst. I, Regul. Pap., Volume 26 (2003) no. 11, pp. 1131-1144

[13] A.C.M. de Queiroz; M. Domingues The doubler of electricity used as battery charger, IEEE Trans. Circuits Syst. II, Express Briefs, Volume 58 (2011) no. 12, pp. 797-801

[14] V. Dragunov; V. Dorzhiev Electrostatic vibration energy harvester with increased charging current, J. Phys. Conf. Ser., Volume 476 (2013) ([5 pp.])

[15] Y.J. Ren; K. Chang 5.8-GHz circularly polarized dual-diode rectenna and rectenna array for microwave power transmission, IEEE Trans. Microw. Theory Tech., Volume 54 (2006) no. 4, pp. 1495-1502

[16] A. Douyere; J.D. Lan Sun Luk; F. Alicalapa High efficiency microwave rectenna circuit: modeling and design, Electron. Lett., Volume 44 (2008) no. 24, pp. 1409-1410

[17] J. Zbitou; M. Latrach; S. Toutain Hybrid rectenna and monolithic integrated zero-bias microwave rectifier, IEEE Trans. Microw. Theory Tech., Volume 54 (2006) no. 1, pp. 147-152

[18] J.A.G. Akkermans; M.C. Van Beurden; G.J.N. Doodeman; H. Visser Analytical models for low-power rectenna design, IEEE Antennas Wirel. Propag. Lett., Volume 4 (2005), pp. 187-190

[19] B. Strassner; K. Chang 5.8-GHz circularly polarized rectifying antenna for wireless microwave power transmission, IEEE Trans. Microw. Theory Tech., Volume 50 (2002) no. 8, pp. 1870-1876

[20] J. Heikkinen; M. Kivikoski Low-profile circularly polarized rectifying antenna for wireless power transmission at 5.8 GHz, IEEE Microw. Wirel. Compon. Lett., Volume 14 (2004) no. 4, pp. 162-164

[21] J. Heikkinen; M. Kivikoski A novel dual-frequency circularly polarized rectenna, IEEE Antennas Wirel. Propag. Lett., Volume 2 (2003), pp. 330-333

[22] U. Olgun; C.C. Chen; J.L. Volakis Design of an efficient ambient WiFi energy harvesting system, IET Microw. Antennas Propag., Volume 6 (2012) no. 11, pp. 1200-1206

[23] H. Takhedmit; H. Kilani; L. Cirio; P. Basset; O. Picon Design and experiments of a 2.4-GHz voltage multiplier for RF energy harvesting, Proc. Power MEMS, 2012, pp. 448-451

[24] H. Takhedmit; L. Cirio; B. Merabet; B. Allard; F. Costa; C. Vollaire; O. Picon Efficient 2.45 GHz rectenna design including harmonic rejecting rectifier device, Electron. Lett., Volume 46 (2010) no. 12, pp. 811-812

[25] H. Takhedmit; L. Cirio; S. Bellal; D. Delcroix; O. Picon Compact and efficient 2.45 GHz circularly polarised shorted ring-slot rectenna, Electron. Lett., Volume 48 (2012) no. 5, pp. 253-254

[26] H. Yan; J.G. Macias Montero; A. Akhnoukh; L. de Vreede; J. Burghartz An integration scheme for RF power harvesting, SAFE 2005, Utrecht, The Netherlands, 17–18 November 2005 (2005), pp. 64-66

[27] T. Sogorb; J.V. Llario; J. Pelegri; R. Lajara; J. Alberola Studying the feasibility of energy harvesting from broadcast RF station for WSN, 12–15 May 2008, Victoria, British Columbia, CA (2008), pp. 1360-1363

[28] Datasheet surface mount mixer and detector Schottky diodes skyworks http://www.skyworksinc.com

[29] H. Takhedmit; B. Merabet; L. Cirio; B. Allard; F. Costa; C. Vollaire; O. Picon Design of a 2.45 GHz rectenna using a global analysis technique, EuCAP 2009, 23–27 March, Berlin, Germany (2009), pp. 2321-2325

[30] V. Dorzhiev; A. Karami; P. Basset; F. Marty; V. Dragunov; D. Galayko Electret-free micromachined silicon electrostatic vibration energy harvester with the Bennet's Doubler as conditioning circuit, IEEE Electron Device Lett., Volume 36 (2015) no. 2, pp. 183-185

[31] P. Basset; E. Blockhina; D. Galayko Electrostatic Kinetic Energy Harvesters, Smart Adaptive Systems on Silicon Series, Wiley/ISTE, 2016 (244 p.) (ISBN: 978-1-84821-716-4)

Cité par Sources :

Commentaires - Politique