Comptes Rendus
Emerging processes for metallurgical coatings and thin films
[Procédés émergents de revêtements métallurgiques et de films minces]
Comptes Rendus. Physique, Volume 19 (2018) no. 8, pp. 755-768.

L'innovation dans les procédés de dépôt de couches minces ou épaisses et la projection thermique repose principalement sur les évolutions de leurs versions précédentes. Cinq études de cas de procédés émergents d'élaboration de revêtements métallurgiques avec leurs applications sont proposées. Les développements des procédés sont détaillés dans un contexte d'amélioration de la durée de vie de composants exposés à des milieux agressifs. Ainsi, des revêtements aux propriétés exceptionnelles sont obtenus par des procédés de dépôt physique en phase vapeur (PVD) grâce à des sources de vapeur métallique fortement ionisée. Les propriétés des couches sont contrôlables par exemple en HiPIMS (pulvérisation magnétron par impulsions de forte puissance) via l'énergie moyenne des ions métalliques. Alors que les techniques PVD sont plutôt directives, les procédés de dépôt chimique en phase vapeur (CVD) parviennent à revêtir uniformément des formes complexes. L'utilisation en DLI-MOCVD (Direct Liquid Injection – MetalOrganic CVD) de précurseurs soigneusement sélectionnés au sein de la chimie organométallique permet de traiter efficacement des substrats thermosensibles pour élargir le domaine d'application de ces revêtements. Le troisième exemple de technologie émergente est la projection plasma de suspensions. Ces dernières contenant des nanoparticules, leur projection mène à la croissance de structures inhabituelles et à des revêtements à porosité multiple. La projection à froid utilise quant à elle des poudres métalliques avec des granulométries supérieures. Celles-ci ne subissant pas de transformations pendant leur projection, des matériaux denses et de haute pureté sont déposés avec des propriétés comparables à celles de matériaux corroyés. Alors que la projection à froid convient aux métaux ductiles, les revêtements laser peuvent être appliqués aux céramiques, polymères et bien sûr aux métaux. Cette technologie est essentielle pour une ingénierie métallurgique avancée et le développement de nouveaux alliages en raison de sa capacité à produire des matériaux à gradient et à utiliser la synthèse combinatoire.

Innovation in thin-film deposition processes, thermal spraying and cladding technologies mostly rely on evolutions of their previous iteration. Along with other examples, five case studies of emerging elaboration processes for metallurgical coatings are described coupled with their applications. In the frame of the lifetime extension of components exposed to aggressive media or their functionalization, this article depicts all the developments of the detailed processes. Physical vapor deposition (PVD) of coatings with exceptional properties is possible thanks to sources generating highly ionized metallic vapors. The control of the average energy per incident species and particularly metallic ions strongly influences the characteristics of the deposited layer obtained, for example, with HiPIMS (High Power Impulse Magnetron Sputtering). While PVD techniques are mainly directive regarding the growth of the coating, chemical vapor deposition (CVD) processes manage to homogeneously coat complex 3D shapes. The use of specific precursors in DLI–MOCVD (Direct Liquid Injection – MetalOrganic CVD), carefully selected from the whole metalorganic chemistry, allows one to efficiently treat heat-sensitive substrates and broadens their application range. The third detailed example of emerging technology is suspension plasma spraying (SPS). Projection of various solutions containing nanoparticles leads to the growth of unusual morphologies and microstructures and to the generation of porous coatings with multi-scaled porosity. On the other hand, cold-spray uses metallic powders with higher granulometry and does not modify them during the deposition process. As a result, high-purity and dense materials are deposited with properties similar to those of wrought materials. Whereas cold-spray is suitable only for ductile metals, laser cladding can be applied to ceramics, polymers and of course metals. Laser cladding is a key technology for advanced metallurgical engineering and alloy development due to its capability for functionally graded materials production and combinatorial synthesis.

Publié le :
DOI : 10.1016/j.crhy.2018.10.005
Keywords: Magnetron sputtering, Chemical vapor deposition, Spraying, Laser cladding
Mot clés : Pulvérisation magnétron, Dépôt chimique, Projection, Rechargement laser
Alain Billard 1 ; Francis Maury 2 ; Pascal Aubry 3 ; Fanny Balbaud-Célérier 3 ; Benjamin Bernard 4 ; Fernando Lomello 3 ; Hicham Maskrot 3 ; Erick Meillot 4 ; Alexandre Michau 3 ; Frédéric Schuster 5

1 FEMTO-ST Institute (UMR CNRS 6174), Université Bourgogne – Franche-Comté, UTBM, 2, place Lucien-Tharradin, 25200 Montbéliard cedex, France
2 CIRIMAT, CNRS/INPT/UPS, 4, allée Émile-Monso, 31030 Toulouse, France
3 DEN – Service d'études analytiques et de réactivité des surfaces, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
4 DAM – Département des matériaux, CEA Le Ripault, 37260 Monts, France
5 Cross-Cutting program on Materials and Processes Skills, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
@article{CRPHYS_2018__19_8_755_0,
     author = {Alain Billard and Francis Maury and Pascal Aubry and Fanny Balbaud-C\'el\'erier and Benjamin Bernard and Fernando Lomello and Hicham Maskrot and Erick Meillot and Alexandre Michau and Fr\'ed\'eric Schuster},
     title = {Emerging processes for metallurgical coatings and thin films},
     journal = {Comptes Rendus. Physique},
     pages = {755--768},
     publisher = {Elsevier},
     volume = {19},
     number = {8},
     year = {2018},
     doi = {10.1016/j.crhy.2018.10.005},
     language = {en},
}
TY  - JOUR
AU  - Alain Billard
AU  - Francis Maury
AU  - Pascal Aubry
AU  - Fanny Balbaud-Célérier
AU  - Benjamin Bernard
AU  - Fernando Lomello
AU  - Hicham Maskrot
AU  - Erick Meillot
AU  - Alexandre Michau
AU  - Frédéric Schuster
TI  - Emerging processes for metallurgical coatings and thin films
JO  - Comptes Rendus. Physique
PY  - 2018
SP  - 755
EP  - 768
VL  - 19
IS  - 8
PB  - Elsevier
DO  - 10.1016/j.crhy.2018.10.005
LA  - en
ID  - CRPHYS_2018__19_8_755_0
ER  - 
%0 Journal Article
%A Alain Billard
%A Francis Maury
%A Pascal Aubry
%A Fanny Balbaud-Célérier
%A Benjamin Bernard
%A Fernando Lomello
%A Hicham Maskrot
%A Erick Meillot
%A Alexandre Michau
%A Frédéric Schuster
%T Emerging processes for metallurgical coatings and thin films
%J Comptes Rendus. Physique
%D 2018
%P 755-768
%V 19
%N 8
%I Elsevier
%R 10.1016/j.crhy.2018.10.005
%G en
%F CRPHYS_2018__19_8_755_0
Alain Billard; Francis Maury; Pascal Aubry; Fanny Balbaud-Célérier; Benjamin Bernard; Fernando Lomello; Hicham Maskrot; Erick Meillot; Alexandre Michau; Frédéric Schuster. Emerging processes for metallurgical coatings and thin films. Comptes Rendus. Physique, Volume 19 (2018) no. 8, pp. 755-768. doi : 10.1016/j.crhy.2018.10.005. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2018.10.005/

[1] O. Metko An introduction to thermal spray, July 2016 https://www.oerlikon.com/ecomaXL/files/metco/oerlikon_BRO-0005.6_Thermal_Spray_Brochure_EN.pdf

[2] P. Sigmund Theory of sputtering. I. Sputtering yield of amorphous and polycrystalline targets, Phys. Rev., Volume 184 (1969), pp. 384-416

[3] W.M. Posadowski; Z. Radzimski Sustained self-sputtering using a direct current magnetron source, J. Vac. Sci. Technol. A, Volume 11 (1993), pp. 2980-2984

[4] V. Kouznetsov; K. Macák; J.M. Schneider; U. Helmersson; I. Petrov A novel pulsed magnetron sputter technique utilizing very high target power densities, Surf. Coat. Technol., Volume 122 (1999), pp. 290-293

[5] A. Anders A structure zone diagram including plasma-based deposition and ion etching, Thin Solid Films, Volume 518 (2010), pp. 4087-4090

[6] Nuclear fuel claddings, production method thereof and uses of same against oxidation/hydriding, US Patent Application US20170287578A1, 2014.

[7] J. Bischoff; C. Delafoy; C. Vauglin; P. Barberis; C. Roubeyrie; D. Perche; D. Duthoo; F. Schuster; J.C. Brachet; E.W. Schweitzer; K. Nimishakavi AREVA NP's enhanced accident-tolerant fuel developments: focus on Cr-coated M5 cladding, Nucl. Eng. Technol., Volume 50 (2018), pp. 223-228

[8] Framatome: the next evolution of nuclear fuel website https://nextevolutionfuel.com/

[9] J.-C. Brachet; M. Le Saux; M. Le Flem; S. Urvoy; E. Rouesne; T. Guilbert; C. Cobac; F. Lahogue; J. Rousselot; M. Tupin; P. Billaud; C. Hossepied; F. Schuster; F. Lomello; A. Billard; G. Velisa; E. Monsifrot; J. Bischoff; A. Amabard On-going studies at CEA on chromium coated zirconium based nuclear fuel claddings for enhanced accident tolerant LWRs fuel, Proceedings of TopFuel 2015, European Nuclear Society, Zurich, Switzerland, 2015, pp. 13-19

[10] A. Ferrec Dépôt et caractérisation de métaux et de nitrures à base de chrome par pulvérisation magnétron pulsée (HiPIMS), Université de Nantes, Nantes, 2013 (Ph. D. Thesis)

[11] J.-C. Brachet; M. Le Saux; V. Lezaud-Chaillioux; M. Dumerval; Q. Houmaire; F. Lomello; F. Schuster; E. Monsifrot; J. Bischoff; E. Pouillier Behavior under LOCA conditions of enhanced accident tolerant chromium coated zircaloy-4 claddings, Boise, ID, USA (2016)

[12] M. Arab pour Yazdi; F. Lomello; J. Wang; F. Sanchette; Z. Dong; T. White; Y. Wouters; F. Schuster; A. Billard Properties of TiSiN coatings deposited by hybrid HiPIMS and pulsed-DC magnetron co-sputtering, Vacuum, Volume 109 (2014), pp. 43-51

[13] M. Loyer-Prost; C. Cabet; M. Sall; A. Billard; P.H. Jouneau; H. Khodja Radiation tolerance of Cr–Ta multilayer coatings, Montpellier, France (2016)

[14] H. Rueß; M. to Baben; S. Mráz; L. Shang; P. Polcik; S. Kolozsvári; M. Hans; D. Primetzhofer; J.M. Schneider HPPMS deposition from composite targets: effect of two orders of magnitude target power density changes on the composition sputtered Cr–Al–C thin films, Vacuum, Volume 145 (2017), pp. 285-289

[15] D. Eicher; A. Schlieter; C. Leyens; S. Shang; S. Shayestehaminzadeh; J.M. Schneider Solid particle erosion behavior of nanolamiated Cr2AlC films, Wear, Volume 402–403 (2018), pp. 187-195

[16] M. Ougier; F. Lomello; F. Schuster; A. Michau; E. Monsifrot; M. Schlegel Deposition and characterization of Cr–Al–C thin films for accidents tolerant zircalloy claddings, Garmisch-Partenkirchen, Germany (2018)

[17] K.S. Chang; K.T. Chen; C.Y. Hsu; P.D. Hong Growth (AlCrNbSiTiV)N thin films on the interrupted turning and properties using DCMS and HiPIMS system, Appl. Surf. Sci., Volume 440 (2018), pp. 1-7

[18] P.W. May Diamond thin films: a 21st-century material, Philos. Trans. R. Soc. Lond. A, Volume 358 (2000), pp. 473-495

[19] M. Suzuki; Y. Tanaka; Y. Inoue; N. Myamoto; M. Sato; K. Goda Uniformization of boron nitride coating thickness by continuous chemical vapor deposition process for interphase of sic/sic composites, J. Ceram. Soc. Jpn., Volume 111 (2003), pp. 865-871

[20] E.S. Polsen; D.Q. McNerny; B. Viswanath; S.W. Pattinson; A.J. Hart High-speed roll-to-roll manufacturing of graphene using a concentric tube CVD reactor, Sci. Rep., Volume 5 (2015) | DOI

[21] R.E.I. Schropp Industrialization of hot wire chemical vapor deposition for thin film applications, Thin Solid Films, Volume 595 (2015), pp. 272-283

[22] H. Mosebach; V. Hopfe; M. Erhard; M. Meyer Monitoring of SiC deposition in an industrial CVI/CVD reactor by in-situ FTIR spectroscopy, J. Phys. IV, Colloq. C, Volume 5 (1995) no. 5, pp. 97-104

[23] R.L. Ives; C.J. Oldham; J.S. Daubert; A.P. Gremaud; G. Collins; D. Marsden; T. Bui; M.A. Fusco; B. Mitsdarffer; G.N. Parsons Corrosion mitigation coatings for rf sources and components, IEEE Trans. Electron Devices (2018), pp. 1-8 | DOI

[24] F. Weiss; J. Lindner; J.-P. Sénateur; C. Dubourdieu; V. Galindo Injection MOCVD: ferroelectric thin films and functional oxide superlattices, Surf. Coat. Technol., Volume 133–134 (2000), pp. 191-197

[25] A. Douard; C. Bernard; F. Maury Thermodynamic simulation of atmospheric DLI-CVD processes for the growth of chromium based hard coatings using bis(benzene)chromium as molecular source, Surf. Coat. Technol., Volume 203 (2008), pp. 516-520

[26] F. Maury; A. Douard; S. Delclos; D. Samelor; C. Tendero Multilayer chromium based coatings grown by atmospheric pressure direct liquid injection CVD, Surf. Coat. Technol., Volume 204 (2009) no. 6–7, pp. 983-987

[27] A. Michau; F. Maury; F. Schuster; R. Boichot; M. Pons Evidence for a Cr metastable phase as a tracer in DLI–MOCVD chromium hard coatings usable in high temperature environment, Appl. Surf. Sci., Volume 422 (2017), pp. 198-206 | DOI

[28] G. Boisselier; F. Maury; F. Schuster SiC coatings grown by liquid injection chemical vapor deposition using single source metalorganic precursors, Surf. Coat. Technol., Volume 215 (2013), pp. 152-160

[29] A. Michau; F. Maury; F. Schuster; R. Boichot; M. Pons; E. Monsifrot Chromium carbide growth at low temperature by a highly efficient DLI–MOCVD process in effluent recycling mode, Surf. Coat. Technol., Volume 332 (2017), pp. 96-104 | DOI

[30] A. Michau; F. Maury; F. Schuster; I. Nuta; Y. Gazal; R. Boichot; M. Pons Chromium carbide growth by direct liquid injection chemical vapor deposition in long and narrow tubes, experiments, modeling and simulation, Coatings, Volume 8 (2018) | DOI

[31] E.C. Young; B.P. Yonkee; F. Wu; S. Ho Oh; S.P. DenBaars; S. Nakamura; J.S. Speck Hybrid tunnel junction contacts to III-nitride light-emitting diodes, Appl. Phys. Express, Volume 9 (2016) | DOI

[32] M. Aoukar; P.D. Szkutnik; D. Jourde; B. Pelissier; P. Michallon; P. Noé; C. Vallée Control of carbon content in amorphous GeTe films deposited by plasma enhanced chemical vapor deposition (PE-MOCVD) for phase change memory applications, J. Phys. D, Appl. Phys., Volume 48 (2015) | DOI

[33] S.K. Selvaraj; G. Jursich; C.G. Takoudis Design and implementation of a novel portable atomic layer deposition/chemical vapor deposition hybrid reactor, Rev. Sci. Instrum., Volume 84 (2013) | DOI

[34] A. Michau; F. Maury; F. Schuster; F. Lomello; J.-C. Brachet; E. Rouesne; M. Le Saux; R. Boichot; M. Pons High-temperature oxidation resistance of chromium-based coatings deposited by DLI–MOCVD for enhanced protection of the inner surface of long tubes, Surf. Coat. Technol., Volume 349 (2018), pp. 1048-1057 | DOI

[35] P. Fauchais; G. Montavon; R.S. Lima; B.R. Marple Engineering a new class of thermal spray nano-based microstructures from agglomerated nanostructured particles, suspensions and solutions, J. Phys. D, Appl. Phys., Volume 44 (2011)

[36] A. Killinger; R. Gadow; G. Mauer; A. Guignard; R. Vaßen; D. Stöver Review of new developments in suspension and solution precursor thermal spray processes, J. Therm. Spray Technol. (2011), pp. 20677-20695

[37] N. Markocsan; M. Gupta; S. Joshi; P. Nylén; X-H. Li; J. Wigren Liquid feedstock plasma spraying: an emerging process for advanced thermal barrier coatings, J. Therm. Spray Technol., Volume 26 (2017), pp. 1104-1114

[38] P. Fauchais; J. Heberlein; M. Boulos Thermal Spray Fundamentals: From Powder to Part, Springer International Publishing, 2014 (ISBN: 978-0-387-28319-7)

[39] E. Irissou; J.-G. Legoux; A. Ryabinin; B. Jodoin; C. Moreau Review on cold spray process and technology: part I. Intellectual property, J. Therm. Spray Technol., Volume 17 (2008) no. 4, pp. 495-516

[40] P. Cavaliere Cold-Spray Coatings, Springer International Publishing, 2018 | DOI

[41] M.R. Rokni; S.R. Nutt; C.A. Widener; V.K. Champagne; R.H.J. Hrabe Review of relationship between particle deformation, coating microstructure, and properties in high-pressure cold spray, Therm. Spray Technol., Volume 26 (2017), pp. 1308-1355

[42] E.J. Lugsheider High kinetic process developments in thermal spray technology, Therm. Spray Technol., Volume 15 (2006) no. 2, pp. 155-156

[43] S. Bagherifard; S. Monti; M.V. Zuccoli; M. Riccio; J. Kondás; M. Guagliano Evaluating the potential of cold spray deposition for additive manufacturing of freeform structural components (Materials Science & Engineering A) | DOI

[44] R. Comesaña; R. Lusquinos; J. de Val; T. Malot; M. Lopez-Alavrez; A. Riveiro; F. Quitero; M. Bountinguiza; P. Aubry; A. De Carlos; J. Pou Calcium phosphate grafts produced by rapid prototyping based on laser cladding, J. Eur. Ceram. Soc., Volume 31 (2011) no. 1–2, pp. 29-41

[45] P. Aubry; C. Blanc; I. Demirci; M. Dal; H. Maskrot Laser cladding and wear testing of nickel base hardfacing materials: influence of process parameters, J. Laser Appl., Volume 29 (2017)

[46] C. Navas; R. Colaço; J. Damborenea; R. Vilar Abrasive wear behaviour of laser clad and flame sprayed-melted NiCrBSi coatings, Surf. Coat. Technol., Volume 200 (2006) no. 24, pp. 6854-6862

[47] Photonics applied: materials processing: laser additive manufacturing gains strength https://www.laserfocusworld.com/articles/2009/06/photonics-applied-materials-processing-laser-additive-manufacturing-gains-strength.html (in: LaserFocusWorld [online], LaserFocusWorld, January 6, 2009 [visited on June 1st, 2018])

[48] P. Peyre; P. Aubry; C. Braham; R. Fabbro Results on laser direct manufacturing of graded materials, Proc. of ICALEO2006, Laser Materials Processing Conference, Paper Number 303, 2006, pp. 127-132 | DOI

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Solar-driven self-cleaning coating for a painted surface

R. Cai; G.M. Van; P.K. Aw; ...

C. R. Chim (2006)


Chemical solution deposition of electronic oxide films

Robert W. Schwartz; Theodor Schneller; Rainer Waser

C. R. Chim (2004)