Comptes Rendus
Electrostatic vibration energy harvester with 2.4-GHz Cockcroft–Walton rectenna start-up
[Dispositif de récupération d'énergie vibratoire par transduction électrostatique, pré-chargé par une rectenna Cockcroft–Walton à 2,4 GHz]
Comptes Rendus. Physique, Energy and radiosciences, Volume 18 (2017) no. 2, pp. 98-106.

In this paper, we propose the design, fabrication and experiments of a macro-scale electrostatic vibration energy harvester (e-VEH), pre-charged wirelessly for the first time with a 2.4-GHz Cockcroft–Walton rectenna. The rectenna is designed and optimized to operate at low power densities and provide high voltage levels: 0.5 V at 0.76 μW/cm2 and 1 V at 1.53 μW/cm2. The e-VEH uses a Bennet doubler as a conditioning circuit. Experiments show a 23-V voltage across the transducer terminal, when the harvester is excited at 25 Hz by 1.5g of external acceleration. An accumulated energy of 275 μJ and a maximum available power of 0.4 μW are achieved.

Cet article propose la conception, la réalisation et les mesures d'un transducteur électrostatique, à base d'une capacité macroscopique, pré-chargé par une rectenna de type Cockcroft–Walton à 2,4 GHz. La rectenna est conçue et optimisée pour fonctionner à des niveaux de puissance faibles et fournir des tensions élevées : 0,5 V à 0,76 μW/cm2 et 1 V à 1,53 μW/cm2. Le transducteur électrostatique utilise le circuit de conditionnement de Bennet. Les mesures du système complet montrent des tensions supérieures à 23 V aux bornes du transducteur, lorsqu'il est excité à 25 Hz et avec une accélération externe de 1,5g. Une énergie cumulée de 275 μJ et une puissance disponible de 0,4 μW ont pu être obtenues.

Publié le :
DOI : 10.1016/j.crhy.2016.12.001
Keywords: Rectenna, Cockcroft–Walton rectifier, Energy harvesting, Electrostatic transduction, Bennet's doubler
Mots-clés : Rectenna, Circuit de rectification Cockcroft–Walton, Récupération d'énergie, Transduction électrostatique, Doubleur de tension de Bennet

Hakim Takhedmit 1 ; Zied Saddi 1 ; Armine Karami 2 ; Philippe Basset 1 ; Laurent Cirio 1

1 Université Paris-Est, ESYCOM (EA 2552), UPEM, ESIEE-Paris, CNAM, 77454 Marne-la-Vallée, France
2 Laboratoire d'informatique de Paris 6 (LIP6), Université Paris 6, Paris 75005, France
@article{CRPHYS_2017__18_2_98_0,
     author = {Hakim Takhedmit and Zied Saddi and Armine Karami and Philippe Basset and Laurent Cirio},
     title = {Electrostatic vibration energy harvester with {2.4-GHz} {Cockcroft{\textendash}Walton} rectenna start-up},
     journal = {Comptes Rendus. Physique},
     pages = {98--106},
     publisher = {Elsevier},
     volume = {18},
     number = {2},
     year = {2017},
     doi = {10.1016/j.crhy.2016.12.001},
     language = {en},
}
TY  - JOUR
AU  - Hakim Takhedmit
AU  - Zied Saddi
AU  - Armine Karami
AU  - Philippe Basset
AU  - Laurent Cirio
TI  - Electrostatic vibration energy harvester with 2.4-GHz Cockcroft–Walton rectenna start-up
JO  - Comptes Rendus. Physique
PY  - 2017
SP  - 98
EP  - 106
VL  - 18
IS  - 2
PB  - Elsevier
DO  - 10.1016/j.crhy.2016.12.001
LA  - en
ID  - CRPHYS_2017__18_2_98_0
ER  - 
%0 Journal Article
%A Hakim Takhedmit
%A Zied Saddi
%A Armine Karami
%A Philippe Basset
%A Laurent Cirio
%T Electrostatic vibration energy harvester with 2.4-GHz Cockcroft–Walton rectenna start-up
%J Comptes Rendus. Physique
%D 2017
%P 98-106
%V 18
%N 2
%I Elsevier
%R 10.1016/j.crhy.2016.12.001
%G en
%F CRPHYS_2017__18_2_98_0
Hakim Takhedmit; Zied Saddi; Armine Karami; Philippe Basset; Laurent Cirio. Electrostatic vibration energy harvester with 2.4-GHz Cockcroft–Walton rectenna start-up. Comptes Rendus. Physique, Energy and radiosciences, Volume 18 (2017) no. 2, pp. 98-106. doi : 10.1016/j.crhy.2016.12.001. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2016.12.001/

[1] P. Glynne-Jones; M.J. Tudor; S.P. Beeby; N.M. White An electromagnetic, vibration-powered generator for intelligent sensor systems, Sens. Actuators A, Phys., Volume 110 (2004) no. 1–3, pp. 344-349

[2] X. Cao; W.-J. Chiang; Y.-C. King; Y.-K. Lee Electromagnetic energy harvesting circuit with feedforward and feedback DC–DC PWM boost converter for vibration power generator system, IEEE Trans. Power Electron., Volume 22 (2007) no. 2, pp. 679-685

[3] L.-C.J. Blystad; E. Halvorsen; S. Husa Piezoelectric MEMS energy harvesting systems driven by harmonic and random vibrations, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, Volume 57 (2010) no. 4, pp. 908-919

[4] P.D. Mitcheson; E.M. Yeatman; G.K. Rao; A.S. Holmes; T.C. Green Energy harvesting from human and machine motion for wireless electronic devices, Proc. IEEE, Volume 96 (2008) no. 9, pp. 1457-1486

[5] Y. Lu; F. Cottone; S. Boisseau; F. Marty; D. Galayko; P. Basset A nonlinear MEMS electrostatic kinetic energy harvester for human-powered biomedical devices, Appl. Phys. Lett., Volume 107 (2015), p. 253902

[6] Y. Suzuki; D. Miki; M. Edamoto; M. Honzumi A MEMS electret generator with electrostatic levitation for vibration-driven energy harvesting applications, J. Micromech. Microeng., Volume 20 (2010) no. 10 ([8 pp.])

[7] Y. Lu; E. O'Riordan; F. Cottone; S. Boisseau; D. Galayko; E. Blokhina; F. Marty; P. Basset A batch-fabricated electret-biased wideband MEMS vibration energy harvester with frequency-up conversion behavior powering a UHF wireless sensor node, J. Micromech. Microeng., Volume 26 (2016) no. 12, p. 124004 | DOI

[8] A. Dudka; P. Basset; F. Cottone; E. Blokhina; D. Galayko Wideband electrostatic vibration energy harvester (e-veh) having a low start-up voltage employing a high-voltage integrated interface, J. Phys. Conf. Ser., Volume 476 (2013), p. [1-5]

[9] A. Kempitiya; D. Borca-Tasciuc; M.M. Hella Low-power ASIC for microwatt electrostatic energy harvesters, IEEE Trans. Ind. Electron., Volume 60 (2013) no. 12, pp. 5639-5647

[10] S. Meninger; J. Mur-Miranda; R. Amirtharajah; A. Chandrakasan; J. Lang Vibration-to-electric energy conversion, IEEE Trans. Very Large Scale Integr. (VLSI) Syst., Volume 9 (2001) no. 1, pp. 64-76

[11] E.O. Torres; G.A. Rinćon-Mora Electrostatic energy-harvesting and battery-charging CMOS system prototype, IEEE Trans. Circuits Syst. I, Regul. Pap., Volume 56 (2009) no. 9, pp. 1938-1948

[12] S. Roundy; P.K. Wright; J. Rabaey; B.C. Yen; J.H. Lang A variable-capacitance vibration-to-electric energy harvester, IEEE Trans. Circuits Syst. I, Regul. Pap., Volume 26 (2003) no. 11, pp. 1131-1144

[13] A.C.M. de Queiroz; M. Domingues The doubler of electricity used as battery charger, IEEE Trans. Circuits Syst. II, Express Briefs, Volume 58 (2011) no. 12, pp. 797-801

[14] V. Dragunov; V. Dorzhiev Electrostatic vibration energy harvester with increased charging current, J. Phys. Conf. Ser., Volume 476 (2013) ([5 pp.])

[15] Y.J. Ren; K. Chang 5.8-GHz circularly polarized dual-diode rectenna and rectenna array for microwave power transmission, IEEE Trans. Microw. Theory Tech., Volume 54 (2006) no. 4, pp. 1495-1502

[16] A. Douyere; J.D. Lan Sun Luk; F. Alicalapa High efficiency microwave rectenna circuit: modeling and design, Electron. Lett., Volume 44 (2008) no. 24, pp. 1409-1410

[17] J. Zbitou; M. Latrach; S. Toutain Hybrid rectenna and monolithic integrated zero-bias microwave rectifier, IEEE Trans. Microw. Theory Tech., Volume 54 (2006) no. 1, pp. 147-152

[18] J.A.G. Akkermans; M.C. Van Beurden; G.J.N. Doodeman; H. Visser Analytical models for low-power rectenna design, IEEE Antennas Wirel. Propag. Lett., Volume 4 (2005), pp. 187-190

[19] B. Strassner; K. Chang 5.8-GHz circularly polarized rectifying antenna for wireless microwave power transmission, IEEE Trans. Microw. Theory Tech., Volume 50 (2002) no. 8, pp. 1870-1876

[20] J. Heikkinen; M. Kivikoski Low-profile circularly polarized rectifying antenna for wireless power transmission at 5.8 GHz, IEEE Microw. Wirel. Compon. Lett., Volume 14 (2004) no. 4, pp. 162-164

[21] J. Heikkinen; M. Kivikoski A novel dual-frequency circularly polarized rectenna, IEEE Antennas Wirel. Propag. Lett., Volume 2 (2003), pp. 330-333

[22] U. Olgun; C.C. Chen; J.L. Volakis Design of an efficient ambient WiFi energy harvesting system, IET Microw. Antennas Propag., Volume 6 (2012) no. 11, pp. 1200-1206

[23] H. Takhedmit; H. Kilani; L. Cirio; P. Basset; O. Picon Design and experiments of a 2.4-GHz voltage multiplier for RF energy harvesting, Proc. Power MEMS, 2012, pp. 448-451

[24] H. Takhedmit; L. Cirio; B. Merabet; B. Allard; F. Costa; C. Vollaire; O. Picon Efficient 2.45 GHz rectenna design including harmonic rejecting rectifier device, Electron. Lett., Volume 46 (2010) no. 12, pp. 811-812

[25] H. Takhedmit; L. Cirio; S. Bellal; D. Delcroix; O. Picon Compact and efficient 2.45 GHz circularly polarised shorted ring-slot rectenna, Electron. Lett., Volume 48 (2012) no. 5, pp. 253-254

[26] H. Yan; J.G. Macias Montero; A. Akhnoukh; L. de Vreede; J. Burghartz An integration scheme for RF power harvesting, SAFE 2005, Utrecht, The Netherlands, 17–18 November 2005 (2005), pp. 64-66

[27] T. Sogorb; J.V. Llario; J. Pelegri; R. Lajara; J. Alberola Studying the feasibility of energy harvesting from broadcast RF station for WSN, 12–15 May 2008, Victoria, British Columbia, CA (2008), pp. 1360-1363

[28] Datasheet surface mount mixer and detector Schottky diodes skyworks http://www.skyworksinc.com

[29] H. Takhedmit; B. Merabet; L. Cirio; B. Allard; F. Costa; C. Vollaire; O. Picon Design of a 2.45 GHz rectenna using a global analysis technique, EuCAP 2009, 23–27 March, Berlin, Germany (2009), pp. 2321-2325

[30] V. Dorzhiev; A. Karami; P. Basset; F. Marty; V. Dragunov; D. Galayko Electret-free micromachined silicon electrostatic vibration energy harvester with the Bennet's Doubler as conditioning circuit, IEEE Electron Device Lett., Volume 36 (2015) no. 2, pp. 183-185

[31] P. Basset; E. Blockhina; D. Galayko Electrostatic Kinetic Energy Harvesters, Smart Adaptive Systems on Silicon Series, Wiley/ISTE, 2016 (244 p.) (ISBN: 978-1-84821-716-4)

Cité par Sources :

Commentaires - Politique