Comptes Rendus
Many-body localization: An introduction and selected topics
Comptes Rendus. Physique, Volume 19 (2018) no. 6, pp. 498-525.

What happens in an isolated quantum system when both disorder and interactions are present? Over the recent years, the picture of a non-thermalizing phase of matter, the many-localized phase, has emerged as a stable solution. We present a basic introduction to the topic of many-body localization, using the simple example of a quantum spin chain that allows us to illustrate several of the properties of this phase. We then briefly review the current experimental research efforts probing this physics. The largest part of this review is a selection of more specialized questions, some of which are currently under active investigation. We conclude by summarizing the connections between many-body localization and quantum simulations.

Que se passe-t-il dans un système quantique isolé lorsque celui-ci présente du désordre et des interactions entre particules ? Au cours des dernières années a émergé l'image comme solution stable d'une phase qui ne thermalise pas, la phase localisée à N corps (notre traduction de many-body localization). Nous présentons une introduction simple à la localisation à N corps, à travers l'exemple d'une chaîne de spins quantiques, ce qui permet d'illustrer plusieurs propriétés de cette phase. Nous effectuons ensuite une brève revue des efforts expérimentaux actuels cherchant à sonder cette physique. La plus grande partie de cette revue est consacrée à une sélection de questions plus spécialisées, la plupart actuellement en cours d'études. Nous concluons en résumant les liens entre localisation à N corps et simulations quantiques.

Published online:
DOI: 10.1016/j.crhy.2018.03.003
Keywords: Many-body localization, Thermalization, Simulations, Entanglement
Mot clés : Localisation à N corps, Thermalisation, Simulations, Intrication

Fabien Alet 1; Nicolas Laflorencie 1

1 Laboratoire de physique théorique, Université de Toulouse, CNRS, UPS, France
@article{CRPHYS_2018__19_6_498_0,
     author = {Fabien Alet and Nicolas Laflorencie},
     title = {Many-body localization: {An} introduction and selected topics},
     journal = {Comptes Rendus. Physique},
     pages = {498--525},
     publisher = {Elsevier},
     volume = {19},
     number = {6},
     year = {2018},
     doi = {10.1016/j.crhy.2018.03.003},
     language = {en},
}
TY  - JOUR
AU  - Fabien Alet
AU  - Nicolas Laflorencie
TI  - Many-body localization: An introduction and selected topics
JO  - Comptes Rendus. Physique
PY  - 2018
SP  - 498
EP  - 525
VL  - 19
IS  - 6
PB  - Elsevier
DO  - 10.1016/j.crhy.2018.03.003
LA  - en
ID  - CRPHYS_2018__19_6_498_0
ER  - 
%0 Journal Article
%A Fabien Alet
%A Nicolas Laflorencie
%T Many-body localization: An introduction and selected topics
%J Comptes Rendus. Physique
%D 2018
%P 498-525
%V 19
%N 6
%I Elsevier
%R 10.1016/j.crhy.2018.03.003
%G en
%F CRPHYS_2018__19_6_498_0
Fabien Alet; Nicolas Laflorencie. Many-body localization: An introduction and selected topics. Comptes Rendus. Physique, Volume 19 (2018) no. 6, pp. 498-525. doi : 10.1016/j.crhy.2018.03.003. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2018.03.003/

[1] R. Nandkishore; D.A. Huse Many-body localization and thermalization in quantum statistical mechanics, Annu. Rev. Condens. Matter Phys., Volume 6 (2015), p. 15 | DOI

[2] E. Altman; R. Vosk Universal dynamics and renormalization in many-body-localized systems, Annu. Rev. Condens. Matter Phys., Volume 6 (2015) no. 383 | DOI

[3] D.A. Abanin; Z. Papić Recent progress in many-body localization, Ann. Phys., Volume 529 (2017) no. 7 | DOI

[4] D.J. Luitz; N. Laflorencie; F. Alet Many-body localization edge in the random-field Heisenberg chain, Phys. Rev. B, Volume 91 (2015) http://link.aps.org/doi/10.1103/PhysRevB.91.081103 | DOI

[5] A. Pal; D.A. Huse Many-body localization phase transition, Phys. Rev. B, Volume 82 (2010) http://link.aps.org/doi/10.1103/PhysRevB.82.174411 | DOI

[6] M. Pino; L.B. Ioffe; B.L. Altshuler Nonergodic metallic and insulating phases of Josephson junction chains, Proc. Natl. Acad. Sci. USA, Volume 113 (2016) http://www.pnas.org/content/113/3/536 | DOI

[7] J.M. Deutsch Quantum statistical mechanics in a closed system, Phys. Rev. A, Volume 43 (1991) https://link.aps.org/doi/10.1103/PhysRevA.43.2046 | DOI

[8] M. Srednicki Chaos and quantum thermalization, Phys. Rev. E, Volume 50 (1994) https://link.aps.org/doi/10.1103/PhysRevE.50.888 | DOI

[9] L. D'Alessio; Y. Kafri; A. Polkovnikov; M. Rigol From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics, Adv. Phys., Volume 65 (2016) | DOI

[10] F. Borgonovi; F.M. Izrailev; L.F. Santos; V.G. Zelevinsky Quantum chaos and thermalization in isolated systems of interacting particles, Phys. Rep., Volume 626 (2016) no. 1 http://www.sciencedirect.com/science/article/pii/S0370157316000831 | DOI

[11] M. Rigol; V. Dunjko; M. Olshanii Thermalization and its mechanism for generic isolated quantum systems, Nature, Volume 452 (2008) https://www.nature.com/nature/journal/v452/n7189/full/nature06838.html | DOI

[12] M. Rigol Breakdown of thermalization in finite one-dimensional systems, Phys. Rev. Lett., Volume 103 (2009) https://link.aps.org/doi/10.1103/PhysRevLett.103.100403 | DOI

[13] D.J. Luitz Long tail distributions near the many-body localization transition, Phys. Rev. B, Volume 93 (2016) https://link.aps.org/doi/10.1103/PhysRevB.93.134201 | DOI

[14] P. Sierant; D. Delande; J. Zakrzewski Many-body localization due to random interactions, Phys. Rev. A, Volume 95 (2017) https://link.aps.org/doi/10.1103/PhysRevA.95.021601 | DOI

[15] Y. Bar Lev; D.R. Reichman; Y. Sagi Many-body localization in system with a completely delocalized single-particle spectrum, Phys. Rev. B, Volume 94 (2016) https://link.aps.org/doi/10.1103/PhysRevB.94.201116 | DOI

[16] D.M. Basko; I.L. Aleiner; B.L. Altshuler Metal–insulator transition in a weakly interacting many-electron system with localized single-particle states, Ann. Phys., Volume 321 (2006) http://www.sciencedirect.com/science/article/pii/S0003491605002630 | DOI

[17] I.V. Gornyi; A.D. Mirlin; D.G. Polyakov Interacting electrons in disordered wires: Anderson localization and low-T transport, Phys. Rev. Lett., Volume 95 (2005) https://link.aps.org/doi/10.1103/PhysRevLett.95.206603 | DOI

[18] L. Fleishman; P.W. Anderson Interactions and the Anderson transition, Phys. Rev. B, Volume 21 (1980) https://link.aps.org/doi/10.1103/PhysRevB.21.2366 | DOI

[19] B.L. Altshuler; Y. Gefen; A. Kamenev; L.S. Levitov Quasiparticle lifetime in a finite system: a nonperturbative approach, Phys. Rev. Lett., Volume 78 (1997) https://link.aps.org/doi/10.1103/PhysRevLett.78.2803 | DOI

[20] D.L. Shepelyansky Coherent propagation of two interacting particles in a random potential, Phys. Rev. Lett., Volume 73 (1994) https://link.aps.org/doi/10.1103/PhysRevLett.73.2607 | DOI

[21] P. Jacquod; D.L. Shepelyansky Emergence of quantum chaos in finite interacting Fermi systems, Phys. Rev. Lett., Volume 79 (1997), p. 1837 https://link.aps.org/doi/10.1103/PhysRevLett.79.1837 | DOI

[22] B. Georgeot; D.L. Shepelyansky Integrability and quantum chaos in spin glass shards, Phys. Rev. Lett., Volume 81 (1998), p. 5129 https://link.aps.org/doi/10.1103/PhysRevLett.81.5129 | DOI

[23] B. Georgeot; D.L. Shepelyansky Breit-Wigner width and inverse participation ratio in finite interacting Fermi systems, Phys. Rev. Lett., Volume 79 (1997), p. 4365 https://link.aps.org/doi/10.1103/PhysRevLett.79.4365 | DOI

[24] D.J. Luitz; Y. Bar Lev The ergodic side of the many-body localization transition, Ann. Phys., Volume 529 (2017) no. 7 | DOI

[25] V. Oganesyan; D.A. Huse Localization of interacting fermions at high temperature, Phys. Rev. B, Volume 75 (2007) https://link.aps.org/doi/10.1103/PhysRevB.75.155111

[26] M. Serbyn; J.E. Moore Spectral statistics across the many-body localization transition, Phys. Rev. B, Volume 93 (2016) https://link.aps.org/doi/10.1103/PhysRevB.93.041424 | DOI

[27] C.L. Bertrand; A.M. García-García Anomalous Thouless energy and critical statistics on the metallic side of the many-body localization transition, Phys. Rev. B, Volume 94 (2016) https://link.aps.org/doi/10.1103/PhysRevB.94.144201 | DOI

[28] B. Bauer; C. Nayak Area laws in a many-body localized state and its implications for topological order, J. Stat. Mech., Volume 2013 (2013) http://iopscience.iop.org/1742-5468/2013/09/P09005 | DOI

[29] A. De Luca; A. Scardicchio Ergodicity breaking in a model showing many-body localization, Europhys. Lett., Volume 101 (2013) http://stacks.iop.org/0295-5075/101/i=3/a=37003 | DOI

[30] D.N. Page Average entropy of a subsystem, Phys. Rev. Lett., Volume 71 (1993), p. 1291 http://link.aps.org/doi/10.1103/PhysRevLett.71.1291 | DOI

[31] J.A. Kjäll; J.H. Bardarson; F. Pollmann Many-body localization in a disordered quantum ising chain, Phys. Rev. Lett., Volume 113 (2014) http://link.aps.org/doi/10.1103/PhysRevLett.113.107204 | DOI

[32] S.P. Lim; D.N. Sheng Many-body localization and transition by density matrix renormalization group and exact diagonalization studies, Phys. Rev. B, Volume 94 (2016) https://link.aps.org/doi/10.1103/PhysRevB.94.045111 | DOI

[33] V. Khemani; S. Lim; D. Sheng; D.A. Huse Critical properties of the many-body localization transition, Phys. Rev. X, Volume 7 (2017) https://link.aps.org/doi/10.1103/PhysRevX.7.021013 | DOI

[34] J. Eisert; M. Cramer; M.B. Plenio Area laws for the entanglement entropy, Rev. Mod. Phys., Volume 82 (2010), p. 277 http://link.aps.org/doi/10.1103/RevModPhys.82.277 | DOI

[35] H. Song; S. Rachel; C. Flindt; I. Klich; N. Laflorencie; K. Le Hur Bipartite fluctuations as a probe of many-body entanglement, Phys. Rev. B, Volume 85 (2012) http://link.aps.org/doi/10.1103/PhysRevB.85.035409 | DOI

[36] R. Singh; J.H. Bardarson; F. Pollmann Signatures of the many-body localization transition in the dynamics of entanglement and bipartite fluctuations, New J. Phys., Volume 18 (2016) no. 2 http://stacks.iop.org/1367-2630/18/i=2/a=023046

[37] P. Prelovšek; M. Mierzejewski; O. Barišić; J. Herbrych Density correlations and transport in models of many-body localization, Ann. Phys. (2017) http://onlinelibrary.wiley.com/doi/10.1002/andp.201600362/abstract | DOI

[38] H. Kim; D.A. Huse Ballistic spreading of entanglement in a diffusive nonintegrable system, Phys. Rev. Lett., Volume 111 (2013) https://link.aps.org/doi/10.1103/PhysRevLett.111.127205 | DOI

[39] V. Ros; M. Müller Remanent magnetization: signature of many-body localization in quantum antiferromagnets, Phys. Rev. Lett., Volume 118 (2017) https://link.aps.org/doi/10.1103/PhysRevLett.118.237202 | DOI

[40] M. Serbyn; Z. Papić; D.A. Abanin Quantum quenches in the many-body localized phase, Phys. Rev. B, Volume 90 (2014) https://link.aps.org/doi/10.1103/PhysRevB.90.174302 | DOI

[41] M. Žnidarič; T. Prosen; P. Prelovšek Many-body localization in the Heisenberg XXZ magnet in a random field, Phys. Rev. B, Volume 77 (2008) http://link.aps.org/doi/10.1103/PhysRevB.77.064426

[42] J.H. Bardarson; F. Pollmann; J.E. Moore Unbounded growth of entanglement in models of many-body localization, Phys. Rev. Lett., Volume 109 (2012) http://link.aps.org/doi/10.1103/PhysRevLett.109.017202 | DOI

[43] M. Serbyn; Z. Papić; D.A. Abanin Universal slow growth of entanglement in interacting strongly disordered systems, Phys. Rev. Lett., Volume 110 (2013) http://link.aps.org/doi/10.1103/PhysRevLett.110.260601 | DOI

[44] R. Vosk; E. Altman Many-body localization in one dimension as a dynamical renormalization group fixed point, Phys. Rev. Lett., Volume 110 (2013) http://link.aps.org/doi/10.1103/PhysRevLett.110.067204

[45] F. Andraschko; T. Enss; J. Sirker Purification and many-body localization in cold atomic gases, Phys. Rev. Lett., Volume 113 (2014) http://link.aps.org/doi/10.1103/PhysRevLett.113.217201 | DOI

[46] E. Baygan; S.P. Lim; D.N. Sheng Many-body localization and mobility edge in a disordered spin-12 Heisenberg ladder, Phys. Rev. B, Volume 92 (2015) http://link.aps.org/doi/10.1103/PhysRevB.92.195153 | DOI

[47] C. Laumann; A. Pal; A. Scardicchio Many-body mobility edge in a mean-field quantum spin glass, Phys. Rev. Lett., Volume 113 (2014) https://link.aps.org/doi/10.1103/PhysRevLett.113.200405 | DOI

[48] I. Mondragon-Shem; A. Pal; T.L. Hughes; C.R. Laumann Many-body mobility edge due to symmetry-constrained dynamics and strong interactions, Phys. Rev. B, Volume 92 (2015) https://journals.aps.org/prb/abstract/10.1103/PhysRevB.92.064203

[49] B. Villalonga; X. Yu; D.J. Luitz; B.K. Clark Exploring one-particle orbitals in large many-body localized systems, Phys. Rev. B, Volume 97 (2018) https://link.aps.org/doi/10.1103/PhysRevB.97.104406 | DOI

[50] W. de Roeck; F. Huveneers; M. Müller; M. Schiulaz Absence of many-body mobility edges, Phys. Rev. B, Volume 93 (2016) https://link.aps.org/doi/10.1103/PhysRevB.93.014203

[51] D.A. Huse; R. Nandkishore; V. Oganesyan Phenomenology of fully many-body-localized systems, Phys. Rev. B, Volume 90 (2014) https://link.aps.org/doi/10.1103/PhysRevB.90.174202

[52] M. Serbyn; Z. Papić; D.A. Abanin Local conservation laws and the structure of the many-body localized states, Phys. Rev. Lett., Volume 111 (2013) http://link.aps.org/doi/10.1103/PhysRevLett.111.127201

[53] J.Z. Imbrie On many-body localization for quantum spin chains, J. Stat. Phys., Volume 163 (2016) | arXiv | DOI

[54] J.Z. Imbrie Diagonalization and many-body localization for a disordered quantum spin chain, Phys. Rev. Lett., Volume 117 (2016) https://link.aps.org/doi/10.1103/PhysRevLett.117.027201

[55] J.Z. Imbrie; V. Ros; A. Scardicchio Local integrals of motion in many-body localized systems, Ann. Phys. (2017) | DOI

[56] L. Rademaker; M. Ortuño; A.M. Somoza Many-body localization from the perspective of integrals of motion, Ann. Phys. (2017) | DOI

[57] A. Chandran; I.H. Kim; G. Vidal; D.A. Abanin Constructing local integrals of motion in the many-body localized phase, Phys. Rev. B, Volume 91 (2015) http://link.aps.org/doi/10.1103/PhysRevB.91.085425 | DOI

[58] C. Monthus Many-body localization: construction of the emergent local conserved operators via block real-space renormalization, J. Stat. Mech., Volume 2016 (2016) http://stacks.iop.org/1742-5468/2016/i=3/a=033101 | DOI

[59] L. Rademaker; M. Ortuño Explicit local integrals of motion for the many-body localized state, Phys. Rev. Lett., Volume 116 (2016) http://link.aps.org/doi/10.1103/PhysRevLett.116.010404 | DOI

[60] C. Monthus Many-body-localization transition: sensitivity to twisted boundary conditions, J. Phys. A, Math. Theor., Volume 50 (2017) http://stacks.iop.org/1751-8121/50/i=9/a=095002 | DOI

[61] M. Goihl; M. Gluza; C. Krumnow; J. Eisert Construction of exact constants of motion and effective models for many-body localized systems, Phys. Rev. B, Volume 97 (2018) no. 13 | DOI

[62] A.K. Kulshreshtha; A. Pal; T.B. Wahl; S.H. Simon Behaviour of l-bits near the many-body localization transition | arXiv

[63] M. Mierzejewski; M. Kozarzewski; P. Prelovšek Counting local integrals of motion in disordered spinless-fermion and Hubbard chains, Phys. Rev. B, Volume 97 (2018) no. 6 | DOI

[64] A. Scardicchio; T. Thiery Perturbation theory approaches to Anderson and many-body localization: some lecture notes | arXiv

[65] V. Ros; M. Müller; A. Scardicchio Integrals of motion in the many-body localized phase, Nucl. Phys. B, Volume 891 (2015), pp. 420-465 http://www.sciencedirect.com/science/article/pii/S0550321314003836 | DOI

[66] S. Bera; H. Schomerus; F. Heidrich-Meisner; J.H. Bardarson Many-body localization characterized from a one-particle perspective, Phys. Rev. Lett., Volume 115 (2015) https://link.aps.org/doi/10.1103/PhysRevLett.115.046603

[67] S. Bera; T. Martynec; H. Schomerus; F. Heidrich-Meisner; J.H. Bardarson One-particle density matrix characterization of many-body localization, Ann. Phys. (2017) http://onlinelibrary.wiley.com/doi/10.1002/andp.201600356/abstract

[68] T.L.M. Lezama; S. Bera; H. Schomerus; F. Heidrich-Meisner; J.H. Bardarson One-particle density matrix occupation spectrum of many-body localized states after a global quench, Phys. Rev. B, Volume 96 (2017) https://link.aps.org/doi/10.1103/PhysRevB.96.060202 | DOI

[69] A.L. Burin Energy delocalization in strongly disordered systems induced by the long-range many-body interaction | arXiv

[70] P. Hauke; M. Heyl Many-body localization and quantum ergodicity in disordered long-range Ising models, Phys. Rev. B, Volume 92 (2015) https://link.aps.org/doi/10.1103/PhysRevB.92.134204

[71] A.L. Burin Many-body delocalization in a strongly disordered system with long-range interactions: finite-size scaling, Phys. Rev. B, Volume 91 (2015) https://link.aps.org/doi/10.1103/PhysRevB.91.094202

[72] R.M. Nandkishore; S.L. Sondhi Many-body localization with long-range interactions, Phys. Rev. X, Volume 7 (2017) https://link.aps.org/doi/10.1103/PhysRevX.7.041021 | DOI

[73] C.L. Baldwin; C.R. Laumann; A. Pal; A. Scardicchio The many-body localized phase of the quantum random energy model, Phys. Rev. B, Volume 93 (2016) https://link.aps.org/doi/10.1103/PhysRevB.93.024202

[74] A. Burin Localization and chaos in a quantum spin glass model in random longitudinal fields: mapping to the localization problem in a Bethe lattice with a correlated disorder, Ann. Phys. (2017) | DOI

[75] P. Ponte; C.R. Laumann; D.A. Huse; A. Chandran Thermal inclusions: how one spin can destroy a many-body localized phase, Philos. Trans. R. Soc. Lond. A, Volume 375 (2017) http://rsta.royalsocietypublishing.org/content/375/2108/20160428 | DOI

[76] B. Georgeot; D.L. Shepelyansky Quantum chaos border for quantum computing, Phys. Rev. E, Volume 62 (2000) http://link.aps.org/doi/10.1103/PhysRevE.62.3504 | DOI

[77] B. Tang; D. Iyer; M. Rigol Quantum quenches and many-body localization in the thermodynamic limit, Phys. Rev. B, Volume 91 (2015) https://journals.aps.org/prb/abstract/10.1103/PhysRevB.91.161109

[78] S. Iyer; V. Oganesyan; G. Refael; D.A. Huse Many-body localization in a quasiperiodic system, Phys. Rev. B, Volume 87 (2013) https://link.aps.org/doi/10.1103/PhysRevB.87.134202 | DOI

[79] P. Naldesi; E. Ercolessi; T. Roscilde Detecting a many-body mobility edge with quantum quenches, SciPost Phys., Volume 1 (2016) https://scipost.org/10.21468/SciPostPhys.1.1.010 | DOI

[80] F. Setiawan; D.-L. Deng; J.H. Pixley Transport properties across the many-body localization transition in quasiperiodic and random systems, Phys. Rev. B, Volume 96 (2017) https://link.aps.org/doi/10.1103/PhysRevB.96.104205 | DOI

[81] S. Aubry; G. André Analyticity breaking and Anderson localization in incommensurate lattices, Ann. Isr. Phys. Soc., Volume 3 (1980), p. 18

[82] P. Prelovšek; O.S. Barišić; M. Žnidarič Absence of full many-body localization in the disordered Hubbard chain, Phys. Rev. B, Volume 94 (2016) https://journals.aps.org/prb/abstract/10.1103/PhysRevB.94.241104 | arXiv | DOI

[83] M. Pino; V.E. Kravtsov; B.L. Altshuler; L.B. Ioffe Multifractal metal in a disordered Josephson junctions array, Phys. Rev. B, Volume 96 (2017) https://link.aps.org/doi/10.1103/PhysRevB.96.214205 | DOI

[84] G. Lemut; M. Mierzejewski; J. Bonča Complete many-body localization in the tj model caused by a random magnetic field, Phys. Rev. Lett., Volume 119 (2017) https://link.aps.org/doi/10.1103/PhysRevLett.119.246601 | DOI

[85] M. Schreiber; S.S. Hodgman; P. Bordia; H.P. Lüschen; M.H. Fischer; R. Vosk; E. Altman; U. Schneider; I. Bloch Observation of many-body localization of interacting fermions in a quasi-random optical lattice, Science, Volume 349 (2015) http://science.sciencemag.org/lookup/doi/10.1126/science.aaa7432 | arXiv | DOI

[86] P. Bordia; H.P. Lüschen; S.S. Hodgman; M. Schreiber; I. Bloch; U. Schneider Coupling identical one-dimensional many-body localized systems, Phys. Rev. Lett., Volume 116 (2016) https://link.aps.org/doi/10.1103/PhysRevLett.116.140401 | DOI

[87] J. Smith; A. Lee; P. Richerme; B. Neyenhuis; P.W. Hess; P. Hauke; M. Heyl; D.A. Huse; C. Monroe Many-body localization in a quantum simulator with programmable random disorder, Nat. Phys., Volume 12 (2016), p. 907 https://www.nature.com/nphys/journal/v12/n10/full/nphys3783.html

[88] J. Zhang; P.W. Hess; A. Kyprianidis; P. Becker; A. Lee; J. Smith; G. Pagano; I.-D. Potirniche; A.C. Potter; A. Vishwanath; N.Y. Yao; C. Monroe Observation of a discrete time crystal, Nature, Volume 543 (2017) no. 7644, pp. 217-220 | DOI

[89] P.W. Hess; P. Becker; H.B. Kaplan; A. Kyprianidis; A.C. Lee; B. Neyenhuis; G. Pagano; P. Richerme; C. Senko; J. Smith; W.L. Tan; J. Zhang; C. Monroe Non-thermalization in trapped atomic ion spin chains, Philos. Trans. R. Soc. Lond. A, Volume 375 (2017) http://rsta.royalsocietypublishing.org/content/375/2108/20170107 | DOI

[90] J.-Y. Choi; S. Hild; J. Zeiher; P. Schauß; A. Rubio-Abadal; T. Yefsah; V. Khemani; D.A. Huse; I. Bloch; C. Gross Exploring the many-body localization transition in two dimensions, Science, Volume 352 (2016), p. 1547 http://science.sciencemag.org/content/352/6293/1547.full.pdf http://science.sciencemag.org/content/352/6293/1547 | DOI

[91] P. Bordia; H. Lüschen; S. Scherg; S. Gopalakrishnan; M. Knap; U. Schneider; I. Bloch Probing slow relaxation and many-body localization in two-dimensional quasiperiodic systems, Phys. Rev. X, Volume 7 (2017) https://link.aps.org/doi/10.1103/PhysRevX.7.041047 | DOI

[92] H.P. Lüschen; P. Bordia; S.S. Hodgman; M. Schreiber; S. Sarkar; A.J. Daley; M.H. Fischer; E. Altman; I. Bloch; U. Schneider Signatures of many-body localization in a controlled open quantum system, Phys. Rev. X, Volume 7 (2017) https://link.aps.org/doi/10.1103/PhysRevX.7.011034 | DOI

[93] P. Bordia; H. Lüschen; U. Schneider; M. Knap; I. Bloch Periodically driving a many-body localized quantum system, Nat. Phys., Volume 13 (2017), p. 460 http://www.nature.com/doifinder/10.1038/nphys4020 | DOI

[94] H.P. Lüschen; P. Bordia; S. Scherg; F. Alet; E. Altman; U. Schneider; I. Bloch Observation of slow dynamics near the many-body localization transition in one-dimensional quasiperiodic systems, Phys. Rev. Lett., Volume 119 (2017) https://link.aps.org/doi/10.1103/PhysRevLett.119.260401 | DOI

[95] N.Y. Yao; C.R. Laumann; S. Gopalakrishnan; M. Knap; M. Mueller; E.A. Demler; M.D. Lukin Many-body localization with dipoles, Phys. Rev. Lett., Volume 113 (2014) https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.113.243002 | DOI

[96] G. Kucsko; S. Choi; J. Choi; P.C. Maurer; H. Zhou; R. Landig; H. Sumiya; S. Onoda; J. Isoya; F. Jelezko; E. Demler; N.Y. Yao; M.D. Lukin Critical thermalization of a disordered dipolar spin system in diamond | arXiv

[97] M. Ovadia; D. Kalok; I. Tamir; S. Mitra; B. Sacepe; D. Shahar Evidence for a finite temperature insulator, Sci. Rep., Volume 5 (2015) | arXiv | DOI

[98] K.X. Wei; C. Ramanathan; P. Cappellaro Exploring localization in nuclear spin chains, Phys. Rev. Lett., Volume 120 (2018) https://link.aps.org/doi/10.1103/PhysRevLett.120.070501 | DOI

[99] A. De Luca; A. Rosso Dynamic nuclear polarization and the paradox of quantum thermalization, Phys. Rev. Lett., Volume 115 (2015) http://link.aps.org/doi/10.1103/PhysRevLett.115.080401 | DOI

[100] A. De Luca; I. Rodríguez-Arias; M. Müller; A. Rosso Thermalization and many-body localization in systems under dynamic nuclear polarization, Phys. Rev. B, Volume 94 (2016) https://link.aps.org/doi/10.1103/PhysRevB.94.014203 | DOI

[101] I. Rodríguez-Arias; M. Müller; A. Rosso; A. De Luca An exactly solvable model for dynamic nuclear polarization | arXiv

[102] D.J. Thouless Long-range order in one-dimensional Ising systems, Phys. Rev., Volume 187 (1969), p. 732 https://link.aps.org/doi/10.1103/PhysRev.187.732

[103] D.A. Huse; R. Nandkishore; V. Oganesyan; A. Pal; S.L. Sondhi Localization-protected quantum order, Phys. Rev. B, Volume 88 (2013) http://link.aps.org/doi/10.1103/PhysRevB.88.014206 | DOI

[104] Y. Bahri; R. Vosk; E. Altman; A. Vishwanath Localization and topology protected quantum coherence at the edge of hot matter, Nat. Commun., Volume 6 (2015) https://www.nature.com/articles/ncomms8341 | DOI

[105] D. Pekker; G. Refael; E. Altman; E. Demler; V. Oganesyan Hilbert-glass transition: new universality of temperature-tuned many-body dynamical quantum criticality, Phys. Rev. X, Volume 4 (2014) https://link.aps.org/doi/10.1103/PhysRevX.4.011052 | DOI

[106] R. Vosk; E. Altman Dynamical quantum phase transitions in random spin chains, Phys. Rev. Lett., Volume 112 (2014) https://link.aps.org/doi/10.1103/PhysRevLett.112.217204 | DOI

[107] R. Vasseur; A.C. Potter; S.A. Parameswaran Quantum criticality of hot random spin chains, Phys. Rev. Lett., Volume 114 (2015) https://link.aps.org/doi/10.1103/PhysRevLett.114.217201 | DOI

[108] C. Monthus Random transverse field spin-glass model on the Cayley tree: phase transition between the two many-body-localized phases, J. Stat. Mech. Theory Exp., Volume 2017 (2017) no. 12 http://stacks.iop.org/1742-5468/2017/i=12/a=123304

[109] A.C. Potter; R. Vasseur Symmetry constraints on many-body localization, Phys. Rev. B, Volume 94 (2016) https://link.aps.org/doi/10.1103/PhysRevB.94.224206 | DOI

[110] R. Vasseur; A.J. Friedman; S.A. Parameswaran; A.C. Potter Particle-hole symmetry, many-body localization, and topological edge modes, Phys. Rev. B, Volume 93 (2016) https://link.aps.org/doi/10.1103/PhysRevB.93.134207 | DOI

[111] A.J. Friedman; R. Vasseur; A.C. Potter; S.A. Parameswaran Localization-protected order in spin chains with non-Abelian discrete symmetries | arXiv

[112] A. Prakash; S. Ganeshan; L. Fidkowski; T.-C. Wei Eigenstate phases with finite on-site non-Abelian symmetry, Phys. Rev. B, Volume 96 (2017) https://link.aps.org/doi/10.1103/PhysRevB.96.165136 | DOI

[113] A. Chandran; V. Khemani; C.R. Laumann; S.L. Sondhi Many-body localization and symmetry protected topological order, Phys. Rev. B, Volume 89 (2014) https://journals.aps.org/prb/abstract/10.1103/PhysRevB.89.144201 | arXiv | DOI

[114] K. Slagle; Z. Bi; Y.-Z. You; C. Xu Many-body localization of symmetry protected topological states | arXiv

[115] A.C. Potter; A. Vishwanath Protection of topological order by symmetry and many-body localization | arXiv

[116] I.V. Protopopov; W.W. Ho; D.A. Abanin Effect of SU(2) symmetry on many-body localization and thermalization, Phys. Rev. B, Volume 96 (2017) https://link.aps.org/doi/10.1103/PhysRevB.96.041122 | DOI

[117] S.A. Parameswaran; A.C. Potter; R. Vasseur Eigenstate phase transitions and the emergence of universal dynamics in highly excited states, Ann. Phys. (2017) http://onlinelibrary.wiley.com/doi/10.1002/andp.201600302/abstract

[118] R. Vasseur; J.E. Moore Nonequilibrium quantum dynamics and transport: from integrability to many-body localization, J. Stat. Mech. Theory Exp., Volume 2016 (2016) | arXiv | DOI

[119] C. Monthus Many body localization transition in the strong disorder limit: entanglement entropy from the statistics of rare extensive resonances, Entropy, Volume 18 (2016) | arXiv | DOI

[120] C. Monthus Finite size scaling for the many-body-localization transition: finite-size-pseudo-critical points of individual eigenstates, J. Stat. Mech. Theory Exp., Volume 2016 (2016) | arXiv | DOI

[121] A. Chandran; C.R. Laumann; V. Oganesyan Finite size scaling bounds on many-body localized phase transitions | arXiv

[122] R. Vosk; D.A. Huse; E. Altman Theory of the many-body localization transition in one-dimensional systems, Phys. Rev. X, Volume 5 (2015) http://link.aps.org/doi/10.1103/PhysRevX.5.031032 | DOI

[123] A.C. Potter; R. Vasseur; S. Parameswaran Universal properties of many-body delocalization transitions, Phys. Rev. X, Volume 5 (2015) https://link.aps.org/doi/10.1103/PhysRevX.5.031033 | DOI

[124] P.T. Dumitrescu; R. Vasseur; A.C. Potter Scaling theory of entanglement at the many-body localization transition, Phys. Rev. Lett., Volume 119 (2017) https://link.aps.org/doi/10.1103/PhysRevLett.119.110604 | DOI

[125] W. De Roeck; J.Z. Imbrie Many-body localization: stability and instability, Philos. Trans. R. Soc. Lond. A, Volume 375 (2017) http://rsta.royalsocietypublishing.org/content/375/2108/20160422 | DOI

[126] T. Thiery; F. Huveneers; M. Müller; W. De Roeck Many-body delocalization as a quantum avalanche | arXiv

[127] T. Thiery; M. Müller; W. De Roeck A microscopically motivated renormalization scheme for the MBL/ETH transition | arXiv

[128] D.J. Luitz; F. Huveneers; W. De Roeck How a small quantum bath can thermalize long localized chains, Phys. Rev. Lett., Volume 119 (2017) https://link.aps.org/doi/10.1103/PhysRevLett.119.150602 | DOI

[129] T. Grover Certain general constraints on the many-body localization transition | arXiv

[130] T. Devakul; R.R. Singh Early breakdown of area-law entanglement at the many-body delocalization transition, Phys. Rev. Lett., Volume 115 (2015) http://link.aps.org/doi/10.1103/PhysRevLett.115.187201 | DOI

[131] C. Monthus Many-body-localization transition in the strong disorder limit: entanglement entropy from the statistics of rare extensive resonances, Entropy, Volume 18 (2016), p. 122 http://www.mdpi.com/1099-4300/18/4/122 | DOI

[132] X. Yu; D.J. Luitz; B.K. Clark Bimodal entanglement entropy distribution in the many-body localization transition, Phys. Rev. B, Volume 94 (2016) https://journals.aps.org/prb/abstract/10.1103/PhysRevB.94.184202 | arXiv | DOI

[133] S.P. Lim; D.N. Sheng Nature of many-body localization and transitions by density matrix, renormalization group and exact diagonalization studies, Phys. Rev. B, Volume 94 (2016) no. 4 | DOI

[134] V. Khemani; D.N. Sheng; D.A. Huse Two universality classes for the many-body localization transition, Phys. Rev. Lett., Volume 119 (2017) https://link.aps.org/doi/10.1103/PhysRevLett.119.075702 | DOI

[135] E. Leviatan; F. Pollmann; J.H. Bardarson; D.A. Huse; E. Altman Quantum thermalization dynamics with matrix-product states | arXiv

[136] C.D. White; M. Zaletel; R.S.K. Mong; G. Refael Quantum dynamics of thermalizing systems, Phys. Rev. B, Volume 97 (2018) https://link.aps.org/doi/10.1103/PhysRevB.97.035127 | DOI

[137] H. Li; F.D.M. Haldane Entanglement spectrum as a generalization of entanglement entropy: identification of topological order in non-Abelian fractional quantum hall effect states, Phys. Rev. Lett., Volume 101 (2008) http://link.aps.org/doi/10.1103/PhysRevLett.101.010504 | DOI

[138] N. Laflorencie Quantum entanglement in condensed matter systems, Phys. Rep., Volume 646 (2016), p. 1 http://www.sciencedirect.com/science/article/pii/S0370157316301582 | DOI

[139] Z.-C. Yang; C. Chamon; A. Hamma; E.R. Mucciolo Two-component structure in the entanglement spectrum of highly excited states, Phys. Rev. Lett., Volume 115 (2015) https://link.aps.org/doi/10.1103/PhysRevLett.115.267206 | DOI

[140] S.D. Geraedts; R. Nandkishore; N. Regnault Many-body localization and thermalization: insights from the entanglement spectrum, Phys. Rev. B, Volume 93 (2016) https://link.aps.org/doi/10.1103/PhysRevB.93.174202 | DOI

[141] M. Serbyn; A.A. Michailidis; D.A. Abanin; Z. Papić Power-law entanglement spectrum in many-body localized phases, Phys. Rev. Lett., Volume 117 (2016) https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.117.160601 | arXiv | DOI

[142] F. Pietracaprina; G. Parisi; A. Mariano; S. Pascazio; A. Scardicchio Entanglement critical length at the many-body localization transition, J. Stat. Mech. Theory Exp., Volume 2017 (2017) no. 11 http://stacks.iop.org/1742-5468/2017/i=11/a=113102

[143] J. Gray; S. Bose; A. Bayat Many-body localization transition: Schmidt gap, entanglement length & scaling | arXiv

[144] S.D. Geraedts; N. Regnault; R.M. Nandkishore Characterizing the many-body localization transition using the entanglement spectrum, New J. Phys., Volume 19 (2017) no. 11 http://stacks.iop.org/1367-2630/19/i=11/a=113021

[145] Z.-C. Yang; A. Hamma; S.M. Giampaolo; E.R. Mucciolo; C. Chamon Entanglement complexity in quantum many-body dynamics, thermalization, and localization, Phys. Rev. B, Volume 96 (2017) https://link.aps.org/doi/10.1103/PhysRevB.96.020408 | DOI

[146] V.A. Marčenko; L.A. Pastur Distribution of eigenvalues for some sets of random matrices, Math. USSR Sb., Volume 1 (1967), p. 457 http://iopscience.iop.org/article/10.1070/SM1967v001n04ABEH001994/meta | DOI

[147] P. Calabrese; A. Lefevre Entanglement spectrum in one-dimensional systems, Phys. Rev. A, Volume 78 (2008) http://link.aps.org/doi/10.1103/PhysRevA.78.032329 | DOI

[148] S. Leiman; A. Eisenbach; R. Berkovits Correspondence between many-particle excitations and the entanglement spectrum of disordered ballistic one-dimensional systems, Europhys. Lett., Volume 112 (2015) http://stacks.iop.org/0295-5075/112/i=4/a=46003 | DOI

[149] K. Agarwal; S. Gopalakrishnan; M. Knap; M. Müller; E. Demler Anomalous diffusion and Griffiths effects near the many-body localization transition, Phys. Rev. Lett., Volume 114 (2015) http://link.aps.org/doi/10.1103/PhysRevLett.114.160401 | DOI

[150] J.T. Chayes; L. Chayes; D.S. Fisher; T. Spencer Finite-size scaling and correlation lengths for disordered systems, Phys. Rev. Lett., Volume 57 (1986) http://link.aps.org/doi/10.1103/PhysRevLett.57.2999 | DOI

[151] J.M. Luck A classification of critical phenomena on quasi-crystals and other aperiodic structures, Europhys. Lett., Volume 24 (1993) http://stacks.iop.org/0295-5075/24/i=5/a=007 | DOI

[152] T. Enss; F. Andraschko; J. Sirker Many-body localization in infinite chains, Phys. Rev. B, Volume 95 (2017) https://link.aps.org/doi/10.1103/PhysRevB.95.045121

[153] G. Carleo; F. Becca; M. Schiró; M. Fabrizio Localization and glassy dynamics of many-body quantum systems, Sci. Rep., Volume 2 (2012) http://www.nature.com/srep/2012/120206/srep00243/full/srep00243.html | DOI

[154] W.D. Roeck; F. Huveneers Asymptotic quantum many-body localization from thermal disorder, Commun. Math. Phys., Volume 332 (2014) https://link.springer.com/article/10.1007/s00220-014-2116-8 | DOI

[155] M. Schiulaz; M. Müller Ideal quantum glass transitions: many-body localization without quenched disorder, AIP Conf. Proc., Volume 1610 (2014), p. 11 http://scitation.aip.org/content/aip/proceeding/aipcp/10.1063/1.4893505

[156] W. De Roeck; F. Huveneers Scenario for delocalization in translation invariant systems, Phys. Rev. B, Volume 90 (2014) https://journals.aps.org/prb/abstract/10.1103/PhysRevB.90.165137 | DOI

[157] L. Barbiero; C. Menotti; A. Recati; L. Santos Out-of-equilibrium states and quasi-many-body localization in polar lattice gases, Phys. Rev. B, Volume 92 (2015) https://link.aps.org/doi/10.1103/PhysRevB.92.180406 | DOI

[158] Y. Kagan; L.A. Maksimov Localization in a system of interacting particles diffusing in a regular crystal, J. Exp. Theor. Phys., Volume 60 (1984), p. 201 http://www.jetp.ac.ru/cgi-bin/e/index/r/87/1/p348?a=list

[159] M. Schiulaz; A. Silva; M. Müller Dynamics in many-body localized quantum systems without disorder, Phys. Rev. B, Volume 91 (2015) http://link.aps.org/doi/10.1103/PhysRevB.91.184202 | DOI

[160] N.Y. Yao; C.R. Laumann; J.I. Cirac; M.D. Lukin; J.E. Moore Quasi many-body localization in translation invariant systems, Phys. Rev. Lett., Volume 117 (2016) https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.117.240601 | DOI

[161] J.M. Hickey; S. Genway; J.P. Garrahan Signatures of many-body localisation in a system without disorder and the relation to a glass transition, J. Stat. Mech. Theory Exp., Volume 2016 (2016) | arXiv | DOI

[162] M. van Horssen; E. Levi; J.P. Garrahan Dynamics of many-body localisation in a translation invariant quantum glass model, Phys. Rev. B, Volume 92 (2015) https://journals.aps.org/prb/abstract/10.1103/PhysRevB.92.100305 | DOI

[163] T. Grover; M.P.A. Fisher Quantum disentangled liquids, J. Stat. Mech., Volume 2014 (2014) http://stacks.iop.org/1742-5468/2014/i=10/a=P10010 | DOI

[164] Z. Papić; E.M. Stoudenmire; D.A. Abanin Many-body localization in disorder-free systems: the importance of finite-size constraints, Ann. Phys., Volume 362 (2015), p. 714 http://www.sciencedirect.com/science/article/pii/S0003491615003280 | DOI

[165] J.R. Garrison; R.V. Mishmash; M.P.A. Fisher Partial breakdown of quantum thermalization in a Hubbard-like model, Phys. Rev. B, Volume 95 (2017) https://journals.aps.org/prb/abstract/10.1103/PhysRevB.95.054204 | arXiv | DOI

[166] R. Mondaini; Z. Cai Many-body self-localization in a translation-invariant Hamiltonian, Phys. Rev. B, Volume 96 (2017) https://link.aps.org/doi/10.1103/PhysRevB.96.035153 | DOI

[167] A.A. Michailidis; M. Žnidarič; M. Medvedyeva; D.A. Abanin; T.C.V. Prosen; Z. Papić Slow dynamics in translation-invariant quantum lattice models, Phys. Rev. B, Volume 97 (2018) https://link.aps.org/doi/10.1103/PhysRevB.97.104307 | DOI

[168] A. Smith; J. Knolle; D.L. Kovrizhin; R. Moessner Disorder-free localization, Phys. Rev. Lett., Volume 118 (2017) https://link.aps.org/doi/10.1103/PhysRevLett.118.266601 | DOI

[169] H. Yarloo; A. Langari; A. Vaezi Anyonic self-induced disorder in a stabilizer code: quasi many-body localization in a translational invariant model, Phys. Rev. B, Volume 97 (2018) https://link.aps.org/doi/10.1103/PhysRevB.97.054304 | DOI

[170] A. Smith; J. Knolle; R. Moessner; D.L. Kovrizhin Absence of ergodicity without quenched disorder: from quantum disentangled liquids to many-body localization, Phys. Rev. Lett., Volume 119 (2017) https://link.aps.org/doi/10.1103/PhysRevLett.119.176601 | DOI

[171] K. Agarwal; E. Altman; E. Demler; S. Gopalakrishnan; D.A. Huse; M. Knap Rare-region effects and dynamics near the many-body localization transition, Ann. Phys. (2017) http://onlinelibrary.wiley.com/doi/10.1002/andp.201600326/abstract | DOI

[172] Y. Bar Lev; G. Cohen; D.R. Reichman Absence of diffusion in an interacting system of spinless fermions on a one-dimensional disordered lattice, Phys. Rev. Lett., Volume 114 (2015) http://link.aps.org/doi/10.1103/PhysRevLett.114.100601 | DOI

[173] D.J. Luitz; N. Laflorencie; F. Alet Extended slow dynamical regime close to the many-body localization transition, Phys. Rev. B, Volume 93 (2016) http://link.aps.org/doi/10.1103/PhysRevB.93.060201 | DOI

[174] S. Gopalakrishnan; M. Müller; V. Khemani; M. Knap; E. Demler; D.A. Huse Low-frequency conductivity in many-body localized systems, Phys. Rev. B, Volume 92 (2015) https://link.aps.org/doi/10.1103/PhysRevB.92.104202 | DOI

[175] A. Nahum; J. Ruhman; D.A. Huse Dynamics of entanglement and transport in 1d systems with quenched randomness | arXiv

[176] D.J. Luitz; Y.B. Lev Anomalous thermalization in ergodic systems, Phys. Rev. Lett., Volume 117 (2016) https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.117.170404 | arXiv | DOI

[177] R. Steinigeweg; J. Herbrych; F. Pollmann; W. Brenig Typicality approach to the optical conductivity in thermal and many-body localized phases, Phys. Rev. B, Volume 94 (2016) https://link.aps.org/doi/10.1103/PhysRevB.94.180401 | DOI

[178] O.S. Barišić; J. Kokalj; I. Balog; P. Prelovšek Dynamical conductivity and its fluctuations along the crossover to many-body localization, Phys. Rev. B, Volume 94 (2016) https://link.aps.org/doi/10.1103/PhysRevB.94.045126 | DOI

[179] S. Bera; G. De Tomasi; F. Weiner; F. Evers Density propagator for many-body localization: finite-size effects, transient subdiffusion, and exponential decay, Phys. Rev. Lett., Volume 118 (2017) https://link.aps.org/doi/10.1103/PhysRevLett.118.196801 | DOI

[180] I. Khait; S. Gazit; N.Y. Yao; A. Auerbach Spin transport of weakly disordered Heisenberg chain at infinite temperature, Phys. Rev. B, Volume 93 (2016) https://link.aps.org/doi/10.1103/PhysRevB.93.224205 | DOI

[181] M. Znidaric; A. Scardicchio; V.K. Varma Diffusive and subdiffusive spin transport in the ergodic phase of a many-body localizable system, Phys. Rev. Lett., Volume 117 (2016) https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.117.040601 | arXiv | DOI

[182] Y.B. Lev; D.M. Kennes; C. Klöckner; D.R. Reichman; C. Karrasch Transport in quasiperiodic interacting systems: from superdiffusion to subdiffusion, Europhys. Lett., Volume 119 (2017) no. 3 http://stacks.iop.org/0295-5075/119/i=3/a=37003

[183] M. Lee; T.R. Look; S.P. Lim; D.N. Sheng Many-body localization in spin chain systems with quasiperiodic fields, Phys. Rev. B, Volume 96 (2017) https://link.aps.org/doi/10.1103/PhysRevB.96.075146 | DOI

[184] B. Lev; Y.B. Lev; D.R. Reichman Slow dynamics in a two-dimensional Anderson–Hubbard model, Europhys. Lett., Volume 113 (2016), p. 6 | DOI

[185] S. Åberg Onset of chaos in rapidly rotating nuclei, Phys. Rev. Lett., Volume 64 (1990) https://link.aps.org/doi/10.1103/PhysRevLett.64.3119 | DOI

[186] W. De Roeck; F. Huveneers Stability and instability towards delocalization in many-body localization systems, Phys. Rev. B, Volume 95 (2017) https://link.aps.org/doi/10.1103/PhysRevB.95.155129 | DOI

[187] M. Serbyn; Z. Papić; D.A. Abanin Criterion for many-body localization–delocalization phase transition, Phys. Rev. X, Volume 5 (2015) https://link.aps.org/doi/10.1103/PhysRevX.5.041047 | DOI

[188] S.J. Thomson; M. Schiró Time evolution of many-body localized systems with the flow equation approach, Phys. Rev. B, Volume 97 (2018) https://link.aps.org/doi/10.1103/PhysRevB.97.060201 | DOI

[189] T.B. Wahl; A. Pal; S.H. Simon Signatures of the many-body localized regime in two dimensions | arXiv

[190] A. Chandran; A. Pal; C.R. Laumann; A. Scardicchio Many-body localization beyond eigenstates in all dimensions, Phys. Rev. B, Volume 94 (2016) https://link.aps.org/doi/10.1103/PhysRevB.94.144203 | DOI

[191] C. Chen; F. Burnell; A. Chandran How does a locally constrained quantum system localize? | arXiv

[192] C. Monthus; T. Garel Many-body localization transition in a lattice model of interacting fermions: statistics of renormalized hoppings in configuration space, Phys. Rev. B, Volume 81 (2010) https://link.aps.org/doi/10.1103/PhysRevB.81.134202

[193] F. Pietracaprina; V. Ros; A. Scardicchio Forward approximation as a mean-field approximation for the Anderson and many-body localization transitions, Phys. Rev. B, Volume 93 (2016) https://link.aps.org/doi/10.1103/PhysRevB.93.054201 | DOI

[194] H. Aoki Real-space renormalisation-group theory for Anderson localisation: decimation method for electron systems, J. Phys. C, Solid State Phys., Volume 13 (1980), p. 3369 http://stacks.iop.org/0022-3719/13/i=18/a=006 | DOI

[195] C. Monthus; T. Garel Statistics of renormalized on-site energies and renormalized hoppings for Anderson localization in two and three dimensions, Phys. Rev. B, Volume 80 (2009) https://link.aps.org/doi/10.1103/PhysRevB.80.024203 | DOI

[196] H.J. Mard; J.A. Hoyos; E. Miranda; V. Dobrosavljević Strong-disorder approach for the Anderson localization transition, Phys. Rev. B, Volume 96 (2017) https://link.aps.org/doi/10.1103/PhysRevB.96.045143 | DOI

[197] G. Biroli; A.C. Ribeiro-Teixeira; M. Tarzia Difference between level statistics, ergodicity and localization transitions on the Bethe lattice | arXiv

[198] A. De Luca; B.L. Altshuler; V.E. Kravtsov; A. Scardicchio Anderson localization on the Bethe lattice: nonergodicity of extended states, Phys. Rev. Lett., Volume 113 (2014) http://link.aps.org/doi/10.1103/PhysRevLett.113.046806 | DOI

[199] B.L. Altshuler; E. Cuevas; L.B. Ioffe; V.E. Kravtsov Nonergodic phases in strongly disordered random regular graphs, Phys. Rev. Lett., Volume 117 (2016) https://link.aps.org/doi/10.1103/PhysRevLett.117.156601 | DOI

[200] E. Tarquini; G. Biroli; M. Tarzia Critical properties of the Anderson localization transition and the high-dimensional limit, Phys. Rev. B, Volume 95 (2017) https://link.aps.org/doi/10.1103/PhysRevB.95.094204 | DOI

[201] R. Abou-Chacra; D.J. Thouless; P.W. Anderson A selfconsistent theory of localization, J. Phys. C, Solid State Phys., Volume 6 (1973), p. 1734 http://stacks.iop.org/0022-3719/6/i=10/a=009 | DOI

[202] R. Abou-Chacra; D.J. Thouless Self-consistent theory of localization. II. Localization near the band edges, J. Phys. C, Solid State Phys., Volume 7 (1974), p. 65 http://stacks.iop.org/0022-3719/7/i=1/a=015 | DOI

[203] F. Evers; A.D. Mirlin Anderson transitions, Rev. Mod. Phys., Volume 80 (2008), p. 1355 http://link.aps.org/doi/10.1103/RevModPhys.80.1355 | DOI

[204] B.L. Altshuler; L.B. Ioffe; V.E. Kravtsov Multifractal states in self-consistent theory of localization: analytical solution | arXiv

[205] K.S. Tikhonov; A.D. Mirlin; M.A. Skvortsov Anderson localization and ergodicity on random regular graphs, Phys. Rev. B, Volume 94 (2016) https://link.aps.org/doi/10.1103/PhysRevB.94.220203 | DOI

[206] K.S. Tikhonov; A.D. Mirlin Fractality of wave functions on a Cayley tree: difference between tree and locally treelike graph without boundary, Phys. Rev. B, Volume 94 (2016) https://link.aps.org/doi/10.1103/PhysRevB.94.184203 | DOI

[207] I. García-Mata; O. Giraud; B. Georgeot; J. Martin; R. Dubertrand; G. Lemarié Scaling theory of the Anderson transition in random graphs: ergodicity and universality, Phys. Rev. Lett., Volume 118 (2017) https://link.aps.org/doi/10.1103/PhysRevLett.118.166801 | DOI

[208] M. Serbyn; Z. Papić; D.A. Abanin Thouless energy and multifractality across the many-body localization transition, Phys. Rev. B, Volume 96 (2017) https://link.aps.org/doi/10.1103/PhysRevB.96.104201 | DOI

[209] E.J. Torres-Herrera; L.F. Santos Extended nonergodic states in disordered many-body quantum systems, Ann. Phys. (2017) http://onlinelibrary.wiley.com/doi/10.1002/andp.201600284/abstract

[210] G. Biroli; M. Tarzia Delocalized glassy dynamics and many-body localization, Phys. Rev. B, Volume 96 (2017) https://link.aps.org/doi/10.1103/PhysRevB.96.201114 | DOI

[211] R. Islam; R. Ma; P.M. Preiss; M.E. Tai; A. Lukin; M. Rispoli; M. Greiner Measuring entanglement entropy in a quantum many-body system, Nature, Volume 528 (2015) http://www.nature.com/nature/journal/v528/n7580/full/nature15750.html | DOI

[212] A.M. Kaufman; M.E. Tai; A. Lukin; M. Rispoli; R. Schittko; P.M. Preiss; M. Greiner Quantum thermalization through entanglement in an isolated many-body system, Science, Volume 353 (2016) http://science.sciencemag.org/content/353/6301/794 | DOI

[213] F. Iemini; A. Russomanno; D. Rossini; A. Scardicchio; R. Fazio Signatures of many-body localization in the dynamics of two-site entanglement, Phys. Rev. B, Volume 94 (2016) https://link.aps.org/doi/10.1103/PhysRevB.94.214206 | DOI

[214] G. De Tomasi; S. Bera; J.H. Bardarson; F. Pollmann Quantum mutual information as a probe for many-body localization, Phys. Rev. Lett., Volume 118 (2017) https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.118.016804 | DOI

[215] M.C. Bañuls; N.Y. Yao; S. Choi; M.D. Lukin; J.I. Cirac Dynamics of quantum information in many-body localized systems, Phys. Rev. B, Volume 96 (2017) https://link.aps.org/doi/10.1103/PhysRevB.96.174201 | DOI

[216] M. Serbyn; M. Knap; S. Gopalakrishnan; Z. Papić; N. Yao; C. Laumann; D. Abanin; M. Lukin; E. Demler Interferometric probes of many-body localization, Phys. Rev. Lett., Volume 113 (2014) https://link.aps.org/doi/10.1103/PhysRevLett.113.147204 | DOI

[217] D. Roy; R. Singh; R. Moessner Probing many-body localization by spin noise spectroscopy, Phys. Rev. B, Volume 92 (2015) https://journals.aps.org/prb/abstract/10.1103/PhysRevB.92.180205 | arXiv | DOI

[218] R. Vasseur; S.A. Parameswaran; J.E. Moore Quantum revivals and many-body localization (Phys. Rev. B 91, https://doi.org/10.1103/PhysRevB.91.140202) | arXiv

[219] M. Serbyn; D.A. Abanin Loschmidt echo in many-body localized phases, Phys. Rev. B, Volume 96 (2017) https://link.aps.org/doi/10.1103/PhysRevB.96.014202 | DOI

[220] S.H. Shenker; D. Stanford Black holes and the butterfly effect, J. High Energy Phys., Volume 2014 (2014) https://link.springer.com/article/10.1007/JHEP03(2014)067 | DOI

[221] J. Maldacena; S.H. Shenker; D. Stanford A bound on chaos, J. High Energy Phys., Volume 2016 (2016) | arXiv | DOI

[222] X. Chen; T. Zhou; D.A. Huse; E. Fradkin Out-of-time-order correlations in many-body localized and thermal phases, Ann. Phys. (2016) http://onlinelibrary.wiley.com/doi/10.1002/andp.201600332/abstract | DOI

[223] Y. Huang; Y.-L. Zhang; X. Chen Out-of-time-ordered correlators in many-body localized systems, Ann. Phys. (2016) http://onlinelibrary.wiley.com/doi/10.1002/andp.201600318/abstract | arXiv | DOI

[224] R. Fan; P. Zhang; H. Shen; H. Zhai Out-of-time-order correlation for many-body localization, Sci. Bull., Volume 62 (2017), p. 707 | DOI

[225] R.-Q. He; Z.-Y. Lu Characterizing many-body localization by out-of-time-ordered correlation, Phys. Rev. B, Volume 95 (2017) https://link.aps.org/doi/10.1103/PhysRevB.95.054201

[226] Y. Chen Universal logarithmic scrambling in many body localization | arXiv

[227] B. Swingle; G. Bentsen; M. Schleier-Smith; P. Hayden Measuring the scrambling of quantum information, Phys. Rev. A, Volume 94 (2016) https://link.aps.org/doi/10.1103/PhysRevA.94.040302

[228] N.Y. Yao; F. Grusdt; B. Swingle; M.D. Lukin; D.M. Stamper-Kurn; J.E. Moore; E.A. Demler Interferometric approach to probing fast scrambling | arXiv

[229] G. Zhu; M. Hafezi; T. Grover Measurement of many-body chaos using a quantum clock, Phys. Rev. A, Volume 94 (2016) https://link.aps.org/doi/10.1103/PhysRevA.94.062329

[230] J. Li; R. Fan; H. Wang; B. Ye; B. Zeng; H. Zhai; X. Peng; J. Du Measuring out-of-time-order correlators on a nuclear magnetic resonance quantum simulator, Phys. Rev. X, Volume 7 (2017) https://link.aps.org/doi/10.1103/PhysRevX.7.031011 | DOI

[231] M. Garttner; J.G. Bohnet; A. Safavi-Naini; M.L. Wall; J.J. Bollinger; A.M. Rey Measuring out-of-time-order correlations and multiple quantum spectra in a trapped-ion quantum magnet, Nat. Phys., Volume 13 (2017) no. 8, pp. 781-786 | DOI

[232] P. Bordia; F. Alet; P. Hosur Out-of-time-ordered measurements as a probe of quantum dynamics, Phys. Rev. A, Volume 97 (2018) no. 3 | DOI

[233] F. Pietracaprina; N. Macé; D.J. Luitz; F. Alet Shift-invert diagonalization of large many-body localizing spin chains | arXiv

[234] M. Brenes; V.K. Varma; A. Scardicchio; I. Girotto Massively parallel implementation and approaches to simulate quantum dynamics using Krylov subspace techniques | arXiv

[235] V. Khemani; F. Pollmann; S.L. Sondhi Obtaining highly excited eigenstates of many-body localized Hamiltonians by the density matrix renormalization group approach, Phys. Rev. Lett., Volume 116 (2016) https://link.aps.org/doi/10.1103/PhysRevLett.116.247204

[236] X. Yu; D. Pekker; B.K. Clark Finding matrix product state representations of highly excited eigenstates of many-body localized Hamiltonians, Phys. Rev. Lett., Volume 118 (2017) https://link.aps.org/doi/10.1103/PhysRevLett.118.017201

[237] D.M. Kennes; C. Karrasch Entanglement scaling of excited states in large one-dimensional many-body localized systems, Phys. Rev. B, Volume 93 (2016) https://link.aps.org/doi/10.1103/PhysRevB.93.245129

[238] T. Devakul; V. Khemani; F. Pollmann; D.A. Huse; S.L. Sondhi Obtaining highly excited eigenstates of the localized XX chain via DMRG-X, Philos. Trans. R. Soc. Lond. A, Volume 375 (2017) http://rsta.royalsocietypublishing.org/content/375/2108/20160431 | DOI

[239] D. Pekker; B.K. Clark Encoding the structure of many-body localization with matrix product operators, Phys. Rev. B, Volume 95 (2017) https://link.aps.org/doi/10.1103/PhysRevB.95.035116 | DOI

[240] F. Pollmann; V. Khemani; J.I. Cirac; S.L. Sondhi Efficient variational diagonalization of fully many-body localized Hamiltonians, Phys. Rev. B, Volume 94 (2016) https://link.aps.org/doi/10.1103/PhysRevB.94.041116

[241] T.B. Wahl; A. Pal; S.H. Simon Efficient representation of fully many-body localized systems using tensor networks, Phys. Rev. X, Volume 7 (2017) https://link.aps.org/doi/10.1103/PhysRevX.7.021018 | DOI

[242] A. Chandran; J. Carrasquilla; I.H. Kim; D.A. Abanin; G. Vidal Spectral tensor networks for many-body localization, Phys. Rev. B, Volume 92 (2015) https://link.aps.org/doi/10.1103/PhysRevB.92.024201 | DOI

[243] C. Monthus Flow towards diagonalization for many-body-localization models: adaptation of the Toda matrix differential flow to random quantum spin chains, J. Phys. A, Math. Theor., Volume 49 (2016) http://stacks.iop.org/1751-8121/49/i=30/a=305002

[244] D. Pekker; B.K. Clark; V. Oganesyan; G. Refael Fixed points of Wegner–Wilson flows and many-body localization, Phys. Rev. Lett., Volume 119 (2017) https://link.aps.org/doi/10.1103/PhysRevLett.119.075701 | DOI

[245] S. Inglis; L. Pollet Accessing many-body localized states through the generalized Gibbs ensemble, Phys. Rev. Lett., Volume 117 (2016) https://link.aps.org/doi/10.1103/PhysRevLett.117.120402

[246] N.Y. Yao; C.R. Laumann; A. Vishwanath Many-body localization protected quantum state transfer | arXiv

[247] S. Choi; N.Y. Yao; S. Gopalakrishnan; M.D. Lukin Quantum control of many-body localized states | arXiv

[248] B. Bauer; C. Nayak Analyzing many-body localization with a quantum computer, Phys. Rev. X, Volume 4 (2014) https://link.aps.org/doi/10.1103/PhysRevX.4.041021

[249] A.M. Childs; D. Maslov; Y. Nam; N.J. Ross; Y. Su Toward the first quantum simulation with quantum speedup | arXiv

[250] H.P. Lüschen; S. Scherg; T. Kohlert; M. Schreiber; P. Bordia; X. Li; S. Das Sarma; I. Bloch Exploring the single-particle mobility edge in a one-dimensional quasiperiodic optical lattice | arXiv

[251] R. Nandkishore; S. Gopalakrishnan; D.A. Huse Spectral features of a many-body-localized system weakly coupled to a bath, Phys. Rev. B, Volume 90 (2014) http://link.aps.org/doi/10.1103/PhysRevB.90.064203

[252] K. Hyatt; J.R. Garrison; A.C. Potter; B. Bauer Many-body localization in the presence of a small bath, Phys. Rev. B, Volume 95 (2017) https://link.aps.org/doi/10.1103/PhysRevB.95.035132

[253] R. Nandkishore; S. Gopalakrishnan Many body localized systems weakly coupled to baths, Ann. Phys., Volume 529 (2017) no. 7 | DOI

[254] E. Levi; M. Heyl; I. Lesanovsky; J.P. Garrahan Robustness of many-body localization in the presence of dissipation, Phys. Rev. Lett., Volume 116 (2016) https://link.aps.org/doi/10.1103/PhysRevLett.116.237203

[255] M.H. Fischer; M. Maksymenko; E. Altman Dynamics of a many-body-localized system coupled to a bath, Phys. Rev. Lett., Volume 116 (2016) https://link.aps.org/doi/10.1103/PhysRevLett.116.160401

[256] A. Carmele; M. Heyl; C. Kraus; M. Dalmonte Stretched exponential decay of majorana edge modes in many-body localized Kitaev chains under dissipation, Phys. Rev. B, Volume 92 (2015) https://link.aps.org/doi/10.1103/PhysRevB.92.195107

[257] D.V. Else; B. Bauer; C. Nayak Floquet time crystals, Phys. Rev. Lett., Volume 117 (2016) https://link.aps.org/doi/10.1103/PhysRevLett.117.090402

[258] R. Moessner; S.L. Sondhi Equilibration and order in quantum Floquet matter, Nat. Phys., Volume 13 (2017) no. 5 | DOI

[259] S. Choi; J. Choi; R. Landig; G. Kucsko; H. Zhou; J. Isoya; F. Jelezko; S. Onoda; H. Sumiya; V. Khemani; C. von Keyserlingk; N.Y. Yao; E. Demler; M.D. Lukin Observation of discrete time-crystalline order in a disordered dipolar many-body system, Nature, Volume 543 (2017), p. 221 https://www.nature.com/nature/journal/v543/n7644/full/nature21426.html

Cited by Sources:

Comments - Policy