The design of new metallic alloys is faced with the challenge of an increasing complexity of the alloys composition, processing and resulting microstructures necessary to answer to multiple property targets, together with a requirement that the design stage be faster and less expensive. This paper shows that combinatorial methods, combining numerical and experimental approaches, can be applied to the specific requirements of alloy design and lead to improved understanding of fundamental processes of physical metallurgy, such as precipitation, together with improved alloy compositions and processing.
La conception de nouveaux alliages métalliques est confrontée au défi d'une complexité croissante de leur composition, du traitement et des microstructures résultantes nécessaires pour répondre à de multiples objectifs quant à leurs propriétés, ainsi qu'à l'exigence d'une étape de conception plus rapide et moins coûteuse. Cet article montre que les méthodes combinatoires, associant des approches numériques et expérimentales, peuvent être appliquées aux exigences spécifiques de la conception des alliages et conduire à une meilleure compréhension des processus fondamentaux de la métallurgie physique, tels que la précipitation, ainsi qu'à des compositions et des traitements d'alliages améliorés.
Mot clés : Conception d'alliages, Approches combinatoires, Métallurgie à haut débit
Alexis Deschamps 1; Franck Tancret 2; Imed-Eddine Benrabah 1; Frédéric De Geuser 1; Hugo P. Van Landeghem 1
@article{CRPHYS_2018__19_8_737_0, author = {Alexis Deschamps and Franck Tancret and Imed-Eddine Benrabah and Fr\'ed\'eric De Geuser and Hugo P. Van Landeghem}, title = {Combinatorial approaches for the design of metallic alloys}, journal = {Comptes Rendus. Physique}, pages = {737--754}, publisher = {Elsevier}, volume = {19}, number = {8}, year = {2018}, doi = {10.1016/j.crhy.2018.08.001}, language = {en}, }
TY - JOUR AU - Alexis Deschamps AU - Franck Tancret AU - Imed-Eddine Benrabah AU - Frédéric De Geuser AU - Hugo P. Van Landeghem TI - Combinatorial approaches for the design of metallic alloys JO - Comptes Rendus. Physique PY - 2018 SP - 737 EP - 754 VL - 19 IS - 8 PB - Elsevier DO - 10.1016/j.crhy.2018.08.001 LA - en ID - CRPHYS_2018__19_8_737_0 ER -
%0 Journal Article %A Alexis Deschamps %A Franck Tancret %A Imed-Eddine Benrabah %A Frédéric De Geuser %A Hugo P. Van Landeghem %T Combinatorial approaches for the design of metallic alloys %J Comptes Rendus. Physique %D 2018 %P 737-754 %V 19 %N 8 %I Elsevier %R 10.1016/j.crhy.2018.08.001 %G en %F CRPHYS_2018__19_8_737_0
Alexis Deschamps; Franck Tancret; Imed-Eddine Benrabah; Frédéric De Geuser; Hugo P. Van Landeghem. Combinatorial approaches for the design of metallic alloys. Comptes Rendus. Physique, Volume 19 (2018) no. 8, pp. 737-754. doi : 10.1016/j.crhy.2018.08.001. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2018.08.001/
[1] Combinatorial and high-throughput screening of materials libraries: review of state of the art, ACS Comb. Sci., Volume 13 (2011), pp. 579-633 | DOI
[2] Applications of high throughput (combinatorial) methodologies to electronic, magnetic, optical, and energy-related materials, J. Appl. Phys., Volume 113 (2013) (UNSP 231101) | DOI
[3] Genomic materials design: the ferrous frontier, Acta Mater., Volume 61 (2013), pp. 771-781 | DOI
[4] Materials genomics: from CALPHAD to flight, Scr. Mater., Volume 70 (2014), pp. 25-30 | DOI
[5] AFLOW: an automatic framework for high-throughput materials discovery, Comput. Mater. Sci., Volume 58 (2012), pp. 218-226 | DOI
[6] AFLOWLIB.ORG: a distributed materials properties repository from high-throughput ab initio calculations, Comput. Mater. Sci., Volume 58 (2012), pp. 227-235 | DOI
[7] The high-throughput highway to computational materials design, Nat. Mater., Volume 12 (2013), pp. 191-201 | DOI
[8] Accelerated exploration of multi-principal element alloys with solid solution phases, Nat. Commun., Volume 6 (2015), p. 6529 | DOI
[9] Optimization by simulated annealing, Science, Volume 220 (1983), pp. 671-680 | DOI
[10] Particle swarm optimization, Proc. IEEE Int. Conf. Neural Netw., Institute of Electrical & Electronics Engineers, New York, USA, 1995, pp. 1942-1948
[11] Cuckoo search via Levey flights, Nabic, 2009 (A. Abraham; F. Herrera; A. Carvalho; V. Pai, eds.), IEEE, New York (2009), p. 210
[12] Genetic Algorithms in Search, Optimization and Machine Learning, Addison-Wesley, Indianapolis, USA, 1989
[13] A fast and elitist multiobjective genetic algorithm: NSGA-II, IEEE Trans. Evol. Comput., Volume 6 (2002), pp. 182-197 | DOI
[14] The thermodynamic modeling of multicomponent phase equilibria, J. Miner. Met. Mater. Soc., Volume 49 (1997), pp. 14-19 | DOI
[15] Designing nanoprecipitation strengthened UHS stainless steels combining genetic algorithms and thermodynamics, Comput. Mater. Sci., Volume 44 (2008), pp. 678-689 | DOI
[16] Computational thermodynamics and genetic algorithms to design affordable gamma′-strengthened nickel–iron based superalloys, Model. Simul. Mater. Sci. Eng., Volume 20 (2012) | DOI
[17] Property and cost optimisation of novel UHS stainless steels via a genetic alloy design approach, ISIJ Int., Volume 51 (2011), pp. 1005-1010 | DOI
[18] Neural networks in materials science, ISIJ Int., Volume 39 (1999), pp. 966-979 | DOI
[19] Investigation on the processing-properties of hot deformed TA15 titanium alloy via support vector regression (E. Han; G.H. Lu; X.L. Shu, eds.), Mater. Model. Simul. Charact, Trans. Tech. Publications Ltd., Stafa-Zurich, 2011, pp. 134-143
[20] Evolutionary design of nickel-based superalloys using data-driven genetic algorithms and related strategies, Mater. Manuf. Process., Volume 30 (2015), pp. 488-510 | DOI
[21] Gaussian process modelling of austenite formation in steel, Mater. Sci. Technol., Volume 15 (1999), pp. 287-294 | DOI
[22] Comparison of artificial neural networks with Gaussian processes to model the yield strength of nickel-base superalloys, ISIJ Int., Volume 39 (1999), pp. 1020-1026 | DOI
[23] Optimal design of alloy steels using genetic algorithms, Adv. Comput. Intell. Learn. Methods Appl., Springer, 2002, pp. 425-436
[24] Genetic algorithm based optimization for multi-physical properties of HSLA steel through hybridization of neural network and desirability function, Comput. Mater. Sci., Volume 45 (2009), pp. 104-110 | DOI
[25] Optimal design of alloy steels using multiobjective genetic algorithms, Mater. Manuf. Process., Volume 20 (2005), pp. 553-567 | DOI
[26] Single-crystal nickel-based superalloys developed by numerical multi-criteria optimization techniques: design based on thermodynamic calculations and experimental validation, Model. Simul. Mater. Sci. Eng., Volume 23 (2015) | DOI
[27] Computational thermodynamics, Gaussian processes and genetic algorithms: combined tools to design new alloys, Model. Simul. Mater. Sci. Eng., Volume 21 (2013) | DOI
[28] Multi-objective constrained design of nickel-base superalloys using data mining- and thermodynamics-driven genetic algorithms, Model. Simul. Mater. Sci. Eng., Volume 24 (2016) | DOI
[29]
, Université de Nantes, France, 2016 (PhD Thesis)[30] Validation of a genetic algorithm alloy grade optimisation method: case study over superalloy AD730 composition span, Paris Fr. (2018)
[31] Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes, Adv. Eng. Mater., Volume 6 (2004), pp. 299-303 | DOI
[32] A critical review of high entropy alloys and related concepts, Acta Mater., Volume 122 (2017), pp. 448-511 | DOI
[33] Modelling solid solution hardening in high entropy alloys, Acta Mater., Volume 85 (2015), pp. 14-23 | DOI
[34] A criterion for the formation of high entropy alloys based on lattice distortion, Intermetallics, Volume 71 (2016), pp. 76-87 | DOI
[35] Designing high entropy alloys employing thermodynamics and Gaussian process statistical analysis, Mater. Des., Volume 115 (2017), pp. 486-497 | DOI
[36] Evolutionary design of strong and stable high entropy alloys using multi-objective optimisation based on physical models, statistics and thermodynamics, Mater. Des., Volume 143 (2018), pp. 185-195 | DOI
[37] Perspective: materials informatics and big data: realization of the “fourth paradigm” of science in materials science, APL Mater., Volume 4 (2016) | DOI
[38] Rapid alloy prototyping: compositional and thermo-mechanical high throughput bulk combinatorial design of structural materials based on the example of 30Mn-1.2C-xAl triplex steels, Acta Mater., Volume 60 (2012), pp. 4950-4959 | DOI
[39] Bulk combinatorial design of ductile martensitic stainless steels through confined martensite-to-austenite reversion, Mater. Sci. Eng. A, Struct. Mater.: Prop. Microstruct. Process., Volume 582 (2013), pp. 235-244 | DOI
[40] Combinatorial thin film materials science: from alloy discovery and optimization to alloy design, Thin Solid Films, Volume 520 (2012), pp. 5491-5499 | DOI
[41] Combinatorial approach based on interdiffusion experiments for the design of thermoelectrics: application to the Mg–2(Si, Sn) alloys, Chem. Mater., Volume 26 (2014), pp. 4334-4337 | DOI
[42] Combinatorial development of bulk metallic glasses, Nat. Mater., Volume 13 (2014), pp. 494-500 | DOI
[43] The ferromagnetic shape memory system Fe–Pd–Cu, Acta Mater., Volume 58 (2010), pp. 5949-5961 | DOI
[44] A novel experimental approach to identifying kinetic transitions in solid state phase transformations, Scr. Mater., Volume 50 (2004), pp. 285-290 | DOI
[45] The effect of nb on the recrystallization and grain growth of ultra-high-purity alpha-Fe: a combinatorial approach, Metall. Mater. Trans. A, Phys. Metall. Mater. Sci., Volume 38A (2007), pp. 821-830 | DOI
[46] Analysis of precipitation in Fe-rich Fe–Ni–Al alloys by diffusion couples, Mater. Sci. Eng. A, Struct. Mater.: Prop. Microstruct. Process., Volume 558 (2012), pp. 366-370 | DOI
[47] Development of “Macroscopic Composition Gradient Method” and its application to the phase transformation, Prog. Mater. Sci., Volume 57 (2012), pp. 1010-1060 | DOI
[48] A study of the composition dependence of the rapid hardening phenomenon in Al–Cu–Mg alloys using diffusion couples, Mater. Sci. Eng. A, Struct. Mater.: Prop. Microstruct. Process., Volume 546 (2012), pp. 153-161 | DOI
[49] A combinatorial approach for studying the effect of Mg concentration on precipitation in an Al–Cu–Li alloy, Scr. Mater., Volume 110 (2016), pp. 44-47 | DOI
[50] Quantification and modelling of the microstructure/strength relationship by tailoring the morphological parameters of the T1 phase in an Al–Cu–Li alloy, Acta Mater., Volume 75 (2014), pp. 134-146 | DOI
[51] An investigation of the strain dependence of dynamic precipitation in an Al–Zn–Mg–Cu alloy, Scr. Mater., Volume 136 (2017), pp. 120-123 | DOI
[52] High-throughput synchrotron X-ray diffraction for combinatorial phase mapping, J. Synchrotron Radiat., Volume 21 (2014), pp. 1262-1268 | DOI
[53] Automated phase segmentation for large-scale X-ray diffraction data using a graph-based phase segmentation (GPhase) algorithm, ACS Comb. Sci., Volume 19 (2017), pp. 137-144 | DOI
[54] On-the-fly data assessment for high-throughput X-ray diffraction measurements, ACS Comb. Sci., Volume 19 (2017), pp. 377-385 | DOI
[55] In situ synchrotron X-ray diffraction and dilatometric study of austenite formation in a multi-component steel: influence of initial microstructure and heating rate, Acta Mater., Volume 80 (2014), pp. 118-131 | DOI
[56] Precipitate characterisation in metallic systems by small-angle X-ray or neutron scattering, C. R. Physique, Volume 13 (2012), pp. 246-256 | DOI
[57] Influence of oxide volume fraction on abnormal growth of nanostructured ferritic steels during non-isothermal treatments: an in situ study, Acta Mater., Volume 97 (2015), pp. 124-130 | DOI
[58] High throughput evaluation of the effect of Mg concentration on natural ageing of Al–Cu–Li–(Mg) alloys, Scr. Mater., Volume 150 (2018), pp. 156-159 | DOI
[59] High-throughput in-situ characterization and modeling of precipitation kinetics in compositionally graded alloys, Acta Mater., Volume 101 (2015), pp. 1-9 | DOI
[60] Implementation of classical nucleation and growth theories for precipitation, Acta Mater., Volume 56 (2008), pp. 2119-2132
Cited by Sources:
Comments - Policy