High-entropy alloys (HEAs) and related concept of complex concentrated alloys (CCAs) expand the diversity of the materials world and inspire new ideas and approaches for the design of materials with an attractive combination of properties. Here, we present a critical review of the field with the intent of summarizing the principles underlying their birth and growth. We highlight the major accomplishments and progresses over the last 14 years, especially in the discovery of new microstructures and mechanical properties. Finally, we outline the main challenges and provide guidance for future works.
Les alliages à haute entropie (HEA) et le concept associé d'alliages concentrés complexes (CCA) élargissent la diversité du monde des matériaux et inspirent de nouvelles idées et approches pour la conception de matériaux présentant une combinaison attrayante de propriétés. Nous présentons ici une revue critique du domaine dans le but de résumer les principes qui sous-tendent leur naissance et leur développement. Nous mettons en évidence les principaux accomplissements et les progrès réalisés au cours des 14 dernières années, en particulier la découverte de nouvelles microstructures et propriétés mécaniques. Enfin, nous décrivons les principaux défis et suggérons des orientations pour les travaux futurs.
Mot clés : Alliages à haute entropie, Conception d'alliages, Microstructures, Métallurgie combinatoire, Propriétés mécaniques, Thermodynamique computationnelle
Stéphane Gorsse 1, 2; Jean-Philippe Couzinié 3; Daniel B. Miracle 4
@article{CRPHYS_2018__19_8_721_0, author = {St\'ephane Gorsse and Jean-Philippe Couzini\'e and Daniel B. Miracle}, title = {From high-entropy alloys to complex concentrated alloys}, journal = {Comptes Rendus. Physique}, pages = {721--736}, publisher = {Elsevier}, volume = {19}, number = {8}, year = {2018}, doi = {10.1016/j.crhy.2018.09.004}, language = {en}, }
TY - JOUR AU - Stéphane Gorsse AU - Jean-Philippe Couzinié AU - Daniel B. Miracle TI - From high-entropy alloys to complex concentrated alloys JO - Comptes Rendus. Physique PY - 2018 SP - 721 EP - 736 VL - 19 IS - 8 PB - Elsevier DO - 10.1016/j.crhy.2018.09.004 LA - en ID - CRPHYS_2018__19_8_721_0 ER -
Stéphane Gorsse; Jean-Philippe Couzinié; Daniel B. Miracle. From high-entropy alloys to complex concentrated alloys. Comptes Rendus. Physique, Volume 19 (2018) no. 8, pp. 721-736. doi : 10.1016/j.crhy.2018.09.004. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2018.09.004/
[1] Metals Handbook, DESK EDITION, ASM International, Materials Park, Ohio, USA, 2003
[2] Microstructural development in equiatomic multicomponent alloys, Mater. Sci. Eng. A, Struct. Mater.: Prop. Microstruct. Process., Volume 375 (2004), pp. 213-218 | DOI
[3] Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes, Adv. Eng. Mater., Volume 6 (2004), pp. 299-303 | DOI
[4] A critical review of high-entropy alloys and related concepts, Acta Mater., Volume 122 (2017), pp. 448-511 | DOI
[5] A combinatorial assessment of AlxCrCuFeNi2 () complex concentrated alloys: microstructure, microhardness, and magnetic properties, Acta Mater., Volume 116 (2016), pp. 63-76 | DOI
[6] Change in the primary solidification phase from fcc to bcc-based B2 in high entropy or complex concentrated alloys, Scr. Mater., Volume 127 (2017), pp. 186-190 | DOI
[7] Current and emerging practices of CALPHAD toward the development of high-entropy alloys and complex concentrated alloys, J. Mater. Res. (2018), pp. 1-25 | DOI
[8] The fcc solid solution stability in the Co–Cr–Fe–Mn–Ni multi-component system, Acta Mater., Volume 128 (2017), pp. 327-336 | DOI
[9] From high-entropy alloys to diluted multi-component alloys: range of existence of a solid-solution, Mater. Des., Volume 103 (2016), pp. 84-89 | DOI
[10] Mapping the world of complex concentrated alloys, Acta Mater., Volume 135 (2017), pp. 177-187 | DOI
[11] Refractory high-entropy alloys, Intermetallics, Volume 18 (2010), pp. 1758-1765 | DOI
[12] Development and exploration of refractory high-entropy alloys—a review, J. Mater. Res. (2018), pp. 1-37 | DOI
[13] Hexagonal High-entropy Alloys, Mater. Res. Lett., Volume 3 (2015), pp. 1-6 | DOI
[14] Microstructural and mechanical characterization of an equiatomic YGdTbDyHo high-entropy alloy with hexagonal close-packed structure, Acta Mater., Volume 156 (2018), pp. 86-96 | DOI
[15] High-entropy alloys with a hexagonal close-packed structure designed by equi-atomic alloy strategy and binary phase diagrams, JOM, Volume 66 (2014), pp. 1984-1992 | DOI
[16] Equal-channel angular extrusion of a low-density high-entropy alloy produced by high-energy cryogenic mechanical alloying, JOM, Volume 66 (2014), pp. 2021-2029 | DOI
[17] A novel low-density, high-hardness, high-entropy alloy with close-packed single-phase nanocrystalline structures, Mater. Res. Lett., Volume 3 (2015), pp. 95-99 | DOI
[18] High entropy brasses and bronzes – microstructure, phase evolution and properties, J. Alloys Compd., Volume 650 (2015), pp. 949-961 | DOI
[19] L. Kaye, S. Aron-Dine, A. Lim, L. Bassman, K. Laws, W. McKenzie, C. Healy, Making jewellery or other personal adornments, Patent application WO2017132725A1, 2017; n.d.
[20] Exploration and development of high-entropy alloys for structural applications, Entropy, Volume 16 (2014), pp. 494-525 | DOI
[21] High-entropy alloys: a current evaluation of founding ideas and core effects and exploring “nonlinear alloys”, JOM, Volume 69 (2017), pp. 2130-2136 | DOI
[22] High-entropy functional materials, J. Mater. Res. (2018), pp. 1-18 | DOI
[23] Critical assessment 14: high-entropy alloys and their development as structural materials, Mater. Sci. Technol., Volume 31 (2015), pp. 1142-1147 | DOI
[24] Hydrogen storage properties of multi-principal-component CoFeMnTi(x)V(y)Zr(z) alloys, Int. J. Hydrog. Energy, Volume 35 (2010), pp. 9046-9059 | DOI
[25] Development of a refractory high entropy superalloy, Entropy, Volume 18 (2016) | DOI
[26] Microstructural design for improving ductility of an initially brittle refractory high-entropy alloy, Sci. Rep., Volume 8 (2018), p. 8816 | DOI
[27] Additive manufacturing of metals: a brief review of the characteristic microstructures and properties of steels, Ti-6Al-4V and high-entropy alloys, Sci. Technol. Adv. Mater., Volume 18 (2017), pp. 584-610 | DOI
[28] Three-dimensional characterisation of the microstructure of an high-entropy alloy using STEM/HAADF tomography, Mater. Sci. Technol., Volume 31 (2015), pp. 1250-1258 | DOI
[29] T. Rieger, M. Laurent-Brocq, J.-P. Couzinie, 2018, personal communication.
[30] Deviation from high-entropy configurations in the atomic distributions of a multi-principal-element alloy, Nat. Commun., Volume 6 (2015), p. 5964 | DOI
[31] Sluggish diffusion in Co–Cr–Fe–Mn–Ni high-entropy alloys, Acta Mater., Volume 61 (2013), pp. 4887-4897 | DOI
[32] Bulk tracer diffusion in CoCrFeNi and CoCrFeMnNi high-entropy alloys, Acta Mater., Volume 146 (2018), pp. 211-224 | DOI
[33] An assessment of the lattice strain in the CrMnFeCoNi high-entropy alloy, Acta Mater., Volume 122 (2017), pp. 11-18 | DOI
[34] Probing local lattice distortion in medium- and high-entropy alloys, 2017 | arXiv
[35] Corrosion of high-entropy alloys, Mater. Degrad., Volume 1 (2017), p. 15 | DOI
[36] Irradiation behavior in high-entropy alloys, J. Iron Steel Res. Int., Volume 22 (2015), pp. 879-884 | DOI
[37] Tailoring magnetic behavior of CoFeMnNiX (X = Al, Cr, Ga, and Sn) high-entropy alloys by metal doping, Acta Mater., Volume 130 (2017), pp. 10-18 | DOI
[38] Composition dependence of structure, physical and mechanical properties of FeCoNi(MnAl)(x) high-entropy alloys, Intermetallics, Volume 87 (2017), pp. 21-26 | DOI
[39] A ductile high-entropy alloy with attractive magnetic properties, J. Alloys Compd., Volume 694 (2017), pp. 55-60 | DOI
[40] Microstructure and magnetic properties of FeNiCuMnTiSnx high-entropy alloys, Adv. Eng. Mater., Volume 14 (2012), pp. 919-922 | DOI
[41] Development and exploration of refractory high-entropy alloys – a review, J. Mater. Res., Volume 33 (2018), pp. 1-37 | DOI
[42] Microstructure evolution and critical stress for twinning in the CrMnFeCoNi high-entropy alloy, Acta Mater., Volume 118 (2016), pp. 152-163 | DOI
[43] Nanoscale origins of the damage tolerance of the high-entropy alloy CrMnFeCoNi, Nat. Commun., Volume 6 (2015) | DOI
[44] The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy, Acta Mater., Volume 61 (2013), pp. 5743-5755 | DOI
[45] Dislocation mechanisms and 3D twin architectures generate exceptional strength-ductility-toughness combination in CrCoNi medium-entropy alloy, Nat. Commun., Volume 8 (2017) | DOI
[46] Nanoscale origins of the damage tolerance of the high-entropy alloy CrMnFeCoNi, Nat. Commun., Volume 6 (2015) | DOI
[47] A fracture-resistant high-entropy alloy for cryogenic applications, Science, Volume 345 (2014), pp. 1153-1158 | DOI
[48] Exceptional damage-tolerance of a medium-entropy alloy CrCoNi at cryogenic temperatures, Nat. Commun., Volume 7 (2016) | DOI
[49] The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy, Acta Mater., Volume 61 (2013), pp. 5743-5755 | DOI
[50] Stacking fault energy of face-centered-cubic high-entropy alloys, Intermetallics, Volume 93 (2018), pp. 269-273 | DOI
[51] Reasons for the superior mechanical properties of medium-entropy CrCoNi compared to high-entropy CrMnFeCoNi, Acta Mater., Volume 128 (2017), pp. 292-303 | DOI
[52] Size effect, critical resolved shear stress, stacking fault energy, and solid solution strengthening in the CrMnFeCoNi high-entropy alloy, Sci. Rep., Volume 6 (2016) | DOI
[53] Temperature dependent stacking fault energy of FeCrCoNiMn high-entropy alloy, Scr. Mater., Volume 108 (2015), pp. 44-47 | DOI
[54] Atomic-scale characterization and modeling of 60 degrees dislocations in a high-entropy alloy, Acta Mater., Volume 110 (2016), pp. 352-363 | DOI
[55] The origin of negative stacking fault energies and nano-twin formation in face-centered cubic high-entropy alloys, Scr. Mater., Volume 130 (2017), pp. 96-99 | DOI
[56] Microstructure evolution and critical stress for twinning in the CrMnFeCoNi high-entropy alloy, Acta Mater., Volume 118 (2016), pp. 152-163 | DOI
[57] Twinning in [001]-oriented single crystals of CoCrFeMnNi high-entropy alloy at tensile deformation, Mater. Sci. Eng. A, Struct. Mater.: Prop. Microstruct. Process., Volume 713 (2018), pp. 253-259 | DOI
[58] Deformation twinning behaviors of the low stacking fault energy high-entropy alloy: an in-situ TEM study, Scr. Mater., Volume 137 (2017), pp. 9-12 | DOI
[59] Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy, J. Alloys Compd., Volume 509 (2011), pp. 6043-6048 | DOI
[60] Microstructural investigation of plastically deformed Ti20Zr20Hf20Nb20Ta20 high-entropy alloy by X-ray diffraction and transmission electron microscopy, Mater. Charact., Volume 108 (2015), pp. 1-7 | DOI
[61] Simultaneously increasing the strength and ductility of a refractory high-entropy alloy via grain refining, Mater. Lett., Volume 184 (2016), pp. 200-203 | DOI
[62] A refractory Hf25Nb25Ti25Zr25 high-entropy alloy with excellent structural stability and tensile properties, Mater. Lett., Volume 130 (2014), pp. 277-280 | DOI
[63] Alloy design for intrinsically ductile refractory high-entropy alloys, J. Appl. Phys., Volume 120 (2016) | DOI
[64] On the room temperature deformation mechanisms of a TiZrHfNbTa refractory high-entropy alloy, Mater. Sci. Eng. A, Struct. Mater.: Prop. Microstruct. Process., Volume 645 (2015), pp. 255-263 | DOI
[65] Study of a bcc multi-principal element alloy: tensile and simple shear properties and underlying deformation mechanisms, Acta Mater., Volume 142 (2018), pp. 131-141 | DOI
[66] Plastic deformation properties of Zr–Nb–Ti–Ta–Hf high-entropy alloys, Philos. Mag., Volume 95 (2015), pp. 1221-1232 | DOI
[67] Mechanical properties and thermally activated plasticity of the Ti30Zr25Hf15Nb20Ta10 high-entropy alloy at temperatures 4.2–350 K, Mater. Sci. Eng. A, Struct. Mater.: Prop. Microstruct. Process., Volume 710 (2018), pp. 136-141 | DOI
[68] Atomistic simulations of dislocations in a model bcc multicomponent concentrated solid solution alloy, Acta Mater., Volume 125 (2017), pp. 311-320 | DOI
[69] Magnetically-driven phase transformation strengthening in high-entropy alloys, Nat. Commun., Volume 9 (2018), p. 1363 | DOI
[70] Modelling solid solution hardening in high-entropy alloys, Acta Mater., Volume 85 (2015), pp. 14-23 | DOI
[71] Theory of strengthening in fcc high-entropy alloys, Acta Mater., Volume 118 (2016), pp. 164-176 | DOI
[72] A precipitation-hardened high-entropy alloy with outstanding tensile properties, Acta Mater., Volume 102 (2016), pp. 187-196 | DOI
[73] Heterogeneous precipitation behavior and stacking-fault-mediated deformation in a CoCrNi-based medium-entropy alloy, Acta Mater., Volume 138 (2017), pp. 72-82 | DOI
[74] Modifying transformation pathways in high-entropy alloys or complex concentrated alloys via thermo-mechanical processing, Acta Mater., Volume 153 (2018), pp. 169-185 | DOI
[75] High-temperature tensile strength of Al10Co25Cr8Fe15Ni36Ti6 compositionally complex alloy (high-entropy alloy), JOM, Volume 67 (2015), pp. 2271-2277 | DOI
[76] On the path to optimizing the Al–Co–Cr–Cu–Fe–Ni–Ti high-entropy alloy family for high temperature applications, Entropy, Volume 18 (2016) | DOI
[77] Thermal stability and coarsening of coherent particles in a precipitation-hardened (NiCoFeCr)94Ti2Al4 high-entropy alloy, Acta Mater., Volume 147 (2018), pp. 184-194 | DOI
[78] High-temperature plastic flow of a precipitation-hardened FeCoNiCr high-entropy alloy, Mater. Sci. Eng. A, Volume 686 (2017), pp. 34-40 | DOI
[79] Mechanical properties of low-density, refractory multi-principal element alloys of the Cr–Nb–Ti–V–Zr system, Mater. Sci. Eng. A, Struct. Mater.: Prop. Microstruct. Process., Volume 565 (2013), pp. 51-62 | DOI
[80] Structure and mechanical properties of the AlCrxNbTiV () high-entropy alloys, J. Alloys Compd., Volume 652 (2015), pp. 266-280 | DOI
[81] Controlled formation of coherent cuboidal nanoprecipitates in body-centered cubic high-entropy alloys based on Al2(Ni,Co,Fe,Cr)14 compositions, Acta Mater., Volume 147 (2018), pp. 213-225 | DOI
[82] Compositional variation effects on the microstructure and properties of a refractory high-entropy superalloy AlMo0.5NbTa0.5TiZr, Mater. Des., Volume 139 (2018), pp. 498-511 | DOI
[83] Design of a twinning-induced plasticity high-entropy alloy, Acta Mater., Volume 94 (2015), pp. 124-133 | DOI
[84] Metastable high-entropy dual-phase alloys overcome the strength–ductility trade-off, Nature, Volume 534 (2016), p. 227
[85] A TRIP-assisted dual-phase high-entropy alloy: grain size and phase fraction effects on deformation behavior, Acta Mater., Volume 131 (2017), pp. 323-335 | DOI
[86] Design and tensile properties of a bcc Ti-rich high-entropy alloy with transformation-induced plasticity, Mater. Res. Lett., Volume 5 (2017), pp. 110-116 | DOI
[87] Phase-transformation ductilization of brittle high-entropy alloys via metastability engineering, Adv. Mater., Volume 29 (2017) | DOI
[88] Theoretical design of titanium alloys, Sixth World Conference on Titanium. III, 1988, pp. 1601-1606
[89] General approach to phase stability and elastic properties of β-type Ti-alloys using electronic parameters, Scr. Mater., Volume 55 (2006), pp. 477-480 | DOI
[90] Accelerated exploration of multi-principal element alloys with solid solution phases, Nat. Commun., Volume 6 (2015), p. 6529 | DOI
[91] Accelerated exploration of multi-principal element alloys for structural applications, Calphad-Comput. Coupl. Phase Diagrams Thermochem., Volume 50 (2015), pp. 32-48 | DOI
[92] New strategies and tests to accelerate discovery and development of multi-principal element structural alloys, Scr. Mater., Volume 127 (2017), pp. 195-200 | DOI
[93] Combinatorial approach based on interdiffusion experiments for the design of thermoelectrics: application to the Mg-2(Si,Sn) alloys, Chem. Mater., Volume 26 (2014), pp. 4334-4337 | DOI
[94] Combinatorial approaches as effective tools in the study of phase diagrams and composition-structure-property relationships, Prog. Mater. Sci., Volume 51 (2006), pp. 557-631 | DOI
[95] Toward multi-principal component alloy discovery: assessment of CALPHAD thermodynamic databases for prediction of novel ternary alloy systems, J. Mater. Res. (2018), pp. 1-14 | DOI
[96] Designing novel multiconstituent intermetallics: contribution of modern alloy theory in developing engineered materials, J. Phase Equilib., Volume 18 (1997), p. 635 | DOI
[97] Sublattice occupancy in 3 Ti–Al–Mo B2 phases, Scr. Metall. Mater., Volume 32 (1995), pp. 553-557 | DOI
[98] EXAFS study of the local atomic order in Ti(2)AlX (X=Nb,Mo) B2 intermetallic compounds, J. Phys. IV, Volume 6 (1996), pp. 15-20 | DOI
[99] The effects of Cr additions to binary TiAl-base alloys, Metall. Trans. A, Phys. Metall. Mater. Sci., Volume 22 (1991), pp. 2619-2627 | DOI
[100] The intermetallic Ti2AlNb, Prog. Mater. Sci., Volume 42 (1997), pp. 135-158 | DOI
[101] A first principles study of Ti2AlNb intermetallic, Solid State Commun., Volume 204 (2015), pp. 9-15 | DOI
[102] Order–disorder transformation of the body centered cubic phase in the Ti–Al–X (X=Ta, Nb, or Mo) system, J. Mater. Sci., Volume 38 (2003), pp. 3995-4002 | DOI
[103] Ternary phase development in the Ti–Al–Ta system, Scr. Metall. Mater., Volume 25 (1991), pp. 1193-1198 | DOI
[104] Phase-relationships and transformations in the ternary aluminum–titanium–tantalum system, Acta Metall. Mater., Volume 43 (1995), pp. 2625-2640 | DOI
[105] A 3-dimensional stability diagram for 998 binary AB intermetallic compounds, J. Less-Common Met., Volume 92 (1983), pp. 215-238 | DOI
[106] Structure maps for pseudobinary and ternary phases, Mater. Sci. Technol., Volume 4 (1988), pp. 675-691 | DOI
[107] New crystal structure maps for intermetallic compounds, J. Phys. Condens. Matter, Volume 9 (1997), pp. 8011-8030 | DOI
[108] Accuracy of ab initio methods in predicting the crystal structures of metals: a review of 80 binary alloys, Calphad-Comput. Coupl. Phase Diagrams Thermochem., Volume 29 (2005), pp. 163-211 | DOI
[109] Regularities of formation of ternary intermetallic compounds – Part 1. Ternary intermetallic compounds between nontransition elements, J. Alloys Compd., Volume 289 (1999), pp. 120-125
[110] Predicting crystal structures with data mining of quantum calculations, Phys. Rev. Lett., Volume 91 (2003) | DOI
[111] Evolutionary design of strong and stable high-entropy alloys using multi-objective optimisation based on physical models, statistics and thermodynamics, Mater. Des., Volume 143 (2018), pp. 185-195 | DOI
[112] AFLOWLIB.ORG: A distributed materials properties repository from high-throughput ab initio calculations, Comput. Mater. Sci., Volume 58 (2012), pp. 227-235 | DOI
[113] A high-throughput infrastructure for density functional theory calculations, Comput. Mater. Sci., Volume 50 (2011), pp. 2295-2310 | DOI
[114] The computational materials repository, Comput. Sci. Eng., Volume 14 (2012), pp. 51-57 | DOI
[115] The Electronic Structure Project http://gurka.fysik.uu.se/esp-fs/ (n.d.)
[116] The Open Quantum Materials Database (OQMD): assessing the accuracy of DFT formation energies, Npj Comput. Mater., Volume 1 (2015) (UNSP 15010) | DOI
[117] Ab initio calculations of cohesive energies of Fe-based glass-forming alloys, Phys. Rev. B, Volume 70 (2004) | DOI
Cited by Sources:
Comments - Policy