[Les sursauts radio solaires : un outil de prévision pour la météorologie de l'espace]
La couronne solaire et son activité peuvent perturber l'environnement spatial de la Terre. Les éjections coronales de masse (CME) sont des instabilités à grande échelle qui conduisent à l'éjection dans l'espace interplanétaire du plasma et du champ magnétique qui le confine. D'autres perturbations viennent des particules solaires de haute énergie (SEP). Elles sont accélérées au cours de la variation explosive du champ magnétique ou par l'onde de choc qu'engendre une CME rapide. Dans cet article, on illustre comment des observations du Soleil entier en micro-ondes peuvent conduire (1) à estimer la vitesse d'une CME et son temps d'arrivée à la Terre, (2) à la prévision des événements solaires à particules qui atteignent la Terre.
The solar corona and its activity induce disturbances that may affect the space environment of the Earth. Noticeable disturbances come from coronal mass ejections (CMEs), which are large-scale ejections of plasma and magnetic fields from the solar corona, and solar energetic particles (SEPs). These particles are accelerated during the explosive variation of the coronal magnetic field or at the shock wave driven by a fast CME. In this contribution, it is illustrated how full Sun microwave observations can lead to (1) an estimate of CME speeds and of the arrival time of the CME at the Earth, (2) the prediction of SEP events attaining the Earth.
Mots-clés : Soleil : émission de particules, Soleil : émissions radio, Soleil : éjection coronale de masse, Relations Soleil-Terre
Karl-Ludwig Klein 1, 2, 3, 4 ; Carolina Salas Matamoros 1, 2, 5 ; Pietro Zucca 1, 2, 6
@article{CRPHYS_2018__19_1-2_36_0, author = {Karl-Ludwig Klein and Carolina Salas Matamoros and Pietro Zucca}, title = {Solar radio bursts as a tool for space weather forecasting}, journal = {Comptes Rendus. Physique}, pages = {36--42}, publisher = {Elsevier}, volume = {19}, number = {1-2}, year = {2018}, doi = {10.1016/j.crhy.2018.01.005}, language = {en}, }
TY - JOUR AU - Karl-Ludwig Klein AU - Carolina Salas Matamoros AU - Pietro Zucca TI - Solar radio bursts as a tool for space weather forecasting JO - Comptes Rendus. Physique PY - 2018 SP - 36 EP - 42 VL - 19 IS - 1-2 PB - Elsevier DO - 10.1016/j.crhy.2018.01.005 LA - en ID - CRPHYS_2018__19_1-2_36_0 ER -
Karl-Ludwig Klein; Carolina Salas Matamoros; Pietro Zucca. Solar radio bursts as a tool for space weather forecasting. Comptes Rendus. Physique, Radio science for Humanity / Radiosciences au service de l’humanité Journées scientifiques URSI-France 2017 – SophiaTech, Sophia Antipolis, France, 1–3 February 2017 / 1er–3 mars 2017, Volume 19 (2018) no. 1-2, pp. 36-42. doi : 10.1016/j.crhy.2018.01.005. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2018.01.005/
[1] Space weather: historical and contemporary perspectives, Space Sci. Rev., Volume 212 (2017), pp. 1253-1270
[2] Extreme space weather: impacts on engineered systems and infrastructure, 2013 https://www.raeng.org.uk/publications/reports/space-weather-full-report
[3] Handbook of the Solar–Terrestrial Environment, Springer-Verlag, 2007
[4] An estimate of the maximum speed of the solar wind, 1938–1989, J. Geophys. Res. Space Phys., Volume 95 (1990), pp. 17103-17112
[5] Radioastronomie solaire et météorologie de l'espace, Radiosciences au service de l'humanité, Comptes rendus des journées scientifiques URSI France, 2017 http://ursi-france.telecom-paristech.fr/fileadmin/journees_scient/docs_journees_2017/data/index.html
[6] On the statistical relationship between CME speed and soft X-ray flux and fluence of the associated flare, Sol. Phys., Volume 290 (2015), pp. 1337-1353
[7] Microwave radio emission as a proxy of CME speed in ICME arrival predictions at 1 AU, J. Space Weather Space Clim., Volume 7 (2017), p. A2
[8] The Large Angle Spectroscopic Coronagraph (LASCO), Sol. Phys., Volume 162 (1995), pp. 357-402
[9] Relating coronal mass ejection kinematics and thermal energy release to flare emissions using a model of solar eruptions, Astrophys. J., Volume 712 (2010), pp. 429-434
[10] Near-Sun and near-Earth manifestations of solar eruptions, J. Geophys. Res. Space Phys., Volume 106 (2001), pp. 25261-25278
[11] Predicting solar energetic proton events (
[12] Comparison of solar X-ray line emission with microwave emission during flares, Astrophys. J., Volume 153 (1968), p. L59-L64
[13] Exploring the potential of microwave diagnostics in SEP forecasting: The occurrence of SEP events, J. Space Weather Space Clim., Volume 7 (2017) no. 27, p. A13
[14] Sixty-five years of solar radioastronomy: flares, coronal mass ejections and Sun–Earth connection, Astron. Astrophys. Rev., Volume 16 (2008), pp. 1-153
- Prediction of solar energetic events impacting space weather conditions, Advances in Space Research (2024) | DOI:10.1016/j.asr.2024.02.030
- Type II radio bursts and space weather phenomena: A statistical study, Advances in Space Research, Volume 74 (2024) no. 10, p. 5263 | DOI:10.1016/j.asr.2024.07.072
- Solar Radio Burst Prediction Based on a Multimodal Model, Solar Physics, Volume 299 (2024) no. 4 | DOI:10.1007/s11207-024-02296-w
- The effects of solar radio bursts on frequency bands utilised by the aviation industry in Sub-Saharan Africa, Journal of Space Weather and Space Climate, Volume 13 (2023), p. 4 | DOI:10.1051/swsc/2023001
- Automatic Burst Detection in Solar Radio Spectrograms Using Deep Learning: deARCE Method, Solar Physics, Volume 298 (2023) no. 6 | DOI:10.1007/s11207-023-02171-0
- Trieste CALLISTO station setup and observations of solar radio bursts, Advances in Space Research, Volume 69 (2022) no. 6, p. 2589 | DOI:10.1016/j.asr.2021.12.043
- Comparative analysis of type III solar radio bursts associated with solar particle events and its impact on space weather for solar cycle 23 24, Astrophysics and Space Science, Volume 367 (2022) no. 9 | DOI:10.1007/s10509-022-04129-3
- Data background levels of the metre and decimetre wavelength observations by E-CALLISTO network: the Gauribidanur and Greenland sites, Indian Journal of Physics, Volume 95 (2021) no. 6, p. 1051 | DOI:10.1007/s12648-020-01765-9
- The Implementation of Log Periodic Dipole Antenna (LPDA) and CALLISTO system on Solar Radio Bursts Observation, Journal of Physics: Conference Series, Volume 1768 (2021) no. 1, p. 012011 | DOI:10.1088/1742-6596/1768/1/012011
- Correction of the temperature effect in calibration of a solar radio telescope, Research in Astronomy and Astrophysics, Volume 21 (2021) no. 6, p. 147 | DOI:10.1088/1674-4527/21/6/147
- Application of Solar Radio Bursts Observation in Detecting Magnetic Reconnection Phenomenon, Journal of Physics: Conference Series, Volume 1593 (2020) no. 1, p. 012024 | DOI:10.1088/1742-6596/1593/1/012024
- Radio observatories and instrumentation used in space weather science and operations, Journal of Space Weather and Space Climate, Volume 10 (2020), p. 7 | DOI:10.1051/swsc/2020007
- A Modified Spheromak Model Suitable for Coronal Mass Ejection Simulations, The Astrophysical Journal, Volume 894 (2020) no. 1, p. 49 | DOI:10.3847/1538-4357/ab845f
- Solar Radio Burst Automatic Detection Method for Decimetric and Metric Data of YNAO, Data Science, Volume 1058 (2019), p. 283 | DOI:10.1007/978-981-15-0118-0_22
- , Eleventh International Conference on Digital Image Processing (ICDIP 2019) (2019), p. 30 | DOI:10.1117/12.2539638
- Characterization of type III and IV solar radio bursts from e-CALLISTO, Journal of Physics: Conference Series, Volume 1349 (2019) no. 1, p. 012063 | DOI:10.1088/1742-6596/1349/1/012063
- An automated system in detecting solar radio bursts type II and IV associated to multiple Coronal Mass Ejections, Journal of Physics: Conference Series, Volume 1411 (2019) no. 1, p. 012015 | DOI:10.1088/1742-6596/1411/1/012015
Cité par 17 documents. Sources : Crossref
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier