[Dispositif de récupération d'énergie vibratoire par transduction électrostatique, pré-chargé par une rectenna Cockcroft–Walton à 2,4 GHz]
Cet article propose la conception, la réalisation et les mesures d'un transducteur électrostatique, à base d'une capacité macroscopique, pré-chargé par une rectenna de type Cockcroft–Walton à 2,4 GHz. La rectenna est conçue et optimisée pour fonctionner à des niveaux de puissance faibles et fournir des tensions élevées : 0,5 V à 0,76 μW/cm2 et 1 V à 1,53 μW/cm2. Le transducteur électrostatique utilise le circuit de conditionnement de Bennet. Les mesures du système complet montrent des tensions supérieures à 23 V aux bornes du transducteur, lorsqu'il est excité à 25 Hz et avec une accélération externe de . Une énergie cumulée de 275 μJ et une puissance disponible de 0,4 μW ont pu être obtenues.
In this paper, we propose the design, fabrication and experiments of a macro-scale electrostatic vibration energy harvester (e-VEH), pre-charged wirelessly for the first time with a 2.4-GHz Cockcroft–Walton rectenna. The rectenna is designed and optimized to operate at low power densities and provide high voltage levels: 0.5 V at 0.76 μW/cm2 and 1 V at 1.53 μW/cm2. The e-VEH uses a Bennet doubler as a conditioning circuit. Experiments show a 23-V voltage across the transducer terminal, when the harvester is excited at 25 Hz by of external acceleration. An accumulated energy of 275 μJ and a maximum available power of 0.4 μW are achieved.
Mot clés : Rectenna, Circuit de rectification Cockcroft–Walton, Récupération d'énergie, Transduction électrostatique, Doubleur de tension de Bennet
Hakim Takhedmit 1 ; Zied Saddi 1 ; Armine Karami 2 ; Philippe Basset 1 ; Laurent Cirio 1
@article{CRPHYS_2017__18_2_98_0, author = {Hakim Takhedmit and Zied Saddi and Armine Karami and Philippe Basset and Laurent Cirio}, title = {Electrostatic vibration energy harvester with {2.4-GHz} {Cockcroft{\textendash}Walton} rectenna start-up}, journal = {Comptes Rendus. Physique}, pages = {98--106}, publisher = {Elsevier}, volume = {18}, number = {2}, year = {2017}, doi = {10.1016/j.crhy.2016.12.001}, language = {en}, }
TY - JOUR AU - Hakim Takhedmit AU - Zied Saddi AU - Armine Karami AU - Philippe Basset AU - Laurent Cirio TI - Electrostatic vibration energy harvester with 2.4-GHz Cockcroft–Walton rectenna start-up JO - Comptes Rendus. Physique PY - 2017 SP - 98 EP - 106 VL - 18 IS - 2 PB - Elsevier DO - 10.1016/j.crhy.2016.12.001 LA - en ID - CRPHYS_2017__18_2_98_0 ER -
%0 Journal Article %A Hakim Takhedmit %A Zied Saddi %A Armine Karami %A Philippe Basset %A Laurent Cirio %T Electrostatic vibration energy harvester with 2.4-GHz Cockcroft–Walton rectenna start-up %J Comptes Rendus. Physique %D 2017 %P 98-106 %V 18 %N 2 %I Elsevier %R 10.1016/j.crhy.2016.12.001 %G en %F CRPHYS_2017__18_2_98_0
Hakim Takhedmit; Zied Saddi; Armine Karami; Philippe Basset; Laurent Cirio. Electrostatic vibration energy harvester with 2.4-GHz Cockcroft–Walton rectenna start-up. Comptes Rendus. Physique, Volume 18 (2017) no. 2, pp. 98-106. doi : 10.1016/j.crhy.2016.12.001. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2016.12.001/
[1] An electromagnetic, vibration-powered generator for intelligent sensor systems, Sens. Actuators A, Phys., Volume 110 (2004) no. 1–3, pp. 344-349
[2] Electromagnetic energy harvesting circuit with feedforward and feedback DC–DC PWM boost converter for vibration power generator system, IEEE Trans. Power Electron., Volume 22 (2007) no. 2, pp. 679-685
[3] Piezoelectric MEMS energy harvesting systems driven by harmonic and random vibrations, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, Volume 57 (2010) no. 4, pp. 908-919
[4] Energy harvesting from human and machine motion for wireless electronic devices, Proc. IEEE, Volume 96 (2008) no. 9, pp. 1457-1486
[5] A nonlinear MEMS electrostatic kinetic energy harvester for human-powered biomedical devices, Appl. Phys. Lett., Volume 107 (2015), p. 253902
[6] A MEMS electret generator with electrostatic levitation for vibration-driven energy harvesting applications, J. Micromech. Microeng., Volume 20 (2010) no. 10 ([8 pp.])
[7] A batch-fabricated electret-biased wideband MEMS vibration energy harvester with frequency-up conversion behavior powering a UHF wireless sensor node, J. Micromech. Microeng., Volume 26 (2016) no. 12, p. 124004 | DOI
[8] Wideband electrostatic vibration energy harvester (e-veh) having a low start-up voltage employing a high-voltage integrated interface, J. Phys. Conf. Ser., Volume 476 (2013), p. [1-5]
[9] Low-power ASIC for microwatt electrostatic energy harvesters, IEEE Trans. Ind. Electron., Volume 60 (2013) no. 12, pp. 5639-5647
[10] Vibration-to-electric energy conversion, IEEE Trans. Very Large Scale Integr. (VLSI) Syst., Volume 9 (2001) no. 1, pp. 64-76
[11] Electrostatic energy-harvesting and battery-charging CMOS system prototype, IEEE Trans. Circuits Syst. I, Regul. Pap., Volume 56 (2009) no. 9, pp. 1938-1948
[12] A variable-capacitance vibration-to-electric energy harvester, IEEE Trans. Circuits Syst. I, Regul. Pap., Volume 26 (2003) no. 11, pp. 1131-1144
[13] The doubler of electricity used as battery charger, IEEE Trans. Circuits Syst. II, Express Briefs, Volume 58 (2011) no. 12, pp. 797-801
[14] Electrostatic vibration energy harvester with increased charging current, J. Phys. Conf. Ser., Volume 476 (2013) ([5 pp.])
[15] 5.8-GHz circularly polarized dual-diode rectenna and rectenna array for microwave power transmission, IEEE Trans. Microw. Theory Tech., Volume 54 (2006) no. 4, pp. 1495-1502
[16] High efficiency microwave rectenna circuit: modeling and design, Electron. Lett., Volume 44 (2008) no. 24, pp. 1409-1410
[17] Hybrid rectenna and monolithic integrated zero-bias microwave rectifier, IEEE Trans. Microw. Theory Tech., Volume 54 (2006) no. 1, pp. 147-152
[18] Analytical models for low-power rectenna design, IEEE Antennas Wirel. Propag. Lett., Volume 4 (2005), pp. 187-190
[19] 5.8-GHz circularly polarized rectifying antenna for wireless microwave power transmission, IEEE Trans. Microw. Theory Tech., Volume 50 (2002) no. 8, pp. 1870-1876
[20] Low-profile circularly polarized rectifying antenna for wireless power transmission at 5.8 GHz, IEEE Microw. Wirel. Compon. Lett., Volume 14 (2004) no. 4, pp. 162-164
[21] A novel dual-frequency circularly polarized rectenna, IEEE Antennas Wirel. Propag. Lett., Volume 2 (2003), pp. 330-333
[22] Design of an efficient ambient WiFi energy harvesting system, IET Microw. Antennas Propag., Volume 6 (2012) no. 11, pp. 1200-1206
[23] Design and experiments of a 2.4-GHz voltage multiplier for RF energy harvesting, Proc. Power MEMS, 2012, pp. 448-451
[24] Efficient 2.45 GHz rectenna design including harmonic rejecting rectifier device, Electron. Lett., Volume 46 (2010) no. 12, pp. 811-812
[25] Compact and efficient 2.45 GHz circularly polarised shorted ring-slot rectenna, Electron. Lett., Volume 48 (2012) no. 5, pp. 253-254
[26] An integration scheme for RF power harvesting, SAFE 2005, Utrecht, The Netherlands, 17–18 November 2005 (2005), pp. 64-66
[27] Studying the feasibility of energy harvesting from broadcast RF station for WSN, 12–15 May 2008, Victoria, British Columbia, CA (2008), pp. 1360-1363
[28] Datasheet surface mount mixer and detector Schottky diodes skyworks http://www.skyworksinc.com
[29] Design of a 2.45 GHz rectenna using a global analysis technique, EuCAP 2009, 23–27 March, Berlin, Germany (2009), pp. 2321-2325
[30] Electret-free micromachined silicon electrostatic vibration energy harvester with the Bennet's Doubler as conditioning circuit, IEEE Electron Device Lett., Volume 36 (2015) no. 2, pp. 183-185
[31] Electrostatic Kinetic Energy Harvesters, Smart Adaptive Systems on Silicon Series, Wiley/ISTE, 2016 (244 p.) (ISBN: 978-1-84821-716-4)
Cité par Sources :
Commentaires - Politique