Comptes Rendus
From high-entropy alloys to complex concentrated alloys
Comptes Rendus. Physique, Volume 19 (2018) no. 8, pp. 721-736.

High-entropy alloys (HEAs) and related concept of complex concentrated alloys (CCAs) expand the diversity of the materials world and inspire new ideas and approaches for the design of materials with an attractive combination of properties. Here, we present a critical review of the field with the intent of summarizing the principles underlying their birth and growth. We highlight the major accomplishments and progresses over the last 14 years, especially in the discovery of new microstructures and mechanical properties. Finally, we outline the main challenges and provide guidance for future works.

Les alliages à haute entropie (HEA) et le concept associé d'alliages concentrés complexes (CCA) élargissent la diversité du monde des matériaux et inspirent de nouvelles idées et approches pour la conception de matériaux présentant une combinaison attrayante de propriétés. Nous présentons ici une revue critique du domaine dans le but de résumer les principes qui sous-tendent leur naissance et leur développement. Nous mettons en évidence les principaux accomplissements et les progrès réalisés au cours des 14 dernières années, en particulier la découverte de nouvelles microstructures et propriétés mécaniques. Enfin, nous décrivons les principaux défis et suggérons des orientations pour les travaux futurs.

Published online:
DOI: 10.1016/j.crhy.2018.09.004
Keywords: High entropy alloys, Alloy design, Microstructures, Combinatorial metallurgy, Mechanical properties, Computational thermodynamic
Mot clés : Alliages à haute entropie, Conception d'alliages, Microstructures, Métallurgie combinatoire, Propriétés mécaniques, Thermodynamique computationnelle

Stéphane Gorsse 1, 2; Jean-Philippe Couzinié 3; Daniel B. Miracle 4

1 CNRS, ICMCB (UMR 5026), Université de Bordeaux, 33600 Pessac, France
2 Bordeaux INP, ENSCBP, 33600 Pessac, France
3 Université Paris Est, ICMPE (UMR 7182), CNRS, UPEC, 94320 Thiais, France
4 Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson AFB, OH 45433, USA
@article{CRPHYS_2018__19_8_721_0,
     author = {St\'ephane Gorsse and Jean-Philippe Couzini\'e and Daniel B. Miracle},
     title = {From high-entropy alloys to complex concentrated alloys},
     journal = {Comptes Rendus. Physique},
     pages = {721--736},
     publisher = {Elsevier},
     volume = {19},
     number = {8},
     year = {2018},
     doi = {10.1016/j.crhy.2018.09.004},
     language = {en},
}
TY  - JOUR
AU  - Stéphane Gorsse
AU  - Jean-Philippe Couzinié
AU  - Daniel B. Miracle
TI  - From high-entropy alloys to complex concentrated alloys
JO  - Comptes Rendus. Physique
PY  - 2018
SP  - 721
EP  - 736
VL  - 19
IS  - 8
PB  - Elsevier
DO  - 10.1016/j.crhy.2018.09.004
LA  - en
ID  - CRPHYS_2018__19_8_721_0
ER  - 
%0 Journal Article
%A Stéphane Gorsse
%A Jean-Philippe Couzinié
%A Daniel B. Miracle
%T From high-entropy alloys to complex concentrated alloys
%J Comptes Rendus. Physique
%D 2018
%P 721-736
%V 19
%N 8
%I Elsevier
%R 10.1016/j.crhy.2018.09.004
%G en
%F CRPHYS_2018__19_8_721_0
Stéphane Gorsse; Jean-Philippe Couzinié; Daniel B. Miracle. From high-entropy alloys to complex concentrated alloys. Comptes Rendus. Physique, Volume 19 (2018) no. 8, pp. 721-736. doi : 10.1016/j.crhy.2018.09.004. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2018.09.004/

[1] J.R. Davis Metals Handbook, DESK EDITION, ASM International, Materials Park, Ohio, USA, 2003

[2] B. Cantor; I.T.H. Chang; P. Knight; A.J.B. Vincent Microstructural development in equiatomic multicomponent alloys, Mater. Sci. Eng. A, Struct. Mater.: Prop. Microstruct. Process., Volume 375 (2004), pp. 213-218 | DOI

[3] J.W. Yeh; S.K. Chen; S.J. Lin; J.Y. Gan; T.S. Chin; T.T. Shun; C.H. Tsau; S.Y. Chang Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes, Adv. Eng. Mater., Volume 6 (2004), pp. 299-303 | DOI

[4] D.B. Miracle; O.N. Senkov A critical review of high-entropy alloys and related concepts, Acta Mater., Volume 122 (2017), pp. 448-511 | DOI

[5] T. Borkar; B. Gwalani; D. Choudhuri; C.V. Mikler; C.J. Yannetta; X. Chen; R.V. Ramanujan; M.J. Styles; M.A. Gibson; R. Banerjee A combinatorial assessment of AlxCrCuFeNi2 (0<x<1.5) complex concentrated alloys: microstructure, microhardness, and magnetic properties, Acta Mater., Volume 116 (2016), pp. 63-76 | DOI

[6] D. Choudhuri; B. Gwalani; S. Gorsse; C.V. Mikler; R.V. Ramanujan; M.A. Gibson; R. Banerjee Change in the primary solidification phase from fcc to bcc-based B2 in high entropy or complex concentrated alloys, Scr. Mater., Volume 127 (2017), pp. 186-190 | DOI

[7] S. Gorsse; F. Tancret Current and emerging practices of CALPHAD toward the development of high-entropy alloys and complex concentrated alloys, J. Mater. Res. (2018), pp. 1-25 | DOI

[8] G. Bracq; M. Laurent-Brocq; L. Perrière; R. Pirès; J.-M. Joubert; I. Guillot The fcc solid solution stability in the Co–Cr–Fe–Mn–Ni multi-component system, Acta Mater., Volume 128 (2017), pp. 327-336 | DOI

[9] M. Laurent-Brocq; L. Perrière; R. Pirès; Y. Champion From high-entropy alloys to diluted multi-component alloys: range of existence of a solid-solution, Mater. Des., Volume 103 (2016), pp. 84-89 | DOI

[10] S. Gorsse; D.B. Miracle; O.N. Senkov Mapping the world of complex concentrated alloys, Acta Mater., Volume 135 (2017), pp. 177-187 | DOI

[11] O.N. Senkov; G.B. Wilks; D.B. Miracle; C.P. Chuang; P.K. Liaw Refractory high-entropy alloys, Intermetallics, Volume 18 (2010), pp. 1758-1765 | DOI

[12] O.N. Senkov; D.B. Miracle; K.J. Chaput; J.-P. Couzinie Development and exploration of refractory high-entropy alloys—a review, J. Mater. Res. (2018), pp. 1-37 | DOI

[13] M. Feuerbacher; M. Heidelmann; C. Thomas Hexagonal High-entropy Alloys, Mater. Res. Lett., Volume 3 (2015), pp. 1-6 | DOI

[14] R. Soler; A. Evirgen; M. Yao; C. Kirchlechner; F. Stein; M. Feuerbacher; D. Raabe; G. Dehm Microstructural and mechanical characterization of an equiatomic YGdTbDyHo high-entropy alloy with hexagonal close-packed structure, Acta Mater., Volume 156 (2018), pp. 86-96 | DOI

[15] A. Takeuchi; K. Amiya; T. Wada; K. Yubuta; W. Zhang High-entropy alloys with a hexagonal close-packed structure designed by equi-atomic alloy strategy and binary phase diagrams, JOM, Volume 66 (2014), pp. 1984-1992 | DOI

[16] V.H. Hammond; M.A. Atwater; K.A. Darling; H.Q. Nguyen; L.J. Kecskes Equal-channel angular extrusion of a low-density high-entropy alloy produced by high-energy cryogenic mechanical alloying, JOM, Volume 66 (2014), pp. 2021-2029 | DOI

[17] K.M. Youssef; A.J. Zaddach; C. Niu; D.L. Irving; C.C. Koch A novel low-density, high-hardness, high-entropy alloy with close-packed single-phase nanocrystalline structures, Mater. Res. Lett., Volume 3 (2015), pp. 95-99 | DOI

[18] K.J. Laws; C. Crosby; A. Sridhar; P. Conway; L.S. Koloadin; M. Zhao; S. Aron-Dine; L.C. Bassman High entropy brasses and bronzes – microstructure, phase evolution and properties, J. Alloys Compd., Volume 650 (2015), pp. 949-961 | DOI

[19] L. Kaye, S. Aron-Dine, A. Lim, L. Bassman, K. Laws, W. McKenzie, C. Healy, Making jewellery or other personal adornments, Patent application WO2017132725A1, 2017; n.d.

[20] D.B. Miracle; J.D. Miller; O.N. Senkov; C. Woodward; M.D. Uchic; J. Tiley Exploration and development of high-entropy alloys for structural applications, Entropy, Volume 16 (2014), pp. 494-525 | DOI

[21] D.B. Miracle High-entropy alloys: a current evaluation of founding ideas and core effects and exploring “nonlinear alloys”, JOM, Volume 69 (2017), pp. 2130-2136 | DOI

[22] M.C. Gao; D.B. Miracle; D. Maurice; X.H. Yan; Y. Zhang; J.A. Hawk High-entropy functional materials, J. Mater. Res. (2018), pp. 1-18 | DOI

[23] D.B. Miracle Critical assessment 14: high-entropy alloys and their development as structural materials, Mater. Sci. Technol., Volume 31 (2015), pp. 1142-1147 | DOI

[24] Y.-F. Kao; S.-K. Chen; J.-H. Sheu; J.-T. Lin; W.-E. Lin; J.-W. Yeh; S.-J. Lin; T.-H. Liou; C.-W. Wang Hydrogen storage properties of multi-principal-component CoFeMnTi(x)V(y)Zr(z) alloys, Int. J. Hydrog. Energy, Volume 35 (2010), pp. 9046-9059 | DOI

[25] O.N. Senkov; D. Isheim; D.N. Seidman; A.L. Pilchak Development of a refractory high entropy superalloy, Entropy, Volume 18 (2016) | DOI

[26] V. Soni; O.N. Senkov; B. Gwalani; D.B. Miracle; R. Banerjee Microstructural design for improving ductility of an initially brittle refractory high-entropy alloy, Sci. Rep., Volume 8 (2018), p. 8816 | DOI

[27] S. Gorsse; C. Hutchinson; M. Gouné; R. Banerjee Additive manufacturing of metals: a brief review of the characteristic microstructures and properties of steels, Ti-6Al-4V and high-entropy alloys, Sci. Technol. Adv. Mater., Volume 18 (2017), pp. 584-610 | DOI

[28] J.M. Sosa; J.K. Jensen; D.E. Huber; G.B. Viswanathan; M.A. Gibson; H.L. Fraser Three-dimensional characterisation of the microstructure of an high-entropy alloy using STEM/HAADF tomography, Mater. Sci. Technol., Volume 31 (2015), pp. 1250-1258 | DOI

[29] T. Rieger, M. Laurent-Brocq, J.-P. Couzinie, 2018, personal communication.

[30] L.J. Santodonato; Y. Zhang; M. Feygenson; C.M. Parish; M.C. Gao; R.J.K. Weber; J.C. Neuefeind; Z. Tang; P.K. Liaw Deviation from high-entropy configurations in the atomic distributions of a multi-principal-element alloy, Nat. Commun., Volume 6 (2015), p. 5964 | DOI

[31] K.-Y. Tsai; M.-H. Tsai; J.-W. Yeh Sluggish diffusion in Co–Cr–Fe–Mn–Ni high-entropy alloys, Acta Mater., Volume 61 (2013), pp. 4887-4897 | DOI

[32] M. Vaidya; K.G. Pradeep; B.S. Murty; G. Wilde; S.V. Divinski Bulk tracer diffusion in CoCrFeNi and CoCrFeMnNi high-entropy alloys, Acta Mater., Volume 146 (2018), pp. 211-224 | DOI

[33] L.R. Owen; E.J. Pickering; H.Y. Playford; H.J. Stone; M.G. Tucker; N.G. Jones An assessment of the lattice strain in the CrMnFeCoNi high-entropy alloy, Acta Mater., Volume 122 (2017), pp. 11-18 | DOI

[34] Y. Tong; G. Velisa; T. Yang; K. Jin; C. Lu; H. Bei; J.Y.P. Ko; D. Pagan; R. Huang; Y. Zhang; L. Wang; F.X. Zhang Probing local lattice distortion in medium- and high-entropy alloys, 2017 | arXiv

[35] Y. Qiu; S. Thomas; M.A. Gibson; H.L. Fraser; N. Birbilis Corrosion of high-entropy alloys, Mater. Degrad., Volume 1 (2017), p. 15 | DOI

[36] S. Xia; Z. Wang; T. Yang; Y. Zhang Irradiation behavior in high-entropy alloys, J. Iron Steel Res. Int., Volume 22 (2015), pp. 879-884 | DOI

[37] T. Zuo; M.C. Gao; L. Ouyang; X. Yang; Y. Cheng; R. Feng; S. Chen; P.K. Liaw; J.A. Hawk; Y. Zhang Tailoring magnetic behavior of CoFeMnNiX (X = Al, Cr, Ga, and Sn) high-entropy alloys by metal doping, Acta Mater., Volume 130 (2017), pp. 10-18 | DOI

[38] P. Li; A. Wang; C.T. Liu Composition dependence of structure, physical and mechanical properties of FeCoNi(MnAl)(x) high-entropy alloys, Intermetallics, Volume 87 (2017), pp. 21-26 | DOI

[39] P. Li; A. Wang; C.T. Liu A ductile high-entropy alloy with attractive magnetic properties, J. Alloys Compd., Volume 694 (2017), pp. 55-60 | DOI

[40] L. Liu; J.B. Zhu; J.C. Li; Q. Jiang Microstructure and magnetic properties of FeNiCuMnTiSnx high-entropy alloys, Adv. Eng. Mater., Volume 14 (2012), pp. 919-922 | DOI

[41] O.N. Senkov; D.B. Miracle; K.J. Chaput; J.-P. Couzinie Development and exploration of refractory high-entropy alloys – a review, J. Mater. Res., Volume 33 (2018), pp. 1-37 | DOI

[42] G. Laplanche; A. Kostka; O.M. Horst; G. Eggeler; E.P. George Microstructure evolution and critical stress for twinning in the CrMnFeCoNi high-entropy alloy, Acta Mater., Volume 118 (2016), pp. 152-163 | DOI

[43] Z. Zhang; M.M. Mao; J. Wang; B. Gludovatz; Z. Zhang; S.X. Mao; E.P. George; Q. Yu; R.O. Ritchie Nanoscale origins of the damage tolerance of the high-entropy alloy CrMnFeCoNi, Nat. Commun., Volume 6 (2015) | DOI

[44] F. Otto; A. Dlouhy; C. Somsen; H. Bei; G. Eggeler; E.P. George The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy, Acta Mater., Volume 61 (2013), pp. 5743-5755 | DOI

[45] Z. Zhang; H. Sheng; Z. Wang; B. Gludovatz; Z. Zhang; E.P. George; Q. Yu; S.X. Mao; R.O. Ritchie Dislocation mechanisms and 3D twin architectures generate exceptional strength-ductility-toughness combination in CrCoNi medium-entropy alloy, Nat. Commun., Volume 8 (2017) | DOI

[46] Z. Zhang; M.M. Mao; J. Wang; B. Gludovatz; Z. Zhang; S.X. Mao; E.P. George; Q. Yu; R.O. Ritchie Nanoscale origins of the damage tolerance of the high-entropy alloy CrMnFeCoNi, Nat. Commun., Volume 6 (2015) | DOI

[47] B. Gludovatz; A. Hohenwarter; D. Catoor; E.H. Chang; E.P. George; R.O. Ritchie A fracture-resistant high-entropy alloy for cryogenic applications, Science, Volume 345 (2014), pp. 1153-1158 | DOI

[48] B. Gludovatz; A. Hohenwarter; K.V.S. Thurston; H. Bei; Z. Wu; E.P. George; R.O. Ritchie Exceptional damage-tolerance of a medium-entropy alloy CrCoNi at cryogenic temperatures, Nat. Commun., Volume 7 (2016) | DOI

[49] F. Otto; A. Dlouhy; C. Somsen; H. Bei; G. Eggeler; E.P. George The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy, Acta Mater., Volume 61 (2013), pp. 5743-5755 | DOI

[50] S.F. Liu; Y. Wu; H.T. Wang; J.Y. He; J.B. Liu; C.X. Chen; X.J. Liu; H. Wang; Z.P. Lu Stacking fault energy of face-centered-cubic high-entropy alloys, Intermetallics, Volume 93 (2018), pp. 269-273 | DOI

[51] G. Laplanche; A. Kostka; C. Reinhart; J. Hunfeld; G. Eggeler; E.P. George Reasons for the superior mechanical properties of medium-entropy CrCoNi compared to high-entropy CrMnFeCoNi, Acta Mater., Volume 128 (2017), pp. 292-303 | DOI

[52] N.L. Okamoto; S. Fujimoto; Y. Kambara; M. Kawamura; Z.M.T. Chen; H. Matsunoshita; K. Tanaka; H. Inui; E.P. George Size effect, critical resolved shear stress, stacking fault energy, and solid solution strengthening in the CrMnFeCoNi high-entropy alloy, Sci. Rep., Volume 6 (2016) | DOI

[53] S. Huang; W. Li; S. Lu; F. Tian; J. Shen; E. Holmström; L. Vitos Temperature dependent stacking fault energy of FeCrCoNiMn high-entropy alloy, Scr. Mater., Volume 108 (2015), pp. 44-47 | DOI

[54] T.M. Smith; M.S. Hooshmand; S.D. Esser; F. Otto; D.W. McComb; E.P. George; M. Ghazisaeidi; M.J. Mills Atomic-scale characterization and modeling of 60 degrees dislocations in a high-entropy alloy, Acta Mater., Volume 110 (2016), pp. 352-363 | DOI

[55] Y.H. Zhang; Y. Zhuang; A. Hu; J.J. Kai; C.T. Liu The origin of negative stacking fault energies and nano-twin formation in face-centered cubic high-entropy alloys, Scr. Mater., Volume 130 (2017), pp. 96-99 | DOI

[56] G. Laplanche; A. Kostka; O.M. Horst; G. Eggeler; E.P. George Microstructure evolution and critical stress for twinning in the CrMnFeCoNi high-entropy alloy, Acta Mater., Volume 118 (2016), pp. 152-163 | DOI

[57] I.V. Kireeva; Y.I. Chumlyakov; Z.V. Pobedennaya; A.V. Vyrodova; I. Karaman Twinning in [001]-oriented single crystals of CoCrFeMnNi high-entropy alloy at tensile deformation, Mater. Sci. Eng. A, Struct. Mater.: Prop. Microstruct. Process., Volume 713 (2018), pp. 253-259 | DOI

[58] J. Liu; C. Chen; Y. Xu; S. Wu; G. Wang; H. Wang; Y. Fang; L. Meng Deformation twinning behaviors of the low stacking fault energy high-entropy alloy: an in-situ TEM study, Scr. Mater., Volume 137 (2017), pp. 9-12 | DOI

[59] O.N. Senkov; J.M. Scott; S.V. Senkova; D.B. Miracle; C.F. Woodward Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy, J. Alloys Compd., Volume 509 (2011), pp. 6043-6048 | DOI

[60] G. Dirras; J. Gubicza; A. Heczel; L. Lilensten; J.-P. Couzinie; L. Perriere; I. Guillot; A. Hocini Microstructural investigation of plastically deformed Ti20Zr20Hf20Nb20Ta20 high-entropy alloy by X-ray diffraction and transmission electron microscopy, Mater. Charact., Volume 108 (2015), pp. 1-7 | DOI

[61] C.-C. Juan; M.-H. Tsai; C.-W. Tsai; W.-L. Hsu; C.-M. Lin; S.-K. Chen; S.-J. Lin; J.-W. Yeh Simultaneously increasing the strength and ductility of a refractory high-entropy alloy via grain refining, Mater. Lett., Volume 184 (2016), pp. 200-203 | DOI

[62] Y.D. Wu; Y.H. Cai; T. Wang; J.J. Si; J. Zhu; Y.D. Wang; X.D. Hui A refractory Hf25Nb25Ti25Zr25 high-entropy alloy with excellent structural stability and tensile properties, Mater. Lett., Volume 130 (2014), pp. 277-280 | DOI

[63] S. Sheikh; S. Shafeie; Q. Hu; J. Ahlstrom; C. Persson; J. Vesely; J. Zyka; U. Klement; S. Guo Alloy design for intrinsically ductile refractory high-entropy alloys, J. Appl. Phys., Volume 120 (2016) | DOI

[64] J.-P. Couzinie; L. Lilensten; Y. Champion; G. Dirras; L. Perriere; I. Guillot On the room temperature deformation mechanisms of a TiZrHfNbTa refractory high-entropy alloy, Mater. Sci. Eng. A, Struct. Mater.: Prop. Microstruct. Process., Volume 645 (2015), pp. 255-263 | DOI

[65] L. Lilensten; J.-P. Couzinie; L. Perriere; A. Hocini; C. Keller; G. Dirras; I. Guillot Study of a bcc multi-principal element alloy: tensile and simple shear properties and underlying deformation mechanisms, Acta Mater., Volume 142 (2018), pp. 131-141 | DOI

[66] M. Feuerbacher; M. Heidelmann; C. Thomas Plastic deformation properties of Zr–Nb–Ti–Ta–Hf high-entropy alloys, Philos. Mag., Volume 95 (2015), pp. 1221-1232 | DOI

[67] A.V. Podolskiy; E.D. Tabachnikova; V.V. Voloschuk; V.F. Gorban; N.A. Krapivka; S.A. Firstov Mechanical properties and thermally activated plasticity of the Ti30Zr25Hf15Nb20Ta10 high-entropy alloy at temperatures 4.2–350 K, Mater. Sci. Eng. A, Struct. Mater.: Prop. Microstruct. Process., Volume 710 (2018), pp. 136-141 | DOI

[68] S.I. Rao; C. Varvenne; C. Woodward; T.A. Parthasarathy; D. Miracle; O.N. Senkov; W.A. Curtin Atomistic simulations of dislocations in a model bcc multicomponent concentrated solid solution alloy, Acta Mater., Volume 125 (2017), pp. 311-320 | DOI

[69] C. Niu; C.R. LaRosa; J. Miao; M.J. Mills; M. Ghazisaeidi Magnetically-driven phase transformation strengthening in high-entropy alloys, Nat. Commun., Volume 9 (2018), p. 1363 | DOI

[70] I. Toda-Caraballo; P.E.J. Rivera-Diaz-del-Castillo Modelling solid solution hardening in high-entropy alloys, Acta Mater., Volume 85 (2015), pp. 14-23 | DOI

[71] C. Varvenne; A. Luque; W.A. Curtin Theory of strengthening in fcc high-entropy alloys, Acta Mater., Volume 118 (2016), pp. 164-176 | DOI

[72] J.Y. He; H. Wang; H.L. Huang; X.D. Xu; M.W. Chen; Y. Wu; X.J. Liu; T.G. Nieh; K. An; Z.P. Lu A precipitation-hardened high-entropy alloy with outstanding tensile properties, Acta Mater., Volume 102 (2016), pp. 187-196 | DOI

[73] Y.L. Zhao; T. Yang; Y. Tong; J. Wang; J.H. Luan; Z.B. Jiao; D. Chen; Y. Yang; A. Hu; C.T. Liu; J.-J. Kai Heterogeneous precipitation behavior and stacking-fault-mediated deformation in a CoCrNi-based medium-entropy alloy, Acta Mater., Volume 138 (2017), pp. 72-82 | DOI

[74] B. Gwalani; S. Gorsse; D. Choudhuri; M. Styles; Y. Zheng; R.S. Mishra; R. Banerjee Modifying transformation pathways in high-entropy alloys or complex concentrated alloys via thermo-mechanical processing, Acta Mater., Volume 153 (2018), pp. 169-185 | DOI

[75] H.M. Daoud; A.M. Manzoni; N. Wanderka; U. Glatzel High-temperature tensile strength of Al10Co25Cr8Fe15Ni36Ti6 compositionally complex alloy (high-entropy alloy), JOM, Volume 67 (2015), pp. 2271-2277 | DOI

[76] M.A. Manzoni; S. Singh; M.H. Daoud; R. Popp; R. Völkl; U. Glatzel; N. Wanderka On the path to optimizing the Al–Co–Cr–Cu–Fe–Ni–Ti high-entropy alloy family for high temperature applications, Entropy, Volume 18 (2016) | DOI

[77] Y.Y. Zhao; H.W. Chen; Z.P. Lu; T.G. Nieh Thermal stability and coarsening of coherent particles in a precipitation-hardened (NiCoFeCr)94Ti2Al4 high-entropy alloy, Acta Mater., Volume 147 (2018), pp. 184-194 | DOI

[78] J.Y. He; H. Wang; Y. Wu; X.J. Liu; T.G. Nieh; Z.P. Lu High-temperature plastic flow of a precipitation-hardened FeCoNiCr high-entropy alloy, Mater. Sci. Eng. A, Volume 686 (2017), pp. 34-40 | DOI

[79] O.N. Senkov; S.V. Senkova; D.B. Miracle; C. Woodward Mechanical properties of low-density, refractory multi-principal element alloys of the Cr–Nb–Ti–V–Zr system, Mater. Sci. Eng. A, Struct. Mater.: Prop. Microstruct. Process., Volume 565 (2013), pp. 51-62 | DOI

[80] N.D. Stepanov; N.Y. Yurchenko; D.V. Skibin; M.A. Tikhonovsky; G.A. Salishchev Structure and mechanical properties of the AlCrxNbTiV (x=0,0.5,1,1.5) high-entropy alloys, J. Alloys Compd., Volume 652 (2015), pp. 266-280 | DOI

[81] Y. Ma; Q. Wang; B.B. Jiang; C.L. Li; J.M. Hao; X.N. Li; C. Dong; T.G. Nieh Controlled formation of coherent cuboidal nanoprecipitates in body-centered cubic high-entropy alloys based on Al2(Ni,Co,Fe,Cr)14 compositions, Acta Mater., Volume 147 (2018), pp. 213-225 | DOI

[82] O.N. Senkov; J.K. Jensen; A.L. Pilchak; D.B. Miracle; H.L. Fraser Compositional variation effects on the microstructure and properties of a refractory high-entropy superalloy AlMo0.5NbTa0.5TiZr, Mater. Des., Volume 139 (2018), pp. 498-511 | DOI

[83] Y. Deng; C.C. Tasan; K.G. Pradeep; H. Springer; A. Kostka; D. Raabe Design of a twinning-induced plasticity high-entropy alloy, Acta Mater., Volume 94 (2015), pp. 124-133 | DOI

[84] Z. Li; K.G. Pradeep; Y. Deng; D. Raabe; C.C. Tasan Metastable high-entropy dual-phase alloys overcome the strength–ductility trade-off, Nature, Volume 534 (2016), p. 227

[85] Z. Li; C.C. Tasan; K.G. Pradeep; D. Raabe A TRIP-assisted dual-phase high-entropy alloy: grain size and phase fraction effects on deformation behavior, Acta Mater., Volume 131 (2017), pp. 323-335 | DOI

[86] L. Lilensten; J.-P. Couzinie; J. Bourgon; L. Perriere; G. Dirras; F. Prima; I. Guillot Design and tensile properties of a bcc Ti-rich high-entropy alloy with transformation-induced plasticity, Mater. Res. Lett., Volume 5 (2017), pp. 110-116 | DOI

[87] H. Huang; Y. Wu; J. He; H. Wang; X. Liu; K. An; W. Wu; Z. Lu Phase-transformation ductilization of brittle high-entropy alloys via metastability engineering, Adv. Mater., Volume 29 (2017) | DOI

[88] M. Morinaga; N. Yukawa; T. Maya; K. Sone; H. Adachi Theoretical design of titanium alloys, Sixth World Conference on Titanium. III, 1988, pp. 1601-1606

[89] M. Abdel-Hady; K. Hinoshita; M. Morinaga General approach to phase stability and elastic properties of β-type Ti-alloys using electronic parameters, Scr. Mater., Volume 55 (2006), pp. 477-480 | DOI

[90] O.N. Senkov; J.D. Miller; D.B. Miracle; C. Woodward Accelerated exploration of multi-principal element alloys with solid solution phases, Nat. Commun., Volume 6 (2015), p. 6529 | DOI

[91] O.N. Senkov; J.D. Miller; D.B. Miracle; C. Woodward Accelerated exploration of multi-principal element alloys for structural applications, Calphad-Comput. Coupl. Phase Diagrams Thermochem., Volume 50 (2015), pp. 32-48 | DOI

[92] D. Miracle; B. Majumdar; K. Wertz; S. Gorsse New strategies and tests to accelerate discovery and development of multi-principal element structural alloys, Scr. Mater., Volume 127 (2017), pp. 195-200 | DOI

[93] S. Vives; P. Bellanger; S. Gorsse; C. Wei; Q. Zhang; J.-C. Zhao Combinatorial approach based on interdiffusion experiments for the design of thermoelectrics: application to the Mg-2(Si,Sn) alloys, Chem. Mater., Volume 26 (2014), pp. 4334-4337 | DOI

[94] J.C. Zhao Combinatorial approaches as effective tools in the study of phase diagrams and composition-structure-property relationships, Prog. Mater. Sci., Volume 51 (2006), pp. 557-631 | DOI

[95] K.N. Wertz; J.D. Miller; O.N. Senkov Toward multi-principal component alloy discovery: assessment of CALPHAD thermodynamic databases for prediction of novel ternary alloy systems, J. Mater. Res. (2018), pp. 1-14 | DOI

[96] S. Naka; T. Khan Designing novel multiconstituent intermetallics: contribution of modern alloy theory in developing engineered materials, J. Phase Equilib., Volume 18 (1997), p. 635 | DOI

[97] Z. Chen; I. Jones Sublattice occupancy in 3 Ti–Al–Mo B2 phases, Scr. Metall. Mater., Volume 32 (1995), pp. 553-557 | DOI

[98] T. Sikora; G. Hug; M. Jaouen; A.M. Flank EXAFS study of the local atomic order in Ti(2)AlX (X=Nb,Mo) B2 intermetallic compounds, J. Phys. IV, Volume 6 (1996), pp. 15-20 | DOI

[99] S. Huang; E. Hall The effects of Cr additions to binary TiAl-base alloys, Metall. Trans. A, Phys. Metall. Mater. Sci., Volume 22 (1991), pp. 2619-2627 | DOI

[100] D. Banerjee The intermetallic Ti2AlNb, Prog. Mater. Sci., Volume 42 (1997), pp. 135-158 | DOI

[101] A. Pathak; A.K. Singh A first principles study of Ti2AlNb intermetallic, Solid State Commun., Volume 204 (2015), pp. 9-15 | DOI

[102] K. Das; S. Das Order–disorder transformation of the body centered cubic phase in the Ti–Al–X (X=Ta, Nb, or Mo) system, J. Mater. Sci., Volume 38 (2003), pp. 3995-4002 | DOI

[103] S. Das; J. Perepezko Ternary phase development in the Ti–Al–Ta system, Scr. Metall. Mater., Volume 25 (1991), pp. 1193-1198 | DOI

[104] M. Weaver; M. Kaufman Phase-relationships and transformations in the ternary aluminum–titanium–tantalum system, Acta Metall. Mater., Volume 43 (1995), pp. 2625-2640 | DOI

[105] P. Villars A 3-dimensional stability diagram for 998 binary AB intermetallic compounds, J. Less-Common Met., Volume 92 (1983), pp. 215-238 | DOI

[106] D. Pettifor Structure maps for pseudobinary and ternary phases, Mater. Sci. Technol., Volume 4 (1988), pp. 675-691 | DOI

[107] Y. Harada; M. Morinaga; J. Saito; Y. Takagi New crystal structure maps for intermetallic compounds, J. Phys. Condens. Matter, Volume 9 (1997), pp. 8011-8030 | DOI

[108] S. Curtarolo; D. Morgan; G. Ceder Accuracy of ab initio methods in predicting the crystal structures of metals: a review of 80 binary alloys, Calphad-Comput. Coupl. Phase Diagrams Thermochem., Volume 29 (2005), pp. 163-211 | DOI

[109] N.Y. Chen; W.C. Lu; R.L. Chen; P. Qin; P. Villars Regularities of formation of ternary intermetallic compounds – Part 1. Ternary intermetallic compounds between nontransition elements, J. Alloys Compd., Volume 289 (1999), pp. 120-125

[110] S. Curtarolo; D. Morgan; K. Persson; J. Rodgers; G. Ceder Predicting crystal structures with data mining of quantum calculations, Phys. Rev. Lett., Volume 91 (2003) | DOI

[111] E. Menou; I. Toda-Caraballo; P.E.J. Rivera-Diaz-del-Castillo; C. Pineau; E. Bertrand; G. Ramstein; F. Tancret Evolutionary design of strong and stable high-entropy alloys using multi-objective optimisation based on physical models, statistics and thermodynamics, Mater. Des., Volume 143 (2018), pp. 185-195 | DOI

[112] S. Curtarolo; W. Setyawan; S. Wang; J. Xue; K. Yang; R.H. Taylor; L.J. Nelson; G.L.W. Hart; S. Sanvito; M. Buongiorno-Nardelli; N. Mingo; O. Levy AFLOWLIB.ORG: A distributed materials properties repository from high-throughput ab initio calculations, Comput. Mater. Sci., Volume 58 (2012), pp. 227-235 | DOI

[113] A. Jain; G. Hautier; C.J. Moore; S.P. Ong; C.C. Fischer; T. Mueller; K.A. Persson; G. Ceder A high-throughput infrastructure for density functional theory calculations, Comput. Mater. Sci., Volume 50 (2011), pp. 2295-2310 | DOI

[114] D.D. Landis; J.S. Hummelshoj; S. Nestorov; J. Greeley; M. Dulak; T. Bligaard; J.K. Norskov; K.W. Jacobsen The computational materials repository, Comput. Sci. Eng., Volume 14 (2012), pp. 51-57 | DOI

[115] M. Klintenberg The Electronic Structure Project http://gurka.fysik.uu.se/esp-fs/ (n.d.)

[116] S. Kirklin; J.E. Saal; B. Meredig; A. Thompson; J.W. Doak; M. Aykol; S. Ruehl; C. Wolverton The Open Quantum Materials Database (OQMD): assessing the accuracy of DFT formation energies, Npj Comput. Mater., Volume 1 (2015) (UNSP 15010) | DOI

[117] M. Mihalkovic; M. Widom Ab initio calculations of cohesive energies of Fe-based glass-forming alloys, Phys. Rev. B, Volume 70 (2004) | DOI

Cited by Sources:

Comments - Policy