[Rectenna multi-bandes pour des applications micro-ondes]
Cet article présente une nouvelle rectenna (antenne + redresseur) multi-bandes utilisable pour la récupération d'énergie électromagnétique à bord de satellites géostationnaires. L'objectif est de récupérer l'énergie électromagnétique rayonnée par les antennes placées à bord du satellite. L'énergie ainsi récupérée est alors utilisée pour alimenter des capteurs autonomes sans fil. Les résultats expérimentaux montrent que cette rectenna récupère, avec une bonne efficacité, l'énergie électromagnétique à trois fréquences, qui correspondent aux fréquences de résonance de l'élément rayonnant de la rectenna.
This paper reports a multiband rectenna (rectifier + antenna) suitable for the electromagnetic energy harvesting of the spill-over loss of microwave antennas placed on board of geostationary satellites. Such rectenna is used for powering autonomous wireless sensors for satellite health monitoring. The topology of the rectenna is presented. The experimental results demonstrate that the proposed compact rectenna can harvest efficiently the incident electromagnetic energy at three different frequencies that are close to the resonant frequencies of the cross-dipoles implemented in the antenna array.
Mot clés : Récupération d'énergie électromagnétique, Rectenna multi-bandes, Antenne, Satellite géostationnaire
Abderrahim Okba 1 ; Alexandru Takacs 1 ; Hervé Aubert 1 ; Samuel Charlot 1 ; Pierre-François Calmon 1
@article{CRPHYS_2017__18_2_107_0, author = {Abderrahim Okba and Alexandru Takacs and Herv\'e Aubert and Samuel Charlot and Pierre-Fran\c{c}ois Calmon}, title = {Multiband rectenna for microwave applications}, journal = {Comptes Rendus. Physique}, pages = {107--117}, publisher = {Elsevier}, volume = {18}, number = {2}, year = {2017}, doi = {10.1016/j.crhy.2016.12.002}, language = {en}, }
TY - JOUR AU - Abderrahim Okba AU - Alexandru Takacs AU - Hervé Aubert AU - Samuel Charlot AU - Pierre-François Calmon TI - Multiband rectenna for microwave applications JO - Comptes Rendus. Physique PY - 2017 SP - 107 EP - 117 VL - 18 IS - 2 PB - Elsevier DO - 10.1016/j.crhy.2016.12.002 LA - en ID - CRPHYS_2017__18_2_107_0 ER -
Abderrahim Okba; Alexandru Takacs; Hervé Aubert; Samuel Charlot; Pierre-François Calmon. Multiband rectenna for microwave applications. Comptes Rendus. Physique, Volume 18 (2017) no. 2, pp. 107-117. doi : 10.1016/j.crhy.2016.12.002. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2016.12.002/
[1] Microwave power harvesting for satellite health monitoring, IEEE Trans. Microw. Theory Tech., Volume 62 (2014) no. 4, pp. 1090-1098
[2] A. Okba, S. Charlot, P-F. Calmon, A. Takacs, H. Aubert, Cross dipole rectenna for satellite health monitoring, in: URSI Conference, Nantes, France, March 2016.
[3] A. Okba, S. Charlot, P-F. Calmon, A. Takacs, H. Aubert, Multiband rectenna for microwave applications, in: IEEE Wireless Power Transfer Conference, Aveiro, Portugal 5–6 May 2016.
[4] A. Okba, S. Charlot, P-F. Calmon, A. Takacs, H. Aubert, Cross dipoles rectenna for microwave applications, in: European Microwave Conference, London, UK, 3–7 October 2016.
[5] http://www.skyworksinc.com/Product/511/SMS7630_Series
[6] Design of a high-efficiency 2.45-GHz rectenna for low-input-power energy harvesting, IEEE Antennas Wirel. Propag. Lett., Volume 11 (2012), pp. 929-932
[7] A. Takacs, H. Aubert, A. Luca, S. Charlot, S. Fredon, L. Despoisse, Rectenna design for K band application, in: 2014 European Microwave Conference, Rome, Italy, 5–10 October 2014.
[8] A multi-band stacked RF energy harvester with RF-to-DC efficiency up to 84%, IEEE Trans. Microw. Theory Tech., Volume 63 (2015) no. 5, pp. 1768-1778
[9] A compact dual-band rectenna using slot-loaded dual band folded dipole antenna, IEEE Antennas Wirel. Propag. Lett., Volume 12 (2013), pp. 1634-1637
[10] A high-efficiency broadband rectenna for ambient wireless energy harvesting, IEEE Trans. Antennas Propag., Volume 101 (2015) no. 8, pp. 3486-3495
[11] RT/duroid® 6002 high frequency laminates, Rogers Corporation, Chandler, AZ, USA, 2013. Online available: http://www.rogerscorp.com/documents/609/acm/RT-duroid-6002-laminate-datasheet.pdf.
[12] Theoretical and experimental development of 10 and 35 GHz rectennas, IEEE Trans. Microw. Theory Tech., Volume 40 (1992) no. 12, pp. 2359-2366
[13] J. Guo, X. Zhu, An improved analytical model for RF-DC conversion efficiency in microwave rectifiers, in: IEEE MTT-S International Conference, Montreal, QC, Canada, 17–22 June 2012.
[14] http://www.skyworksinc.com/uploads/documents/Surface_Mount_Schottky_Diodes_200041AB.pdf
[15] Skyworks application notes ‘mixer and detector diodes’ http://www.skyworksinc.com/uploads/documents/200826A.pdf
[16] Low-power far-field wireless powering for wireless sensors, Proc. IEEE, Volume 101 (2013) no. 6, pp. 1397-1407
[17] High-efficiency dual-frequency rectenna for 2.45- and 5.8-GHz wireless power transmission, IEEE Trans. Microw. Theory Tech., Volume 50 (2002) no. 7, pp. 1784-1789
[18] A high-efficiency 24 GHz rectenna development towards millimeter-wave energy harvesting and wireless power transmission, IEEE Trans. Circuits Syst. I, Regul. Pap., Volume 61 (2014) no. 12, pp. 3358-3366
[19] 35 GHz rectifying antenna for wireless power transmission, Electron. Lett., Volume 43 (2007) no. 11, pp. 602-603
[20] A. Collado, A. Georgiadis, 24 GHz substrate integrated waveguide (SIW) rectenna for energy harvesting and wireless power transmission, in: IEEE MTT-S International Conference, Seattle, WA, USA, 2–7 June 2013.
[21] 5.8-GHz circularly polarized dual-diode rectenna and rectenna array for microwave power transmission, IEEE Trans. Microw. Theory Tech., Volume 54 (2006) no. 4, pp. 1495-1502
Cité par Sources :
Commentaires - Politique