What happens in an isolated quantum system when both disorder and interactions are present? Over the recent years, the picture of a non-thermalizing phase of matter, the many-localized phase, has emerged as a stable solution. We present a basic introduction to the topic of many-body localization, using the simple example of a quantum spin chain that allows us to illustrate several of the properties of this phase. We then briefly review the current experimental research efforts probing this physics. The largest part of this review is a selection of more specialized questions, some of which are currently under active investigation. We conclude by summarizing the connections between many-body localization and quantum simulations.
Que se passe-t-il dans un système quantique isolé lorsque celui-ci présente du désordre et des interactions entre particules ? Au cours des dernières années a émergé l'image comme solution stable d'une phase qui ne thermalise pas, la phase localisée à N corps (notre traduction de many-body localization). Nous présentons une introduction simple à la localisation à N corps, à travers l'exemple d'une chaîne de spins quantiques, ce qui permet d'illustrer plusieurs propriétés de cette phase. Nous effectuons ensuite une brève revue des efforts expérimentaux actuels cherchant à sonder cette physique. La plus grande partie de cette revue est consacrée à une sélection de questions plus spécialisées, la plupart actuellement en cours d'études. Nous concluons en résumant les liens entre localisation à N corps et simulations quantiques.
Mot clés : Localisation à N corps, Thermalisation, Simulations, Intrication
Fabien Alet 1; Nicolas Laflorencie 1
@article{CRPHYS_2018__19_6_498_0, author = {Fabien Alet and Nicolas Laflorencie}, title = {Many-body localization: {An} introduction and selected topics}, journal = {Comptes Rendus. Physique}, pages = {498--525}, publisher = {Elsevier}, volume = {19}, number = {6}, year = {2018}, doi = {10.1016/j.crhy.2018.03.003}, language = {en}, }
Fabien Alet; Nicolas Laflorencie. Many-body localization: An introduction and selected topics. Comptes Rendus. Physique, Volume 19 (2018) no. 6, pp. 498-525. doi : 10.1016/j.crhy.2018.03.003. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2018.03.003/
[1] Many-body localization and thermalization in quantum statistical mechanics, Annu. Rev. Condens. Matter Phys., Volume 6 (2015), p. 15 | DOI
[2] Universal dynamics and renormalization in many-body-localized systems, Annu. Rev. Condens. Matter Phys., Volume 6 (2015) no. 383 | DOI
[3] Recent progress in many-body localization, Ann. Phys., Volume 529 (2017) no. 7 | DOI
[4] Many-body localization edge in the random-field Heisenberg chain, Phys. Rev. B, Volume 91 (2015) http://link.aps.org/doi/10.1103/PhysRevB.91.081103 | DOI
[5] Many-body localization phase transition, Phys. Rev. B, Volume 82 (2010) http://link.aps.org/doi/10.1103/PhysRevB.82.174411 | DOI
[6] Nonergodic metallic and insulating phases of Josephson junction chains, Proc. Natl. Acad. Sci. USA, Volume 113 (2016) http://www.pnas.org/content/113/3/536 | DOI
[7] Quantum statistical mechanics in a closed system, Phys. Rev. A, Volume 43 (1991) https://link.aps.org/doi/10.1103/PhysRevA.43.2046 | DOI
[8] Chaos and quantum thermalization, Phys. Rev. E, Volume 50 (1994) https://link.aps.org/doi/10.1103/PhysRevE.50.888 | DOI
[9] From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics, Adv. Phys., Volume 65 (2016) | DOI
[10] Quantum chaos and thermalization in isolated systems of interacting particles, Phys. Rep., Volume 626 (2016) no. 1 http://www.sciencedirect.com/science/article/pii/S0370157316000831 | DOI
[11] Thermalization and its mechanism for generic isolated quantum systems, Nature, Volume 452 (2008) https://www.nature.com/nature/journal/v452/n7189/full/nature06838.html | DOI
[12] Breakdown of thermalization in finite one-dimensional systems, Phys. Rev. Lett., Volume 103 (2009) https://link.aps.org/doi/10.1103/PhysRevLett.103.100403 | DOI
[13] Long tail distributions near the many-body localization transition, Phys. Rev. B, Volume 93 (2016) https://link.aps.org/doi/10.1103/PhysRevB.93.134201 | DOI
[14] Many-body localization due to random interactions, Phys. Rev. A, Volume 95 (2017) https://link.aps.org/doi/10.1103/PhysRevA.95.021601 | DOI
[15] Many-body localization in system with a completely delocalized single-particle spectrum, Phys. Rev. B, Volume 94 (2016) https://link.aps.org/doi/10.1103/PhysRevB.94.201116 | DOI
[16] Metal–insulator transition in a weakly interacting many-electron system with localized single-particle states, Ann. Phys., Volume 321 (2006) http://www.sciencedirect.com/science/article/pii/S0003491605002630 | DOI
[17] Interacting electrons in disordered wires: Anderson localization and low-T transport, Phys. Rev. Lett., Volume 95 (2005) https://link.aps.org/doi/10.1103/PhysRevLett.95.206603 | DOI
[18] Interactions and the Anderson transition, Phys. Rev. B, Volume 21 (1980) https://link.aps.org/doi/10.1103/PhysRevB.21.2366 | DOI
[19] Quasiparticle lifetime in a finite system: a nonperturbative approach, Phys. Rev. Lett., Volume 78 (1997) https://link.aps.org/doi/10.1103/PhysRevLett.78.2803 | DOI
[20] Coherent propagation of two interacting particles in a random potential, Phys. Rev. Lett., Volume 73 (1994) https://link.aps.org/doi/10.1103/PhysRevLett.73.2607 | DOI
[21] Emergence of quantum chaos in finite interacting Fermi systems, Phys. Rev. Lett., Volume 79 (1997), p. 1837 https://link.aps.org/doi/10.1103/PhysRevLett.79.1837 | DOI
[22] Integrability and quantum chaos in spin glass shards, Phys. Rev. Lett., Volume 81 (1998), p. 5129 https://link.aps.org/doi/10.1103/PhysRevLett.81.5129 | DOI
[23] Breit-Wigner width and inverse participation ratio in finite interacting Fermi systems, Phys. Rev. Lett., Volume 79 (1997), p. 4365 https://link.aps.org/doi/10.1103/PhysRevLett.79.4365 | DOI
[24] The ergodic side of the many-body localization transition, Ann. Phys., Volume 529 (2017) no. 7 | DOI
[25] Localization of interacting fermions at high temperature, Phys. Rev. B, Volume 75 (2007) https://link.aps.org/doi/10.1103/PhysRevB.75.155111
[26] Spectral statistics across the many-body localization transition, Phys. Rev. B, Volume 93 (2016) https://link.aps.org/doi/10.1103/PhysRevB.93.041424 | DOI
[27] Anomalous Thouless energy and critical statistics on the metallic side of the many-body localization transition, Phys. Rev. B, Volume 94 (2016) https://link.aps.org/doi/10.1103/PhysRevB.94.144201 | DOI
[28] Area laws in a many-body localized state and its implications for topological order, J. Stat. Mech., Volume 2013 (2013) http://iopscience.iop.org/1742-5468/2013/09/P09005 | DOI
[29] Ergodicity breaking in a model showing many-body localization, Europhys. Lett., Volume 101 (2013) http://stacks.iop.org/0295-5075/101/i=3/a=37003 | DOI
[30] Average entropy of a subsystem, Phys. Rev. Lett., Volume 71 (1993), p. 1291 http://link.aps.org/doi/10.1103/PhysRevLett.71.1291 | DOI
[31] Many-body localization in a disordered quantum ising chain, Phys. Rev. Lett., Volume 113 (2014) http://link.aps.org/doi/10.1103/PhysRevLett.113.107204 | DOI
[32] Many-body localization and transition by density matrix renormalization group and exact diagonalization studies, Phys. Rev. B, Volume 94 (2016) https://link.aps.org/doi/10.1103/PhysRevB.94.045111 | DOI
[33] Critical properties of the many-body localization transition, Phys. Rev. X, Volume 7 (2017) https://link.aps.org/doi/10.1103/PhysRevX.7.021013 | DOI
[34] Area laws for the entanglement entropy, Rev. Mod. Phys., Volume 82 (2010), p. 277 http://link.aps.org/doi/10.1103/RevModPhys.82.277 | DOI
[35] Bipartite fluctuations as a probe of many-body entanglement, Phys. Rev. B, Volume 85 (2012) http://link.aps.org/doi/10.1103/PhysRevB.85.035409 | DOI
[36] Signatures of the many-body localization transition in the dynamics of entanglement and bipartite fluctuations, New J. Phys., Volume 18 (2016) no. 2 http://stacks.iop.org/1367-2630/18/i=2/a=023046
[37] Density correlations and transport in models of many-body localization, Ann. Phys. (2017) http://onlinelibrary.wiley.com/doi/10.1002/andp.201600362/abstract | DOI
[38] Ballistic spreading of entanglement in a diffusive nonintegrable system, Phys. Rev. Lett., Volume 111 (2013) https://link.aps.org/doi/10.1103/PhysRevLett.111.127205 | DOI
[39] Remanent magnetization: signature of many-body localization in quantum antiferromagnets, Phys. Rev. Lett., Volume 118 (2017) https://link.aps.org/doi/10.1103/PhysRevLett.118.237202 | DOI
[40] Quantum quenches in the many-body localized phase, Phys. Rev. B, Volume 90 (2014) https://link.aps.org/doi/10.1103/PhysRevB.90.174302 | DOI
[41] Many-body localization in the Heisenberg XXZ magnet in a random field, Phys. Rev. B, Volume 77 (2008) http://link.aps.org/doi/10.1103/PhysRevB.77.064426
[42] Unbounded growth of entanglement in models of many-body localization, Phys. Rev. Lett., Volume 109 (2012) http://link.aps.org/doi/10.1103/PhysRevLett.109.017202 | DOI
[43] Universal slow growth of entanglement in interacting strongly disordered systems, Phys. Rev. Lett., Volume 110 (2013) http://link.aps.org/doi/10.1103/PhysRevLett.110.260601 | DOI
[44] Many-body localization in one dimension as a dynamical renormalization group fixed point, Phys. Rev. Lett., Volume 110 (2013) http://link.aps.org/doi/10.1103/PhysRevLett.110.067204
[45] Purification and many-body localization in cold atomic gases, Phys. Rev. Lett., Volume 113 (2014) http://link.aps.org/doi/10.1103/PhysRevLett.113.217201 | DOI
[46] Many-body localization and mobility edge in a disordered spin- Heisenberg ladder, Phys. Rev. B, Volume 92 (2015) http://link.aps.org/doi/10.1103/PhysRevB.92.195153 | DOI
[47] Many-body mobility edge in a mean-field quantum spin glass, Phys. Rev. Lett., Volume 113 (2014) https://link.aps.org/doi/10.1103/PhysRevLett.113.200405 | DOI
[48] Many-body mobility edge due to symmetry-constrained dynamics and strong interactions, Phys. Rev. B, Volume 92 (2015) https://journals.aps.org/prb/abstract/10.1103/PhysRevB.92.064203
[49] Exploring one-particle orbitals in large many-body localized systems, Phys. Rev. B, Volume 97 (2018) https://link.aps.org/doi/10.1103/PhysRevB.97.104406 | DOI
[50] Absence of many-body mobility edges, Phys. Rev. B, Volume 93 (2016) https://link.aps.org/doi/10.1103/PhysRevB.93.014203
[51] Phenomenology of fully many-body-localized systems, Phys. Rev. B, Volume 90 (2014) https://link.aps.org/doi/10.1103/PhysRevB.90.174202
[52] Local conservation laws and the structure of the many-body localized states, Phys. Rev. Lett., Volume 111 (2013) http://link.aps.org/doi/10.1103/PhysRevLett.111.127201
[53] On many-body localization for quantum spin chains, J. Stat. Phys., Volume 163 (2016) | arXiv | DOI
[54] Diagonalization and many-body localization for a disordered quantum spin chain, Phys. Rev. Lett., Volume 117 (2016) https://link.aps.org/doi/10.1103/PhysRevLett.117.027201
[55] Local integrals of motion in many-body localized systems, Ann. Phys. (2017) | DOI
[56] Many-body localization from the perspective of integrals of motion, Ann. Phys. (2017) | DOI
[57] Constructing local integrals of motion in the many-body localized phase, Phys. Rev. B, Volume 91 (2015) http://link.aps.org/doi/10.1103/PhysRevB.91.085425 | DOI
[58] Many-body localization: construction of the emergent local conserved operators via block real-space renormalization, J. Stat. Mech., Volume 2016 (2016) http://stacks.iop.org/1742-5468/2016/i=3/a=033101 | DOI
[59] Explicit local integrals of motion for the many-body localized state, Phys. Rev. Lett., Volume 116 (2016) http://link.aps.org/doi/10.1103/PhysRevLett.116.010404 | DOI
[60] Many-body-localization transition: sensitivity to twisted boundary conditions, J. Phys. A, Math. Theor., Volume 50 (2017) http://stacks.iop.org/1751-8121/50/i=9/a=095002 | DOI
[61] Construction of exact constants of motion and effective models for many-body localized systems, Phys. Rev. B, Volume 97 (2018) no. 13 | DOI
[62] Behaviour of l-bits near the many-body localization transition | arXiv
[63] Counting local integrals of motion in disordered spinless-fermion and Hubbard chains, Phys. Rev. B, Volume 97 (2018) no. 6 | DOI
[64] Perturbation theory approaches to Anderson and many-body localization: some lecture notes | arXiv
[65] Integrals of motion in the many-body localized phase, Nucl. Phys. B, Volume 891 (2015), pp. 420-465 http://www.sciencedirect.com/science/article/pii/S0550321314003836 | DOI
[66] Many-body localization characterized from a one-particle perspective, Phys. Rev. Lett., Volume 115 (2015) https://link.aps.org/doi/10.1103/PhysRevLett.115.046603
[67] One-particle density matrix characterization of many-body localization, Ann. Phys. (2017) http://onlinelibrary.wiley.com/doi/10.1002/andp.201600356/abstract
[68] One-particle density matrix occupation spectrum of many-body localized states after a global quench, Phys. Rev. B, Volume 96 (2017) https://link.aps.org/doi/10.1103/PhysRevB.96.060202 | DOI
[69] Energy delocalization in strongly disordered systems induced by the long-range many-body interaction | arXiv
[70] Many-body localization and quantum ergodicity in disordered long-range Ising models, Phys. Rev. B, Volume 92 (2015) https://link.aps.org/doi/10.1103/PhysRevB.92.134204
[71] Many-body delocalization in a strongly disordered system with long-range interactions: finite-size scaling, Phys. Rev. B, Volume 91 (2015) https://link.aps.org/doi/10.1103/PhysRevB.91.094202
[72] Many-body localization with long-range interactions, Phys. Rev. X, Volume 7 (2017) https://link.aps.org/doi/10.1103/PhysRevX.7.041021 | DOI
[73] The many-body localized phase of the quantum random energy model, Phys. Rev. B, Volume 93 (2016) https://link.aps.org/doi/10.1103/PhysRevB.93.024202
[74] Localization and chaos in a quantum spin glass model in random longitudinal fields: mapping to the localization problem in a Bethe lattice with a correlated disorder, Ann. Phys. (2017) | DOI
[75] Thermal inclusions: how one spin can destroy a many-body localized phase, Philos. Trans. R. Soc. Lond. A, Volume 375 (2017) http://rsta.royalsocietypublishing.org/content/375/2108/20160428 | DOI
[76] Quantum chaos border for quantum computing, Phys. Rev. E, Volume 62 (2000) http://link.aps.org/doi/10.1103/PhysRevE.62.3504 | DOI
[77] Quantum quenches and many-body localization in the thermodynamic limit, Phys. Rev. B, Volume 91 (2015) https://journals.aps.org/prb/abstract/10.1103/PhysRevB.91.161109
[78] Many-body localization in a quasiperiodic system, Phys. Rev. B, Volume 87 (2013) https://link.aps.org/doi/10.1103/PhysRevB.87.134202 | DOI
[79] Detecting a many-body mobility edge with quantum quenches, SciPost Phys., Volume 1 (2016) https://scipost.org/10.21468/SciPostPhys.1.1.010 | DOI
[80] Transport properties across the many-body localization transition in quasiperiodic and random systems, Phys. Rev. B, Volume 96 (2017) https://link.aps.org/doi/10.1103/PhysRevB.96.104205 | DOI
[81] Analyticity breaking and Anderson localization in incommensurate lattices, Ann. Isr. Phys. Soc., Volume 3 (1980), p. 18
[82] Absence of full many-body localization in the disordered Hubbard chain, Phys. Rev. B, Volume 94 (2016) https://journals.aps.org/prb/abstract/10.1103/PhysRevB.94.241104 | arXiv | DOI
[83] Multifractal metal in a disordered Josephson junctions array, Phys. Rev. B, Volume 96 (2017) https://link.aps.org/doi/10.1103/PhysRevB.96.214205 | DOI
[84] Complete many-body localization in the t–j model caused by a random magnetic field, Phys. Rev. Lett., Volume 119 (2017) https://link.aps.org/doi/10.1103/PhysRevLett.119.246601 | DOI
[85] Observation of many-body localization of interacting fermions in a quasi-random optical lattice, Science, Volume 349 (2015) http://science.sciencemag.org/lookup/doi/10.1126/science.aaa7432 | arXiv | DOI
[86] Coupling identical one-dimensional many-body localized systems, Phys. Rev. Lett., Volume 116 (2016) https://link.aps.org/doi/10.1103/PhysRevLett.116.140401 | DOI
[87] Many-body localization in a quantum simulator with programmable random disorder, Nat. Phys., Volume 12 (2016), p. 907 https://www.nature.com/nphys/journal/v12/n10/full/nphys3783.html
[88] Observation of a discrete time crystal, Nature, Volume 543 (2017) no. 7644, pp. 217-220 | DOI
[89] Non-thermalization in trapped atomic ion spin chains, Philos. Trans. R. Soc. Lond. A, Volume 375 (2017) http://rsta.royalsocietypublishing.org/content/375/2108/20170107 | DOI
[90] Exploring the many-body localization transition in two dimensions, Science, Volume 352 (2016), p. 1547 http://science.sciencemag.org/content/352/6293/1547.full.pdf http://science.sciencemag.org/content/352/6293/1547 | DOI
[91] Probing slow relaxation and many-body localization in two-dimensional quasiperiodic systems, Phys. Rev. X, Volume 7 (2017) https://link.aps.org/doi/10.1103/PhysRevX.7.041047 | DOI
[92] Signatures of many-body localization in a controlled open quantum system, Phys. Rev. X, Volume 7 (2017) https://link.aps.org/doi/10.1103/PhysRevX.7.011034 | DOI
[93] Periodically driving a many-body localized quantum system, Nat. Phys., Volume 13 (2017), p. 460 http://www.nature.com/doifinder/10.1038/nphys4020 | DOI
[94] Observation of slow dynamics near the many-body localization transition in one-dimensional quasiperiodic systems, Phys. Rev. Lett., Volume 119 (2017) https://link.aps.org/doi/10.1103/PhysRevLett.119.260401 | DOI
[95] Many-body localization with dipoles, Phys. Rev. Lett., Volume 113 (2014) https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.113.243002 | DOI
[96] Critical thermalization of a disordered dipolar spin system in diamond | arXiv
[97] Evidence for a finite temperature insulator, Sci. Rep., Volume 5 (2015) | arXiv | DOI
[98] Exploring localization in nuclear spin chains, Phys. Rev. Lett., Volume 120 (2018) https://link.aps.org/doi/10.1103/PhysRevLett.120.070501 | DOI
[99] Dynamic nuclear polarization and the paradox of quantum thermalization, Phys. Rev. Lett., Volume 115 (2015) http://link.aps.org/doi/10.1103/PhysRevLett.115.080401 | DOI
[100] Thermalization and many-body localization in systems under dynamic nuclear polarization, Phys. Rev. B, Volume 94 (2016) https://link.aps.org/doi/10.1103/PhysRevB.94.014203 | DOI
[101] An exactly solvable model for dynamic nuclear polarization | arXiv
[102] Long-range order in one-dimensional Ising systems, Phys. Rev., Volume 187 (1969), p. 732 https://link.aps.org/doi/10.1103/PhysRev.187.732
[103] Localization-protected quantum order, Phys. Rev. B, Volume 88 (2013) http://link.aps.org/doi/10.1103/PhysRevB.88.014206 | DOI
[104] Localization and topology protected quantum coherence at the edge of hot matter, Nat. Commun., Volume 6 (2015) https://www.nature.com/articles/ncomms8341 | DOI
[105] Hilbert-glass transition: new universality of temperature-tuned many-body dynamical quantum criticality, Phys. Rev. X, Volume 4 (2014) https://link.aps.org/doi/10.1103/PhysRevX.4.011052 | DOI
[106] Dynamical quantum phase transitions in random spin chains, Phys. Rev. Lett., Volume 112 (2014) https://link.aps.org/doi/10.1103/PhysRevLett.112.217204 | DOI
[107] Quantum criticality of hot random spin chains, Phys. Rev. Lett., Volume 114 (2015) https://link.aps.org/doi/10.1103/PhysRevLett.114.217201 | DOI
[108] Random transverse field spin-glass model on the Cayley tree: phase transition between the two many-body-localized phases, J. Stat. Mech. Theory Exp., Volume 2017 (2017) no. 12 http://stacks.iop.org/1742-5468/2017/i=12/a=123304
[109] Symmetry constraints on many-body localization, Phys. Rev. B, Volume 94 (2016) https://link.aps.org/doi/10.1103/PhysRevB.94.224206 | DOI
[110] Particle-hole symmetry, many-body localization, and topological edge modes, Phys. Rev. B, Volume 93 (2016) https://link.aps.org/doi/10.1103/PhysRevB.93.134207 | DOI
[111] Localization-protected order in spin chains with non-Abelian discrete symmetries | arXiv
[112] Eigenstate phases with finite on-site non-Abelian symmetry, Phys. Rev. B, Volume 96 (2017) https://link.aps.org/doi/10.1103/PhysRevB.96.165136 | DOI
[113] Many-body localization and symmetry protected topological order, Phys. Rev. B, Volume 89 (2014) https://journals.aps.org/prb/abstract/10.1103/PhysRevB.89.144201 | arXiv | DOI
[114] Many-body localization of symmetry protected topological states | arXiv
[115] Protection of topological order by symmetry and many-body localization | arXiv
[116] Effect of SU(2) symmetry on many-body localization and thermalization, Phys. Rev. B, Volume 96 (2017) https://link.aps.org/doi/10.1103/PhysRevB.96.041122 | DOI
[117] Eigenstate phase transitions and the emergence of universal dynamics in highly excited states, Ann. Phys. (2017) http://onlinelibrary.wiley.com/doi/10.1002/andp.201600302/abstract
[118] Nonequilibrium quantum dynamics and transport: from integrability to many-body localization, J. Stat. Mech. Theory Exp., Volume 2016 (2016) | arXiv | DOI
[119] Many body localization transition in the strong disorder limit: entanglement entropy from the statistics of rare extensive resonances, Entropy, Volume 18 (2016) | arXiv | DOI
[120] Finite size scaling for the many-body-localization transition: finite-size-pseudo-critical points of individual eigenstates, J. Stat. Mech. Theory Exp., Volume 2016 (2016) | arXiv | DOI
[121] Finite size scaling bounds on many-body localized phase transitions | arXiv
[122] Theory of the many-body localization transition in one-dimensional systems, Phys. Rev. X, Volume 5 (2015) http://link.aps.org/doi/10.1103/PhysRevX.5.031032 | DOI
[123] Universal properties of many-body delocalization transitions, Phys. Rev. X, Volume 5 (2015) https://link.aps.org/doi/10.1103/PhysRevX.5.031033 | DOI
[124] Scaling theory of entanglement at the many-body localization transition, Phys. Rev. Lett., Volume 119 (2017) https://link.aps.org/doi/10.1103/PhysRevLett.119.110604 | DOI
[125] Many-body localization: stability and instability, Philos. Trans. R. Soc. Lond. A, Volume 375 (2017) http://rsta.royalsocietypublishing.org/content/375/2108/20160422 | DOI
[126] Many-body delocalization as a quantum avalanche | arXiv
[127] A microscopically motivated renormalization scheme for the MBL/ETH transition | arXiv
[128] How a small quantum bath can thermalize long localized chains, Phys. Rev. Lett., Volume 119 (2017) https://link.aps.org/doi/10.1103/PhysRevLett.119.150602 | DOI
[129] Certain general constraints on the many-body localization transition | arXiv
[130] Early breakdown of area-law entanglement at the many-body delocalization transition, Phys. Rev. Lett., Volume 115 (2015) http://link.aps.org/doi/10.1103/PhysRevLett.115.187201 | DOI
[131] Many-body-localization transition in the strong disorder limit: entanglement entropy from the statistics of rare extensive resonances, Entropy, Volume 18 (2016), p. 122 http://www.mdpi.com/1099-4300/18/4/122 | DOI
[132] Bimodal entanglement entropy distribution in the many-body localization transition, Phys. Rev. B, Volume 94 (2016) https://journals.aps.org/prb/abstract/10.1103/PhysRevB.94.184202 | arXiv | DOI
[133] Nature of many-body localization and transitions by density matrix, renormalization group and exact diagonalization studies, Phys. Rev. B, Volume 94 (2016) no. 4 | DOI
[134] Two universality classes for the many-body localization transition, Phys. Rev. Lett., Volume 119 (2017) https://link.aps.org/doi/10.1103/PhysRevLett.119.075702 | DOI
[135] Quantum thermalization dynamics with matrix-product states | arXiv
[136] Quantum dynamics of thermalizing systems, Phys. Rev. B, Volume 97 (2018) https://link.aps.org/doi/10.1103/PhysRevB.97.035127 | DOI
[137] Entanglement spectrum as a generalization of entanglement entropy: identification of topological order in non-Abelian fractional quantum hall effect states, Phys. Rev. Lett., Volume 101 (2008) http://link.aps.org/doi/10.1103/PhysRevLett.101.010504 | DOI
[138] Quantum entanglement in condensed matter systems, Phys. Rep., Volume 646 (2016), p. 1 http://www.sciencedirect.com/science/article/pii/S0370157316301582 | DOI
[139] Two-component structure in the entanglement spectrum of highly excited states, Phys. Rev. Lett., Volume 115 (2015) https://link.aps.org/doi/10.1103/PhysRevLett.115.267206 | DOI
[140] Many-body localization and thermalization: insights from the entanglement spectrum, Phys. Rev. B, Volume 93 (2016) https://link.aps.org/doi/10.1103/PhysRevB.93.174202 | DOI
[141] Power-law entanglement spectrum in many-body localized phases, Phys. Rev. Lett., Volume 117 (2016) https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.117.160601 | arXiv | DOI
[142] Entanglement critical length at the many-body localization transition, J. Stat. Mech. Theory Exp., Volume 2017 (2017) no. 11 http://stacks.iop.org/1742-5468/2017/i=11/a=113102
[143] Many-body localization transition: Schmidt gap, entanglement length & scaling | arXiv
[144] Characterizing the many-body localization transition using the entanglement spectrum, New J. Phys., Volume 19 (2017) no. 11 http://stacks.iop.org/1367-2630/19/i=11/a=113021
[145] Entanglement complexity in quantum many-body dynamics, thermalization, and localization, Phys. Rev. B, Volume 96 (2017) https://link.aps.org/doi/10.1103/PhysRevB.96.020408 | DOI
[146] Distribution of eigenvalues for some sets of random matrices, Math. USSR Sb., Volume 1 (1967), p. 457 http://iopscience.iop.org/article/10.1070/SM1967v001n04ABEH001994/meta | DOI
[147] Entanglement spectrum in one-dimensional systems, Phys. Rev. A, Volume 78 (2008) http://link.aps.org/doi/10.1103/PhysRevA.78.032329 | DOI
[148] Correspondence between many-particle excitations and the entanglement spectrum of disordered ballistic one-dimensional systems, Europhys. Lett., Volume 112 (2015) http://stacks.iop.org/0295-5075/112/i=4/a=46003 | DOI
[149] Anomalous diffusion and Griffiths effects near the many-body localization transition, Phys. Rev. Lett., Volume 114 (2015) http://link.aps.org/doi/10.1103/PhysRevLett.114.160401 | DOI
[150] Finite-size scaling and correlation lengths for disordered systems, Phys. Rev. Lett., Volume 57 (1986) http://link.aps.org/doi/10.1103/PhysRevLett.57.2999 | DOI
[151] A classification of critical phenomena on quasi-crystals and other aperiodic structures, Europhys. Lett., Volume 24 (1993) http://stacks.iop.org/0295-5075/24/i=5/a=007 | DOI
[152] Many-body localization in infinite chains, Phys. Rev. B, Volume 95 (2017) https://link.aps.org/doi/10.1103/PhysRevB.95.045121
[153] Localization and glassy dynamics of many-body quantum systems, Sci. Rep., Volume 2 (2012) http://www.nature.com/srep/2012/120206/srep00243/full/srep00243.html | DOI
[154] Asymptotic quantum many-body localization from thermal disorder, Commun. Math. Phys., Volume 332 (2014) https://link.springer.com/article/10.1007/s00220-014-2116-8 | DOI
[155] Ideal quantum glass transitions: many-body localization without quenched disorder, AIP Conf. Proc., Volume 1610 (2014), p. 11 http://scitation.aip.org/content/aip/proceeding/aipcp/10.1063/1.4893505
[156] Scenario for delocalization in translation invariant systems, Phys. Rev. B, Volume 90 (2014) https://journals.aps.org/prb/abstract/10.1103/PhysRevB.90.165137 | DOI
[157] Out-of-equilibrium states and quasi-many-body localization in polar lattice gases, Phys. Rev. B, Volume 92 (2015) https://link.aps.org/doi/10.1103/PhysRevB.92.180406 | DOI
[158] Localization in a system of interacting particles diffusing in a regular crystal, J. Exp. Theor. Phys., Volume 60 (1984), p. 201 http://www.jetp.ac.ru/cgi-bin/e/index/r/87/1/p348?a=list
[159] Dynamics in many-body localized quantum systems without disorder, Phys. Rev. B, Volume 91 (2015) http://link.aps.org/doi/10.1103/PhysRevB.91.184202 | DOI
[160] Quasi many-body localization in translation invariant systems, Phys. Rev. Lett., Volume 117 (2016) https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.117.240601 | DOI
[161] Signatures of many-body localisation in a system without disorder and the relation to a glass transition, J. Stat. Mech. Theory Exp., Volume 2016 (2016) | arXiv | DOI
[162] Dynamics of many-body localisation in a translation invariant quantum glass model, Phys. Rev. B, Volume 92 (2015) https://journals.aps.org/prb/abstract/10.1103/PhysRevB.92.100305 | DOI
[163] Quantum disentangled liquids, J. Stat. Mech., Volume 2014 (2014) http://stacks.iop.org/1742-5468/2014/i=10/a=P10010 | DOI
[164] Many-body localization in disorder-free systems: the importance of finite-size constraints, Ann. Phys., Volume 362 (2015), p. 714 http://www.sciencedirect.com/science/article/pii/S0003491615003280 | DOI
[165] Partial breakdown of quantum thermalization in a Hubbard-like model, Phys. Rev. B, Volume 95 (2017) https://journals.aps.org/prb/abstract/10.1103/PhysRevB.95.054204 | arXiv | DOI
[166] Many-body self-localization in a translation-invariant Hamiltonian, Phys. Rev. B, Volume 96 (2017) https://link.aps.org/doi/10.1103/PhysRevB.96.035153 | DOI
[167] Slow dynamics in translation-invariant quantum lattice models, Phys. Rev. B, Volume 97 (2018) https://link.aps.org/doi/10.1103/PhysRevB.97.104307 | DOI
[168] Disorder-free localization, Phys. Rev. Lett., Volume 118 (2017) https://link.aps.org/doi/10.1103/PhysRevLett.118.266601 | DOI
[169] Anyonic self-induced disorder in a stabilizer code: quasi many-body localization in a translational invariant model, Phys. Rev. B, Volume 97 (2018) https://link.aps.org/doi/10.1103/PhysRevB.97.054304 | DOI
[170] Absence of ergodicity without quenched disorder: from quantum disentangled liquids to many-body localization, Phys. Rev. Lett., Volume 119 (2017) https://link.aps.org/doi/10.1103/PhysRevLett.119.176601 | DOI
[171] Rare-region effects and dynamics near the many-body localization transition, Ann. Phys. (2017) http://onlinelibrary.wiley.com/doi/10.1002/andp.201600326/abstract | DOI
[172] Absence of diffusion in an interacting system of spinless fermions on a one-dimensional disordered lattice, Phys. Rev. Lett., Volume 114 (2015) http://link.aps.org/doi/10.1103/PhysRevLett.114.100601 | DOI
[173] Extended slow dynamical regime close to the many-body localization transition, Phys. Rev. B, Volume 93 (2016) http://link.aps.org/doi/10.1103/PhysRevB.93.060201 | DOI
[174] Low-frequency conductivity in many-body localized systems, Phys. Rev. B, Volume 92 (2015) https://link.aps.org/doi/10.1103/PhysRevB.92.104202 | DOI
[175] Dynamics of entanglement and transport in 1d systems with quenched randomness | arXiv
[176] Anomalous thermalization in ergodic systems, Phys. Rev. Lett., Volume 117 (2016) https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.117.170404 | arXiv | DOI
[177] Typicality approach to the optical conductivity in thermal and many-body localized phases, Phys. Rev. B, Volume 94 (2016) https://link.aps.org/doi/10.1103/PhysRevB.94.180401 | DOI
[178] Dynamical conductivity and its fluctuations along the crossover to many-body localization, Phys. Rev. B, Volume 94 (2016) https://link.aps.org/doi/10.1103/PhysRevB.94.045126 | DOI
[179] Density propagator for many-body localization: finite-size effects, transient subdiffusion, and exponential decay, Phys. Rev. Lett., Volume 118 (2017) https://link.aps.org/doi/10.1103/PhysRevLett.118.196801 | DOI
[180] Spin transport of weakly disordered Heisenberg chain at infinite temperature, Phys. Rev. B, Volume 93 (2016) https://link.aps.org/doi/10.1103/PhysRevB.93.224205 | DOI
[181] Diffusive and subdiffusive spin transport in the ergodic phase of a many-body localizable system, Phys. Rev. Lett., Volume 117 (2016) https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.117.040601 | arXiv | DOI
[182] Transport in quasiperiodic interacting systems: from superdiffusion to subdiffusion, Europhys. Lett., Volume 119 (2017) no. 3 http://stacks.iop.org/0295-5075/119/i=3/a=37003
[183] Many-body localization in spin chain systems with quasiperiodic fields, Phys. Rev. B, Volume 96 (2017) https://link.aps.org/doi/10.1103/PhysRevB.96.075146 | DOI
[184] Slow dynamics in a two-dimensional Anderson–Hubbard model, Europhys. Lett., Volume 113 (2016), p. 6 | DOI
[185] Onset of chaos in rapidly rotating nuclei, Phys. Rev. Lett., Volume 64 (1990) https://link.aps.org/doi/10.1103/PhysRevLett.64.3119 | DOI
[186] Stability and instability towards delocalization in many-body localization systems, Phys. Rev. B, Volume 95 (2017) https://link.aps.org/doi/10.1103/PhysRevB.95.155129 | DOI
[187] Criterion for many-body localization–delocalization phase transition, Phys. Rev. X, Volume 5 (2015) https://link.aps.org/doi/10.1103/PhysRevX.5.041047 | DOI
[188] Time evolution of many-body localized systems with the flow equation approach, Phys. Rev. B, Volume 97 (2018) https://link.aps.org/doi/10.1103/PhysRevB.97.060201 | DOI
[189] Signatures of the many-body localized regime in two dimensions | arXiv
[190] Many-body localization beyond eigenstates in all dimensions, Phys. Rev. B, Volume 94 (2016) https://link.aps.org/doi/10.1103/PhysRevB.94.144203 | DOI
[191] How does a locally constrained quantum system localize? | arXiv
[192] Many-body localization transition in a lattice model of interacting fermions: statistics of renormalized hoppings in configuration space, Phys. Rev. B, Volume 81 (2010) https://link.aps.org/doi/10.1103/PhysRevB.81.134202
[193] Forward approximation as a mean-field approximation for the Anderson and many-body localization transitions, Phys. Rev. B, Volume 93 (2016) https://link.aps.org/doi/10.1103/PhysRevB.93.054201 | DOI
[194] Real-space renormalisation-group theory for Anderson localisation: decimation method for electron systems, J. Phys. C, Solid State Phys., Volume 13 (1980), p. 3369 http://stacks.iop.org/0022-3719/13/i=18/a=006 | DOI
[195] Statistics of renormalized on-site energies and renormalized hoppings for Anderson localization in two and three dimensions, Phys. Rev. B, Volume 80 (2009) https://link.aps.org/doi/10.1103/PhysRevB.80.024203 | DOI
[196] Strong-disorder approach for the Anderson localization transition, Phys. Rev. B, Volume 96 (2017) https://link.aps.org/doi/10.1103/PhysRevB.96.045143 | DOI
[197] Difference between level statistics, ergodicity and localization transitions on the Bethe lattice | arXiv
[198] Anderson localization on the Bethe lattice: nonergodicity of extended states, Phys. Rev. Lett., Volume 113 (2014) http://link.aps.org/doi/10.1103/PhysRevLett.113.046806 | DOI
[199] Nonergodic phases in strongly disordered random regular graphs, Phys. Rev. Lett., Volume 117 (2016) https://link.aps.org/doi/10.1103/PhysRevLett.117.156601 | DOI
[200] Critical properties of the Anderson localization transition and the high-dimensional limit, Phys. Rev. B, Volume 95 (2017) https://link.aps.org/doi/10.1103/PhysRevB.95.094204 | DOI
[201] A selfconsistent theory of localization, J. Phys. C, Solid State Phys., Volume 6 (1973), p. 1734 http://stacks.iop.org/0022-3719/6/i=10/a=009 | DOI
[202] Self-consistent theory of localization. II. Localization near the band edges, J. Phys. C, Solid State Phys., Volume 7 (1974), p. 65 http://stacks.iop.org/0022-3719/7/i=1/a=015 | DOI
[203] Anderson transitions, Rev. Mod. Phys., Volume 80 (2008), p. 1355 http://link.aps.org/doi/10.1103/RevModPhys.80.1355 | DOI
[204] Multifractal states in self-consistent theory of localization: analytical solution | arXiv
[205] Anderson localization and ergodicity on random regular graphs, Phys. Rev. B, Volume 94 (2016) https://link.aps.org/doi/10.1103/PhysRevB.94.220203 | DOI
[206] Fractality of wave functions on a Cayley tree: difference between tree and locally treelike graph without boundary, Phys. Rev. B, Volume 94 (2016) https://link.aps.org/doi/10.1103/PhysRevB.94.184203 | DOI
[207] Scaling theory of the Anderson transition in random graphs: ergodicity and universality, Phys. Rev. Lett., Volume 118 (2017) https://link.aps.org/doi/10.1103/PhysRevLett.118.166801 | DOI
[208] Thouless energy and multifractality across the many-body localization transition, Phys. Rev. B, Volume 96 (2017) https://link.aps.org/doi/10.1103/PhysRevB.96.104201 | DOI
[209] Extended nonergodic states in disordered many-body quantum systems, Ann. Phys. (2017) http://onlinelibrary.wiley.com/doi/10.1002/andp.201600284/abstract
[210] Delocalized glassy dynamics and many-body localization, Phys. Rev. B, Volume 96 (2017) https://link.aps.org/doi/10.1103/PhysRevB.96.201114 | DOI
[211] Measuring entanglement entropy in a quantum many-body system, Nature, Volume 528 (2015) http://www.nature.com/nature/journal/v528/n7580/full/nature15750.html | DOI
[212] Quantum thermalization through entanglement in an isolated many-body system, Science, Volume 353 (2016) http://science.sciencemag.org/content/353/6301/794 | DOI
[213] Signatures of many-body localization in the dynamics of two-site entanglement, Phys. Rev. B, Volume 94 (2016) https://link.aps.org/doi/10.1103/PhysRevB.94.214206 | DOI
[214] Quantum mutual information as a probe for many-body localization, Phys. Rev. Lett., Volume 118 (2017) https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.118.016804 | DOI
[215] Dynamics of quantum information in many-body localized systems, Phys. Rev. B, Volume 96 (2017) https://link.aps.org/doi/10.1103/PhysRevB.96.174201 | DOI
[216] Interferometric probes of many-body localization, Phys. Rev. Lett., Volume 113 (2014) https://link.aps.org/doi/10.1103/PhysRevLett.113.147204 | DOI
[217] Probing many-body localization by spin noise spectroscopy, Phys. Rev. B, Volume 92 (2015) https://journals.aps.org/prb/abstract/10.1103/PhysRevB.92.180205 | arXiv | DOI
[218] Quantum revivals and many-body localization (Phys. Rev. B 91, https://doi.org/10.1103/PhysRevB.91.140202) | arXiv
[219] Loschmidt echo in many-body localized phases, Phys. Rev. B, Volume 96 (2017) https://link.aps.org/doi/10.1103/PhysRevB.96.014202 | DOI
[220] Black holes and the butterfly effect, J. High Energy Phys., Volume 2014 (2014) https://link.springer.com/article/10.1007/JHEP03(2014)067 | DOI
[221] A bound on chaos, J. High Energy Phys., Volume 2016 (2016) | arXiv | DOI
[222] Out-of-time-order correlations in many-body localized and thermal phases, Ann. Phys. (2016) http://onlinelibrary.wiley.com/doi/10.1002/andp.201600332/abstract | DOI
[223] Out-of-time-ordered correlators in many-body localized systems, Ann. Phys. (2016) http://onlinelibrary.wiley.com/doi/10.1002/andp.201600318/abstract | arXiv | DOI
[224] Out-of-time-order correlation for many-body localization, Sci. Bull., Volume 62 (2017), p. 707 | DOI
[225] Characterizing many-body localization by out-of-time-ordered correlation, Phys. Rev. B, Volume 95 (2017) https://link.aps.org/doi/10.1103/PhysRevB.95.054201
[226] Universal logarithmic scrambling in many body localization | arXiv
[227] Measuring the scrambling of quantum information, Phys. Rev. A, Volume 94 (2016) https://link.aps.org/doi/10.1103/PhysRevA.94.040302
[228] Interferometric approach to probing fast scrambling | arXiv
[229] Measurement of many-body chaos using a quantum clock, Phys. Rev. A, Volume 94 (2016) https://link.aps.org/doi/10.1103/PhysRevA.94.062329
[230] Measuring out-of-time-order correlators on a nuclear magnetic resonance quantum simulator, Phys. Rev. X, Volume 7 (2017) https://link.aps.org/doi/10.1103/PhysRevX.7.031011 | DOI
[231] Measuring out-of-time-order correlations and multiple quantum spectra in a trapped-ion quantum magnet, Nat. Phys., Volume 13 (2017) no. 8, pp. 781-786 | DOI
[232] Out-of-time-ordered measurements as a probe of quantum dynamics, Phys. Rev. A, Volume 97 (2018) no. 3 | DOI
[233] Shift-invert diagonalization of large many-body localizing spin chains | arXiv
[234] Massively parallel implementation and approaches to simulate quantum dynamics using Krylov subspace techniques | arXiv
[235] Obtaining highly excited eigenstates of many-body localized Hamiltonians by the density matrix renormalization group approach, Phys. Rev. Lett., Volume 116 (2016) https://link.aps.org/doi/10.1103/PhysRevLett.116.247204
[236] Finding matrix product state representations of highly excited eigenstates of many-body localized Hamiltonians, Phys. Rev. Lett., Volume 118 (2017) https://link.aps.org/doi/10.1103/PhysRevLett.118.017201
[237] Entanglement scaling of excited states in large one-dimensional many-body localized systems, Phys. Rev. B, Volume 93 (2016) https://link.aps.org/doi/10.1103/PhysRevB.93.245129
[238] Obtaining highly excited eigenstates of the localized XX chain via DMRG-X, Philos. Trans. R. Soc. Lond. A, Volume 375 (2017) http://rsta.royalsocietypublishing.org/content/375/2108/20160431 | DOI
[239] Encoding the structure of many-body localization with matrix product operators, Phys. Rev. B, Volume 95 (2017) https://link.aps.org/doi/10.1103/PhysRevB.95.035116 | DOI
[240] Efficient variational diagonalization of fully many-body localized Hamiltonians, Phys. Rev. B, Volume 94 (2016) https://link.aps.org/doi/10.1103/PhysRevB.94.041116
[241] Efficient representation of fully many-body localized systems using tensor networks, Phys. Rev. X, Volume 7 (2017) https://link.aps.org/doi/10.1103/PhysRevX.7.021018 | DOI
[242] Spectral tensor networks for many-body localization, Phys. Rev. B, Volume 92 (2015) https://link.aps.org/doi/10.1103/PhysRevB.92.024201 | DOI
[243] Flow towards diagonalization for many-body-localization models: adaptation of the Toda matrix differential flow to random quantum spin chains, J. Phys. A, Math. Theor., Volume 49 (2016) http://stacks.iop.org/1751-8121/49/i=30/a=305002
[244] Fixed points of Wegner–Wilson flows and many-body localization, Phys. Rev. Lett., Volume 119 (2017) https://link.aps.org/doi/10.1103/PhysRevLett.119.075701 | DOI
[245] Accessing many-body localized states through the generalized Gibbs ensemble, Phys. Rev. Lett., Volume 117 (2016) https://link.aps.org/doi/10.1103/PhysRevLett.117.120402
[246] Many-body localization protected quantum state transfer | arXiv
[247] Quantum control of many-body localized states | arXiv
[248] Analyzing many-body localization with a quantum computer, Phys. Rev. X, Volume 4 (2014) https://link.aps.org/doi/10.1103/PhysRevX.4.041021
[249] Toward the first quantum simulation with quantum speedup | arXiv
[250] Exploring the single-particle mobility edge in a one-dimensional quasiperiodic optical lattice | arXiv
[251] Spectral features of a many-body-localized system weakly coupled to a bath, Phys. Rev. B, Volume 90 (2014) http://link.aps.org/doi/10.1103/PhysRevB.90.064203
[252] Many-body localization in the presence of a small bath, Phys. Rev. B, Volume 95 (2017) https://link.aps.org/doi/10.1103/PhysRevB.95.035132
[253] Many body localized systems weakly coupled to baths, Ann. Phys., Volume 529 (2017) no. 7 | DOI
[254] Robustness of many-body localization in the presence of dissipation, Phys. Rev. Lett., Volume 116 (2016) https://link.aps.org/doi/10.1103/PhysRevLett.116.237203
[255] Dynamics of a many-body-localized system coupled to a bath, Phys. Rev. Lett., Volume 116 (2016) https://link.aps.org/doi/10.1103/PhysRevLett.116.160401
[256] Stretched exponential decay of majorana edge modes in many-body localized Kitaev chains under dissipation, Phys. Rev. B, Volume 92 (2015) https://link.aps.org/doi/10.1103/PhysRevB.92.195107
[257] Floquet time crystals, Phys. Rev. Lett., Volume 117 (2016) https://link.aps.org/doi/10.1103/PhysRevLett.117.090402
[258] Equilibration and order in quantum Floquet matter, Nat. Phys., Volume 13 (2017) no. 5 | DOI
[259] Observation of discrete time-crystalline order in a disordered dipolar many-body system, Nature, Volume 543 (2017), p. 221 https://www.nature.com/nature/journal/v543/n7644/full/nature21426.html
Cited by Sources:
Comments - Policy