Comptes Rendus
Combinatorial approaches for the design of metallic alloys
Comptes Rendus. Physique, Volume 19 (2018) no. 8, pp. 737-754.

The design of new metallic alloys is faced with the challenge of an increasing complexity of the alloys composition, processing and resulting microstructures necessary to answer to multiple property targets, together with a requirement that the design stage be faster and less expensive. This paper shows that combinatorial methods, combining numerical and experimental approaches, can be applied to the specific requirements of alloy design and lead to improved understanding of fundamental processes of physical metallurgy, such as precipitation, together with improved alloy compositions and processing.

La conception de nouveaux alliages métalliques est confrontée au défi d'une complexité croissante de leur composition, du traitement et des microstructures résultantes nécessaires pour répondre à de multiples objectifs quant à leurs propriétés, ainsi qu'à l'exigence d'une étape de conception plus rapide et moins coûteuse. Cet article montre que les méthodes combinatoires, associant des approches numériques et expérimentales, peuvent être appliquées aux exigences spécifiques de la conception des alliages et conduire à une meilleure compréhension des processus fondamentaux de la métallurgie physique, tels que la précipitation, ainsi qu'à des compositions et des traitements d'alliages améliorés.

Published online:
DOI: 10.1016/j.crhy.2018.08.001
Keywords: Alloy design, Combinatorial approaches, High-throughput metallurgy
Mot clés : Conception d'alliages, Approches combinatoires, Métallurgie à haut débit

Alexis Deschamps 1; Franck Tancret 2; Imed-Eddine Benrabah 1; Frédéric De Geuser 1; Hugo P. Van Landeghem 1

1 Université Grenoble Alpes, CNRS, Grenoble INP, SIMaP, 38000 Grenoble, France
2 Université de Nantes, Institut des matériaux de Nantes Jean-Rouxel (IMN), CNRS UMR 6502, Polytech Nantes, rue Christian-Pauc, BP 50609, 44306 Nantes cedex 3, France
@article{CRPHYS_2018__19_8_737_0,
     author = {Alexis Deschamps and Franck Tancret and Imed-Eddine Benrabah and Fr\'ed\'eric De Geuser and Hugo P. Van Landeghem},
     title = {Combinatorial approaches for the design of metallic alloys},
     journal = {Comptes Rendus. Physique},
     pages = {737--754},
     publisher = {Elsevier},
     volume = {19},
     number = {8},
     year = {2018},
     doi = {10.1016/j.crhy.2018.08.001},
     language = {en},
}
TY  - JOUR
AU  - Alexis Deschamps
AU  - Franck Tancret
AU  - Imed-Eddine Benrabah
AU  - Frédéric De Geuser
AU  - Hugo P. Van Landeghem
TI  - Combinatorial approaches for the design of metallic alloys
JO  - Comptes Rendus. Physique
PY  - 2018
SP  - 737
EP  - 754
VL  - 19
IS  - 8
PB  - Elsevier
DO  - 10.1016/j.crhy.2018.08.001
LA  - en
ID  - CRPHYS_2018__19_8_737_0
ER  - 
%0 Journal Article
%A Alexis Deschamps
%A Franck Tancret
%A Imed-Eddine Benrabah
%A Frédéric De Geuser
%A Hugo P. Van Landeghem
%T Combinatorial approaches for the design of metallic alloys
%J Comptes Rendus. Physique
%D 2018
%P 737-754
%V 19
%N 8
%I Elsevier
%R 10.1016/j.crhy.2018.08.001
%G en
%F CRPHYS_2018__19_8_737_0
Alexis Deschamps; Franck Tancret; Imed-Eddine Benrabah; Frédéric De Geuser; Hugo P. Van Landeghem. Combinatorial approaches for the design of metallic alloys. Comptes Rendus. Physique, Volume 19 (2018) no. 8, pp. 737-754. doi : 10.1016/j.crhy.2018.08.001. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2018.08.001/

[1] R. Potyrailo; K. Rajan; K. Stoewe; I. Takeuchi; B. Chisholm; H. Lam Combinatorial and high-throughput screening of materials libraries: review of state of the art, ACS Comb. Sci., Volume 13 (2011), pp. 579-633 | DOI

[2] M.L. Green; I. Takeuchi; J.R. Hattrick-Simpers Applications of high throughput (combinatorial) methodologies to electronic, magnetic, optical, and energy-related materials, J. Appl. Phys., Volume 113 (2013) (UNSP 231101) | DOI

[3] G.B. Olson Genomic materials design: the ferrous frontier, Acta Mater., Volume 61 (2013), pp. 771-781 | DOI

[4] G.B. Olson; C.J. Kuehmann Materials genomics: from CALPHAD to flight, Scr. Mater., Volume 70 (2014), pp. 25-30 | DOI

[5] S. Curtarolo; W. Setyawan; G.L.W. Hart; M. Jahnatek; R.V. Chepulskii; R.H. Taylor; S. Wanga; J. Xue; K. Yang; O. Levy; M.J. Mehl; H.T. Stokes; D.O. Demchenko; D. Morgan AFLOW: an automatic framework for high-throughput materials discovery, Comput. Mater. Sci., Volume 58 (2012), pp. 218-226 | DOI

[6] S. Curtarolo; W. Setyawan; S. Wang; J. Xue; K. Yang; R.H. Taylor; L.J. Nelson; G.L.W. Hart; S. Sanvito; M. Buongiorno-Nardelli; N. Mingo; O. Levy AFLOWLIB.ORG: a distributed materials properties repository from high-throughput ab initio calculations, Comput. Mater. Sci., Volume 58 (2012), pp. 227-235 | DOI

[7] S. Curtarolo; G.L.W. Hart; M.B. Nardelli; N. Mingo; S. Sanvito; O. Levy The high-throughput highway to computational materials design, Nat. Mater., Volume 12 (2013), pp. 191-201 | DOI

[8] O.N. Senkov; J.D. Miller; D.B. Miracle; C. Woodward Accelerated exploration of multi-principal element alloys with solid solution phases, Nat. Commun., Volume 6 (2015), p. 6529 | DOI

[9] S. Kirkpatrick; C. Gelatt; M. Vecchi Optimization by simulated annealing, Science, Volume 220 (1983), pp. 671-680 | DOI

[10] J. Kennedy; R. Eberhart Particle swarm optimization, Proc. IEEE Int. Conf. Neural Netw., Institute of Electrical & Electronics Engineers, New York, USA, 1995, pp. 1942-1948

[11] X.-S. Yang; S. Deb Cuckoo search via Levey flights, Nabic, 2009 (A. Abraham; F. Herrera; A. Carvalho; V. Pai, eds.), IEEE, New York (2009), p. 210

[12] D. Goldberg Genetic Algorithms in Search, Optimization and Machine Learning, Addison-Wesley, Indianapolis, USA, 1989

[13] K. Deb; A. Pratap; S. Agarwal; T. Meyarivan A fast and elitist multiobjective genetic algorithm: NSGA-II, IEEE Trans. Evol. Comput., Volume 6 (2002), pp. 182-197 | DOI

[14] U.R. Kattner The thermodynamic modeling of multicomponent phase equilibria, J. Miner. Met. Mater. Soc., Volume 49 (1997), pp. 14-19 | DOI

[15] W. Xu; P.E.J. Rivera-Diaz-del-Castillo; S. van der Zwaag Designing nanoprecipitation strengthened UHS stainless steels combining genetic algorithms and thermodynamics, Comput. Mater. Sci., Volume 44 (2008), pp. 678-689 | DOI

[16] F. Tancret Computational thermodynamics and genetic algorithms to design affordable gamma′-strengthened nickel–iron based superalloys, Model. Simul. Mater. Sci. Eng., Volume 20 (2012) | DOI

[17] W. Xu; S. van der Zwaag Property and cost optimisation of novel UHS stainless steels via a genetic alloy design approach, ISIJ Int., Volume 51 (2011), pp. 1005-1010 | DOI

[18] H. Bhadeshia Neural networks in materials science, ISIJ Int., Volume 39 (1999), pp. 966-979 | DOI

[19] J.F. Pei; C.Z. Cai; X.J. Zhu; G.L. Wang Investigation on the processing-properties of hot deformed TA15 titanium alloy via support vector regression (E. Han; G.H. Lu; X.L. Shu, eds.), Mater. Model. Simul. Charact, Trans. Tech. Publications Ltd., Stafa-Zurich, 2011, pp. 134-143

[20] R. Jha; F. Pettersson; G.S. Dulikravich; H. Saxen; N. Chakraborti Evolutionary design of nickel-based superalloys using data-driven genetic algorithms and related strategies, Mater. Manuf. Process., Volume 30 (2015), pp. 488-510 | DOI

[21] C.A.L. Bailer-Jones; H. Bhadeshia; D.J.C. MacKay Gaussian process modelling of austenite formation in steel, Mater. Sci. Technol., Volume 15 (1999), pp. 287-294 | DOI

[22] F. Tancret; H. Bhadeshia; D.J.C. MacKay Comparison of artificial neural networks with Gaussian processes to model the yield strength of nickel-base superalloys, ISIJ Int., Volume 39 (1999), pp. 1020-1026 | DOI

[23] M. Mahfouf Optimal design of alloy steels using genetic algorithms, Adv. Comput. Intell. Learn. Methods Appl., Springer, 2002, pp. 425-436

[24] P. Das; S. Mukherjee; S. Ganguly; B.K. Bhattacharyay; S. Datta Genetic algorithm based optimization for multi-physical properties of HSLA steel through hybridization of neural network and desirability function, Comput. Mater. Sci., Volume 45 (2009), pp. 104-110 | DOI

[25] M. Mahfouf; M. Jamei; D.A. Linkens Optimal design of alloy steels using multiobjective genetic algorithms, Mater. Manuf. Process., Volume 20 (2005), pp. 553-567 | DOI

[26] R. Rettig; N.C. Ritter; H.E. Helmer; S. Neumeier; R.F. Singer Single-crystal nickel-based superalloys developed by numerical multi-criteria optimization techniques: design based on thermodynamic calculations and experimental validation, Model. Simul. Mater. Sci. Eng., Volume 23 (2015) | DOI

[27] F. Tancret Computational thermodynamics, Gaussian processes and genetic algorithms: combined tools to design new alloys, Model. Simul. Mater. Sci. Eng., Volume 21 (2013) | DOI

[28] E. Menou; G. Ramstein; E. Bertrand; F. Tancret Multi-objective constrained design of nickel-base superalloys using data mining- and thermodynamics-driven genetic algorithms, Model. Simul. Mater. Sci. Eng., Volume 24 (2016) | DOI

[29] E. Menou, Université de Nantes, France, 2016 (PhD Thesis)

[30] F. Tancret; C. Pineau; E. Menou; E. Bertrand; G. Ramstein; A. Devaux; C. Crozet Validation of a genetic algorithm alloy grade optimisation method: case study over superalloy AD730 composition span, Paris Fr. (2018)

[31] J.W. Yeh; S.K. Chen; S.J. Lin; J.Y. Gan; T.S. Chin; T.T. Shun; C.H. Tsau; S.Y. Chang Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes, Adv. Eng. Mater., Volume 6 (2004), pp. 299-303 | DOI

[32] D.B. Miracle; O.N. Senkov A critical review of high entropy alloys and related concepts, Acta Mater., Volume 122 (2017), pp. 448-511 | DOI

[33] I. Toda-Caraballo; P.E.J. Rivera-Diaz-del-Castillo Modelling solid solution hardening in high entropy alloys, Acta Mater., Volume 85 (2015), pp. 14-23 | DOI

[34] I. Toda-Caraballo; P.E.J. Rivera-Diaz-del-Castillo A criterion for the formation of high entropy alloys based on lattice distortion, Intermetallics, Volume 71 (2016), pp. 76-87 | DOI

[35] F. Tancret; I. Toda-Caraballo; E. Menou; P.E.J. Rivera Díaz-Del-Castillo Designing high entropy alloys employing thermodynamics and Gaussian process statistical analysis, Mater. Des., Volume 115 (2017), pp. 486-497 | DOI

[36] E. Menou; I. Toda-Caraballo; P.E.J. Rivera-Diaz-del-Castillo; C. Pineau; E. Bertrand; G. Ramstein; F. Tancret Evolutionary design of strong and stable high entropy alloys using multi-objective optimisation based on physical models, statistics and thermodynamics, Mater. Des., Volume 143 (2018), pp. 185-195 | DOI

[37] A. Agrawal; A. Choudhary Perspective: materials informatics and big data: realization of the “fourth paradigm” of science in materials science, APL Mater., Volume 4 (2016) | DOI

[38] H. Springer; D. Raabe Rapid alloy prototyping: compositional and thermo-mechanical high throughput bulk combinatorial design of structural materials based on the example of 30Mn-1.2C-xAl triplex steels, Acta Mater., Volume 60 (2012), pp. 4950-4959 | DOI

[39] H. Springer; M. Beide; D. Raabe Bulk combinatorial design of ductile martensitic stainless steels through confined martensite-to-austenite reversion, Mater. Sci. Eng. A, Struct. Mater.: Prop. Microstruct. Process., Volume 582 (2013), pp. 235-244 | DOI

[40] T. Gebhardt; D. Music; T. Takahashi; J.M. Schneider Combinatorial thin film materials science: from alloy discovery and optimization to alloy design, Thin Solid Films, Volume 520 (2012), pp. 5491-5499 | DOI

[41] S. Vives; P. Bellanger; S. Gorsse; C. Wei; Q. Zhang; J.-C. Zhao Combinatorial approach based on interdiffusion experiments for the design of thermoelectrics: application to the Mg–2(Si, Sn) alloys, Chem. Mater., Volume 26 (2014), pp. 4334-4337 | DOI

[42] S. Ding; Y. Liu; Y. Li; Z. Liu; S. Sohn; F.J. Walker; J. Schroers Combinatorial development of bulk metallic glasses, Nat. Mater., Volume 13 (2014), pp. 494-500 | DOI

[43] S. Hamann; M.E. Gruner; S. Irsen; J. Buschbeck; C. Bechtold; I. Kock; S.G. Mayr; A. Savan; S. Thienhaus; E. Quandt; S. Faehler; P. Entel; A. Ludwig The ferromagnetic shape memory system Fe–Pd–Cu, Acta Mater., Volume 58 (2010), pp. 5949-5961 | DOI

[44] C. Hutchinson A novel experimental approach to identifying kinetic transitions in solid state phase transformations, Scr. Mater., Volume 50 (2004), pp. 285-290 | DOI

[45] C.W. Sinclair; C.R. Hutchinson; Y. Brechet The effect of nb on the recrystallization and grain growth of ultra-high-purity alpha-Fe: a combinatorial approach, Metall. Mater. Trans. A, Phys. Metall. Mater. Sci., Volume 38A (2007), pp. 821-830 | DOI

[46] E. Contreras-Piedras; H.J. Dorantes-Rosales; V.M. Lopez-Hirata; F. Hernandez Santiago; J.L. Gonzalez-Velazquez; F.I. Lopez-Monrroy Analysis of precipitation in Fe-rich Fe–Ni–Al alloys by diffusion couples, Mater. Sci. Eng. A, Struct. Mater.: Prop. Microstruct. Process., Volume 558 (2012), pp. 366-370 | DOI

[47] T. Miyazaki Development of “Macroscopic Composition Gradient Method” and its application to the phase transformation, Prog. Mater. Sci., Volume 57 (2012), pp. 1010-1060 | DOI

[48] R.K.W. Marceau; C. Qiu; S.P. Ringer; C.R. Hutchinson A study of the composition dependence of the rapid hardening phenomenon in Al–Cu–Mg alloys using diffusion couples, Mater. Sci. Eng. A, Struct. Mater.: Prop. Microstruct. Process., Volume 546 (2012), pp. 153-161 | DOI

[49] E. Gumbmann; F. De Geuser; A. Deschamps; W. Lefebvre; F. Robaut; C. Sigli A combinatorial approach for studying the effect of Mg concentration on precipitation in an Al–Cu–Li alloy, Scr. Mater., Volume 110 (2016), pp. 44-47 | DOI

[50] T. Dorin; A. Deschamps; F. De Geuser; C. Sigli Quantification and modelling of the microstructure/strength relationship by tailoring the morphological parameters of the T1 phase in an Al–Cu–Li alloy, Acta Mater., Volume 75 (2014), pp. 134-146 | DOI

[51] L. Couturier; A. Deschamps; F. De Geuser; F. Fazeli; W.J. Poole An investigation of the strain dependence of dynamic precipitation in an Al–Zn–Mg–Cu alloy, Scr. Mater., Volume 136 (2017), pp. 120-123 | DOI

[52] J.M. Gregoire; D.G. Van Campen; C.E. Miller; R.J.R. Jones; S.K. Suram; A. Mehta High-throughput synchrotron X-ray diffraction for combinatorial phase mapping, J. Synchrotron Radiat., Volume 21 (2014), pp. 1262-1268 | DOI

[53] Z. Xiong; Y. He; J.R. Hattrick-Simpers; J. Hu Automated phase segmentation for large-scale X-ray diffraction data using a graph-based phase segmentation (GPhase) algorithm, ACS Comb. Sci., Volume 19 (2017), pp. 137-144 | DOI

[54] F. Ren; R. Pandolfi; D. Van Campen; A. Hexemer; A. Mehta On-the-fly data assessment for high-throughput X-ray diffraction measurements, ACS Comb. Sci., Volume 19 (2017), pp. 377-385 | DOI

[55] V.A. Esin; B. Denand; Q. Le Bihan; M. Dehmas; J. Teixeira; G. Geandier; S. Denis; T. Sourmail; E. Aeby-Gautier In situ synchrotron X-ray diffraction and dilatometric study of austenite formation in a multi-component steel: influence of initial microstructure and heating rate, Acta Mater., Volume 80 (2014), pp. 118-131 | DOI

[56] F. De Geuser; A. Deschamps Precipitate characterisation in metallic systems by small-angle X-ray or neutron scattering, C. R. Physique, Volume 13 (2012), pp. 246-256 | DOI

[57] X. Boulnat; N. Sallez; M. Dade; A. Borbely; J.-L. Bechade; Y. de Carlan; J. Malaplate; Y. Brechet; F. de Geuser; A. Deschamps; P. Donnadieu; D. Fabregue; M. Perez Influence of oxide volume fraction on abnormal growth of nanostructured ferritic steels during non-isothermal treatments: an in situ study, Acta Mater., Volume 97 (2015), pp. 124-130 | DOI

[58] R. Ivanov; A. Deschamps; F. De Geuser High throughput evaluation of the effect of Mg concentration on natural ageing of Al–Cu–Li–(Mg) alloys, Scr. Mater., Volume 150 (2018), pp. 156-159 | DOI

[59] F. De Geuser; M.J. Styles; C.R. Hutchinson; A. Deschamps High-throughput in-situ characterization and modeling of precipitation kinetics in compositionally graded alloys, Acta Mater., Volume 101 (2015), pp. 1-9 | DOI

[60] M. Perez; M. Dumont; D. Acevedo-Reyes Implementation of classical nucleation and growth theories for precipitation, Acta Mater., Volume 56 (2008), pp. 2119-2132

Cited by Sources:

Comments - Policy